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Preview
● Wolff :

○ First theoretical explanation of charge multiplication.
○ Solved quasi-Maxwellian equation with spherically symmetric distribution function.
○ Ionization coefficient valid for high field strengths : 

𝛂(𝜖) = a exp(-b/𝜖2)

● Shockley:
○ A simple statistical model with three adjustable parameters
○ Spike distribution function.
○ Ionization coefficients valid for low field strengths : 

𝛂(𝜖) = (q𝜖/rER)exp(-Ei/qLR𝜖)
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Preview
● Baraff :

○ Distribution function corresponds to Wolff’s spherically 
symmetric part and Shockley’s spike with constant 
mean free path.

○ Similarities in slope to Wolff’s theory for higher fields 
and Shockley’s theory for lower fields.

● Crowell & Sze : modified Baraff’s results
○  introduced parameters - average phonon energy lost 

per scattering and temperature. 

<ER> = ER tgh(ER/2kT)

● Later Keldysh confirmed Baraff’s results. 
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TCAD Avalanche Models

● Van Overstraeten and de Man Model
● Okuto and Crowell Model
● Lackner Model
● UNIBO (University of Bologna)  Model
● New UNIBO Model
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Chynoweth Law

● Chynoweth’s experimental ionization rates 
agreed well with measurement of ionization 
rates in gases :  𝛂 = a exp(-b/𝜖)

● Observed linearity in ln𝛂 against E-1 graph 
over wide range of fields.

● Shockley and Van Overstraeten validated 
this law in the electric field range from 1.75
⨯105 - 6⨯105 Vcm-1 (300K).

5

( A & B correspond to Chynoweth law)

(Ref. 7)



Van Overstraeten Model
● Used Chynoweth’s law for fitting the data and 

extracting the model parameters : 

α(𝜖ava) = γa exp(- γb/𝜖ava) ;   

γ = tanh(ħωop/2kT0)/ 
tanh(ħωop/2kT)

● Valid in the field range of 1.75⨯105 ≤ 𝜖 ≤ 6⨯105 Vcm-1 
.

● Different values of parameters a & b in low and high 
range of fields.

● Almost same value of a & b for 7 different diodes 
used - made good approximation of Chynoweth’s law. 6(Symbols represent particular diode)
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Van Overstraeten Model
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Okuto & Crowell Model
● Empirical model based on Baraff’s theoretical model : 

α(𝜖ava) = a [1+c(T-T0)]  𝜖
γ
ava

 exp(-(b[1+d(T-T0)] / 𝜖ava)ᵟ) ;   T0=300K

● Energy conservation  conditions applied.
● Applicable in the field range of 105-106 Vcm-1 .
● Applied pseudo-local approximation and predicted the existing data with good accuracy.
● “Exact” non-localized approximation considered boundary regions (p-i-n junction).

○ Zero ionization coefficient in boundary dark spaces (p-i & i-n) 
○ Constant and close to the values of previous approximation in rest of the region.
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Okuto & Crowell Model
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Lackner Model
● New theory on pseudo-local ionization probability model for field correction of 

Chynoweth law :

αv(𝜖ava) = (γav /Z) exp(- γbv/𝜖ava) ;   where v = n,p

Z =  1 + (γbn/𝜖ava) exp(-γbn/𝜖ava) + γbp/𝜖ava exp(-γbp/𝜖ava)

   γ = tanh(ħωop/2kT0)/ tanh(ħωop/2kT)

● Introduced Z parameter in Chynoweth’s law.
● Valid in the field range 2⨯105 - 6⨯105 Vcm-1.
● Unlike Van Overstraeten and de Man model, same values of parameters a & b in low and 

high field regions.
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Lackner Model
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Lackner Model

● Field correction matched well 
with Chynoweth’s law (Z=1) for 
field values < 4⨯105 Vcm-1.

● Deviation (Z≠1) in higher range 
of fields (>4⨯105Vcm-1).

● No validation issue has been 
provided for field correction 
approximation. 
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Comparison of Three Models

13

(Ref. 6)



UNIBO Model
● Compact model based on impact ionization data generated by Boltzmann solver HARM :

α(𝜖ava ,T) = 𝜖ava / (a(T)+b (T) exp[d(T) / 𝜖ava+c(T)])

● Ionization coefficient as a function of field and lattice temperature 
● Developed for an extended temperature range (300K-675K) and low electric fields(4⨯104 - 

5⨯105Vcm-1).
● Observed the contribution of non-equilibrium Auger generation at high temperatures - 

differentiate this model from other standard models.
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New UNIBO Model

● Modification of compact UNIBO model by extending the temperature range between 
300-773K :

α(𝜖ava ,T) = 𝜖ava / (a(T)+b (T) exp[d(T) / 𝜖ava+c(T)])

● Likewise UNIBO, New UNIBO model developed for low electric field range.
● Theoretically based on UNIBO theory 

○ Different method of solving the parameters, so, resulted different values. 
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Conclusions
● Van Overstraeten and Lackner model based on Chynoweth law, but used different 

parameters
○  reliable for low-field regions (Shockley’s low field theory).

● Okuto and Crowell model valid for whole range of fields (Baraff’s theory)..
● UNIBO and New UNIBO models showed their reliability for high temperature ranges and 

low electric fields(down to 4⨯104Vcm-1).
● All models except Okuto & Crowell typically used for self-heating power devices and 

ESD-protection structures.
● Our focus is on thin p-n junctions with moderate and high field regions - Okuto and 

Crowell.
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