TCAD Avalanche Models

Group meeting 19-05-2020

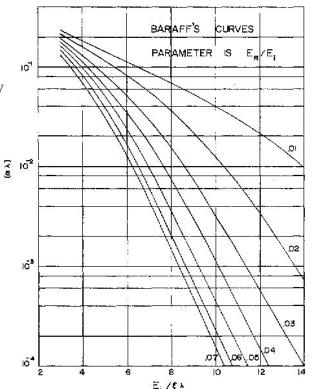
1

Preview

- Wolff :
 - First theoretical explanation of charge multiplication.
 - Solved quasi-Maxwellian equation with spherically symmetric distribution function.
 - Ionization coefficient valid for **high field** strengths :

$$\boldsymbol{\alpha}(\boldsymbol{\epsilon}) = \mathbf{a} \, \exp(-\mathbf{b}/\boldsymbol{\epsilon}^2)$$

- Shockley:
 - A simple statistical model with three adjustable parameters
 - Spike distribution function.
 - Ionization coefficients valid for **low field** strengths :


 $\boldsymbol{\alpha}(\boldsymbol{\epsilon}) = (q\boldsymbol{\epsilon}/r\boldsymbol{E}_{R})\exp(-\boldsymbol{E}_{i}/q\boldsymbol{L}_{R}\boldsymbol{\epsilon})$

Preview

- Baraff :
 - Distribution function corresponds to Wolff's spherically symmetric part and Shockley's spike with constant mean free path.
 - Similarities in slope to Wolff's theory for higher fields and Shockley's theory for lower fields.
- Crowell & Sze : modified Baraff's results
 - introduced parameters average phonon energy lost per scattering and temperature.

 $\langle E_R \rangle = E_R \operatorname{tgh}(E_R/2kT)$

• Later Keldysh confirmed Baraff's results.



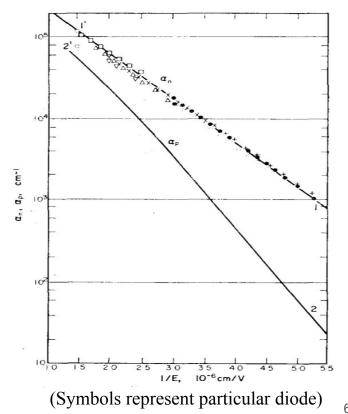
TCAD Avalanche Models

- Van Overstraeten and de Man Model
- Okuto and Crowell Model
- Lackner Model
- UNIBO (University of Bologna) Model
- New UNIBO Model

Chynoweth Law

- Chynoweth's experimental ionization rates agreed well with measurement of ionization rates in gases : α = a exp(-b/ε)
- Observed linearity in lnα against E⁻¹ graph over wide range of fields.
- Shockley and Van Overstraeten validated this law in the electric field range from 1.75 ×10⁵ - 6×10⁵ Vcm⁻¹ (300K).

Van Overstraeten Model


• Used Chynoweth's law for fitting the data and extracting the model parameters :

 $\alpha(\epsilon_{\rm ava}) = \gamma a \, \exp(-\gamma b/\epsilon_{\rm ava}) ;$

 $\gamma = \tanh(\hbar\omega_{op}^{}/2kT_{0}^{})/$ $\tanh(\hbar\omega_{op}^{}/2kT)$

- Valid in the field range of $1.75 \times 10^5 \le \epsilon \le 6 \times 10^5 \text{ V cm}^{-1}$
- Different values of parameters **a** & **b** in low and high range of fields.
- Almost same value of **a** & **b** for 7 different diodes used made good approximation of Chynoweth's law.

(Ref. 8)

Van Overstraeten Model

Symbol	Parameter name	Electrons	Holes	Valid range of electric field	Unit
а	a(low)	7.03×10^{5}	1.582×10^{6}	$1.75 \times 10^5 \mathrm{V cm}^{-1}$ to E_0	cm ⁻¹
	a(high)	7.03×10^{5}	6.71×10^{5}	E_0 to $6 \times 10^5 \mathrm{V cm}^{-1}$	1
b	b(low)	1.231×10^{6}	2.036×10^{6}	$1.75 \times 10^5 \mathrm{V cm}^{-1}$ to E_0	V/cm
	b(high)	1.231×10^{6}	1.693×10^{6}	E_0 to 6×10^5 V cm ⁻¹	
E ₀	EO	4×10^5	4×10^5		V/cm
hω _{op}	hbarOmega	0.063	0.063		eV
λ	lambda	62×10^{-8}	45×10^{-8}		cm
β	beta(low)	0.678925	0.815009	$1.75 \times 10^5 \mathrm{Vcm}^{-1}$ to E_0	1
	beta (high)	0.678925	0.677706	E_0 to 6×10^5 V cm ⁻¹	

(Ref. 1, pn. 436)

Okuto & Crowell Model

• Empirical model based on Baraff's theoretical model :

 $\alpha(\epsilon_{ava}) = a \left[1 + c(T - T_0)\right] \epsilon_{ava}^{\gamma} \exp(-(b[1 + d(T - T_0)] / \epsilon_{ava})^{\delta}); \quad T_0 = 300 \text{K}$

- Energy conservation conditions applied.
- Applicable in the field range of 10^5 - 10^6 Vcm⁻¹.
- Applied pseudo-local approximation and predicted the existing data with good accuracy.
- "Exact" non-localized approximation considered boundary regions (p-i-n junction).
 - Zero ionization coefficient in boundary dark spaces (p-i & i-n)
 - Constant and close to the values of previous approximation in rest of the region.

Okuto & Crowell Model

Symbol	Parameter name	Electrons	Holes	Unit
а	a	0.426	0.243	V ⁻¹
b	b	4.81×10^{5}	6.53×10^{5}	V/cm
с	c	3.05×10^{-4}	5.35×10^{-4}	K ⁻¹
d	d	6.86×10^{-4}	5.67×10^{-4}	K ⁻¹
γ	gamma	1	1	1
δ	delta	2	2	1
λ	lambda	62×10^{-8}	45×10^{-8}	cm
β	beta	0.265283	0.261395	1

(Ref. 1, pn. 437)

Lackner Model

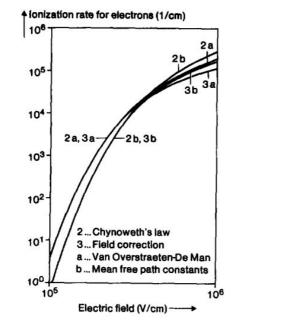
• New theory on pseudo-local ionization probability model for field correction of Chynoweth law :

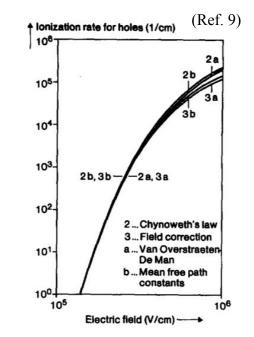
$$\alpha_{v}(\epsilon_{ava}) = (\gamma a_{v}/Z) \exp(-\gamma b_{v}/\epsilon_{ava}); \text{ where } v = n,p$$

$$Z = 1 + (\gamma b_{n}/\epsilon_{ava}) \exp(-\gamma b_{n}/\epsilon_{ava}) + \gamma b_{p}/\epsilon_{ava} \exp(-\gamma b_{p}/\epsilon_{ava})$$

$$\gamma = \tanh(\hbar\omega_{op}/2kT_{0})/\tanh(\hbar\omega_{op}/2kT)$$

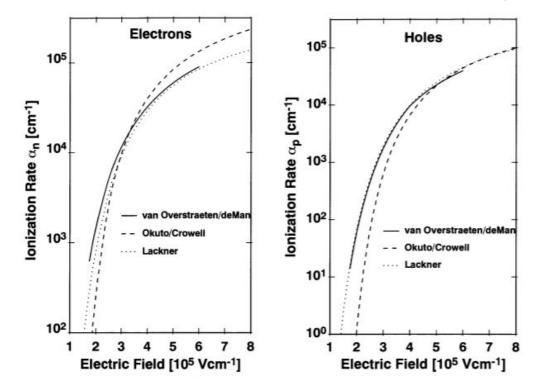
- Introduced Z parameter in Chynoweth's law.
- Valid in the field range $2 \times 10^5 6 \times 10^5 \text{ V cm}^{-1}$.
- Unlike Van Overstraeten and de Man model, same values of parameters **a** & **b** in low and high field regions.


Lackner Model


Symbol	Parameter name	Electrons	Holes	Unit
a	a	1.316×10^{6}	1.818×10^{6}	cm ⁻¹
b	b	1.474×10^{6}	2.036×10^{6}	V/cm
hω _{op}	hbarOmega	0.063	0.063	eV
λ	lambda	62×10^{-8}	45×10^{-8}	cm
β	beta	0.812945	0.815009	1

(Ref. 1, pn. 438)

Lackner Model


- Field correction matched well with Chynoweth's law (Z=1) for field values < 4×10⁵ Vcm⁻¹.
- Deviation (Z≠1) in higher range of fields (>4×10⁵Vcm⁻¹).
- No validation issue has been provided for field correction approximation.

Comparison of Three Models

(Ref. 6)

UNIBO Model

• Compact model based on impact ionization data generated by Boltzmann solver HARM :

 $\alpha(\epsilon_{ava}, T) = \epsilon_{ava} / (a(T)+b(T) \exp[d(T) / \epsilon_{ava}+c(T)])$

- Ionization coefficient as a function of field and lattice temperature
- Developed for an extended temperature range (300K-675K) and low electric fields($4 \times 10^4 5 \times 10^5 \text{V cm}^{-1}$).
- Observed the contribution of non-equilibrium Auger generation at high temperatures differentiate this model from other standard models.

New UNIBO Model

• Modification of compact UNIBO model by extending the temperature range between 300-773K :

 $\alpha(\epsilon_{ava}, T) = \epsilon_{ava} / (a(T) + b(T) \exp[d(T) / \epsilon_{ava} + c(T)])$

- Likewise UNIBO, New UNIBO model developed for low electric field range.
- Theoretically based on UNIBO theory
 - Different method of solving the parameters, so, resulted different values.

Conclusions

- Van Overstraeten and Lackner model based on Chynoweth law, but used different parameters
 - reliable for low-field regions (Shockley's low field theory).
- Okuto and Crowell model valid for whole range of fields (Baraff's theory)..
- UNIBO and New UNIBO models showed their reliability for high temperature ranges and low electric fields(down to 4×10⁴Vcm⁻¹).
- All models except Okuto & Crowell typically used for self-heating power devices and ESD-protection structures.
- Our focus is on thin p-n junctions with moderate and high field regions Okuto and Crowell.

References

- 1. TCAD Sentaurus <u>http://www.sentaurus.dsod.pl/manuals/data/sdevice_ug.pdf</u>
- 2. P. A. Wolff, Phys. Rev. 95, 1415 (1954). https://doi.org/10.1103/PhysRev.95.1415
- 3. W. Shockley, Solid-St. Electron. 2, 35 (1961).
- 4. G. A. Baraff, Phys. Rev. 128, 2507 (1962). https://doi.org/10.1103/PhysRev.128.2507
- 5. Mönch, W. (1969). On the Physics of Avalanche Breakdown in Semiconductors. physica status solidi (b). 36. 9 48. 10.1002/pssb.19690360102.
- 6. Andreas Schenk, "Advanced physical models for silicon device simulation". https://doi.org/10.1007/978-3-7091-6494-5
- A. G. Chynoweth, "Ionization Rates for Electrons and Holes in Silicon," Physical Review, vol. 109, no. 5, pp. 1537–1540, 1958. https://doi.org/10.1103/PhysRev.109.1537
- 8. R. van Overstraeten and H. de Man, "Measurement of the Ionization Rates in Diffused Silicon p-n Junctions," Solid-State Electronics, vol. 13, no. 1, pp. 583–608, 1970.

References

- 8. Y. Okuto and C. R. Crowell, Phys. Rev. B10, 4284 (1974). https://doi.org/10.1103/PhysRevB.10.4284
- T. Lackner, "Avalanche Multiplication in Semiconductors: A Modification of Chynoweth's Law," Solid-State Electronics, vol. 34, no. 1, pp. 33–42, 1991. https://doi.org/10.1016/0038-1101(91)90197-7
- S. Reggiani et al., "Investigation about the High-Temperature Impact-Ionization Coefficient in Silicon," in Proceedings of the 34th European Solid-State Device Research Conference (ESSDERC), Leuven, Belgium, pp. 245–248, September 2004. https://doi.org/10.1109/ESSDER.2004.1356535
- S. Reggiani et al., "Experimental extraction of the electron impact-ionization coefficient at large operating temperatures," in IEDM Technical Digest, San Francisco, CA, USA, pp. 407–410, December 2004. https://doi.org/10.1109/IEDM.2004.1419171