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2 C H A P T E R 1 • Design Concepts

This book is about logic circuits—the circuits from which computers are built. Proper understanding of
logic circuits is vital for today’s electrical and computer engineers. These circuits are the key ingredient of
computers and are also used in many other applications. They are found in commonly used products, such as
digital watches, various household appliances, CD players, and electronic games, as well as in large systems,
such as the equipment for telephone and television networks.

The material in this book will introduce the reader to the many issues involved in the design of logic
circuits. It explains the key ideas with simple examples and shows how complex circuits can be derived from
elementary ones. We cover the classical theory used in the design of logic circuits in great depth because it
provides the reader with an intuitive understanding of the nature of such circuits. But throughout the book we
also illustrate the modern way of designing logic circuits, using sophisticatedcomputer aided design (CAD)
software tools. The CAD methodology adopted in the book is based on the industry-standard design language
called VHDL. Design with VHDL is first introduced in Chapter 2, and usage of VHDL and CAD tools is an
integral part of each chapter in the book.

Logic circuits are implemented electronically, using transistors on an integrated circuit chip. With modern
technology it is possible to fabricate chips that contain tens of millions of transistors, as in the case of computer
processors. The basic building blocks for such circuits are easy to understand, but there is nothing simple
about a circuit that contains tens of millions of transistors. The complexity that comes with the large size of
logic circuits can be handled successfully only by using highly organized design techniques. We introduce
these techniques in this chapter, but first we briefly describe the hardware technology used to build logic
circuits.

1.1 Digital Hardware

Logic circuits are used to build computer hardware, as well as many other types of products.
All such products are broadly classified asdigital hardware. The reason that the namedigital
is used will become clear later in the book—it derives from the way in which information
is represented in computers, as electronic signals that correspond to digits of information.

The technology used to build digital hardware has evolved dramatically over the past
four decades. Until the 1960s logic circuits were constructed with bulky components, such
as transistors and resistors that came as individual parts. The advent of integrated circuits
made it possible to place a number of transistors, and thus an entire circuit, on a single
chip. In the beginning these circuits had only a few transistors, but as the technology
improved they became larger. Integrated circuit chips are manufactured on a silicon wafer,
such as the one shown in Figure 1.1. The wafer is cut to produce the individual chips,
which are then placed inside a special type of chip package. By 1970 it was possible to
implement all circuitry needed to realize a microprocessor on a single chip. Although early
microprocessors had modest computing capability by today’s standards, they opened the
door for the information processing revolution by providing the means for implementation
of affordable personal computers. About 30 years ago Gordon Moore, chairman of Intel
Corporation, observed that integrated circuit technology was progressing at an astounding
rate, doubling the number of transistors that could be placed on a chip every 1.5 to 2 years.
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Figure 1.1 A silicon wafer (courtesy of Altera Corp.).

This phenomenon, informally known asMoore’s law, continues to the present day. Thus
in the early 1990s microprocessors could be manufactured with a few million transistors,
and by the late 1990s it has become possible to fabricate chips that contain more than 10
million transistors.

Moore’s law is expected to continue to hold true for at least the next decade. A con-
sortium of integrated circuit manufacturers called the Semiconductor Industry Association
(SIA) produces an estimate of how the technology is expected to evolve. Known as theSIA
Roadmap[1], this estimate predicts the minimum size of a transistor that can be fabricated
on an integrated circuit chip. The size of a transistor is measured by a parameter called its
gate length, which we will discuss in Chapter 3. A sample of the SIA Roadmap is given in
Table 1.1. In 1999 the minimum possible gate length that can be reliably manufactured is
0.14µm. The first row of the table indicates that the minimum gate length is expected to
reduce steadily to about 0.035µm by the year 2012. The size of a transistor determines how
many transistors can be placed in a given amount of chip area, with the current maximum
being about 14 million transistors per cm2. This number is expected to grow to 100 million
transistors by the year 2012. The largest chip size is expected to be about 1300 mm2 at that
time; thus chips with up to 1.3 billion transistors will be possible! There is no doubt that
this technology will have a huge impact on all aspects of people’s lives.

The designer of digital hardware may be faced with designing logic circuits that can be
implemented on a single chip or, more likely, designing circuits that involve a number of
chips placed on aprinted circuit board (PCB). Frequently, some of the logic circuits can be
realized in existing chips that are readily available. This situation simplifies the design task
and shortens the time needed to develop the final product. Before we discuss the design
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Table 1.1 A sample of the SIA Roadmap

Year

1999 2001 2003 2006 2009 2012

Transistor
gate length 0.14µm 0.12µm 0.10µm 0.07µm 0.05µm 0.035µm

Transistors
per cm2 14 million 16 million 24 million 40 million 64 million 100 million

Chip size 800 mm2 850 mm2 900 mm2 1000 mm2 1100 mm2 1300 mm2

process in more detail, we should introduce the different types of integrated circuit chips
that may be used.

There exists a large variety of chips that implement various functions that are useful
in the design of digital hardware. The chips range from very simple chips with low func-
tionality to extremely complex chips. For example, a digital hardware product may require
a microprocessor to perform some arithmetic operations, memory chips to provide storage
capability, and interface chips that allow easy connection to input and output devices. Such
chips are available from various vendors.

For most digital hardware products, it is also necessary to design and build some logic
circuits from scratch. For implementing these circuits, three main types of chips may be
used: standard chips, programmable logic devices, and custom chips. These are discussed
next.

1.1.1 Standard Chips

Numerous chips are available that realize some commonly used logic circuits. We will
refer to these asstandard chips, because they usually conform to an agreed-upon standard
in terms of functionality and physical configuration. Each standard chip contains a small
amount of circuitry (usually involving fewer than 100 transistors) and performs a simple
function. To build a logic circuit, the designer chooses the chips that perform whatever
functions are needed and then defines how these chips should be interconnected to realize
a larger logic circuit.

Standard chips were popular for building logic circuits until the early 1980s. However,
as integrated circuit technology improved, it became inefficient to use valuable space on
PCBs for chips with low functionality. Another drawback of standard chips is that the
functionality of each chip is fixed and cannot be changed.

1.1.2 Programmable Logic Devices

In contrast to standard chips that have fixed functionality, it is possible to construct chips
that contain circuitry that can be configured by the user to implement a wide range of
different logic circuits. These chips have a very general structure and include a collec-
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Figure 1.2 A field-programmable gate array chip (courtesy of
Altera Corp.).

tion of programmable switchesthat allow the internal circuitry in the chip to be con-
figured in many different ways. The designer can implement whatever functions are
needed for a particular application by choosing an appropriate configuration of the switches.
The switches are programmed by the end user, rather than when the chip is manufactured.
Such chips are known asprogrammable logic devices (PLDs). We will introduce them in
Chapter 3.

Most types of PLDs can be programmed multiple times. This capability is advantageous
because a designer who is developing a prototype of a product can program a PLD to perform
some function, but later, when the prototype hardware is being tested, can make corrections
by reprogramming the PLD. Reprogramming might be necessary, for instance, if a designed
function is not quite as intended or if new functions are needed that were not contemplated
in the original design.

PLDs are available in a wide range of sizes. They can be used to realize much larger
logic circuits than a typical standard chip can realize. Because of their size and the fact that
they can be tailored to meet the requirements of a specific application, PLDs are widely
used today. One of the most sophisticated types of PLD is known as afield-programmable
gate array (FPGA). FPGAs that contain more than 100 million transistors will soon be
available [2,3]. A photograph of an FPGA chip that has 10 million transistors is shown in
Figure 1.2. The chip consists of a large number of small logic circuit elements, which can
be connected together using the programmable switches. The logic circuit elements are
arranged in a regular two-dimensional structure.

1.1.3 Custom-Designed Chips

PLDs are available as off-the-shelf components that can be purchased from different sup-
pliers. Because they are programmable, they can be used to implement most logic circuits
found in digital hardware. However, PLDs also have a drawback in that the programmable
switches consume valuable chip area and limit the speed of operation of implemented cir-
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cuits. Thus in some cases PLDs may not meet the desired performance or cost objectives.
In such situations it is possible to design a chip from scratch; namely, the logic circuitry
that must be included on the chip is designed first and then an appropriate technology is
chosen to implement the chip. Finally, the chip is manufactured by a company that has the
fabrication facilities. This approach is known ascustomor semi-custom design, and such
chips are calledcustomor semi-custom chips. Such chips are intended for use in specific
applications and are sometimes calledapplication-specific integrated circuits (ASICs).

The main advantage of a custom chip is that its design can be optimized for a specific
task; hence it usually leads to better performance. It is possible to include a larger amount
of logic circuitry in a custom chip than would be possible in other types of chips. The
cost of producing such chips is high, but if they are used in a product that is sold in large
quantities, then the cost per chip, amortized over the total number of chips fabricated, may
be lower than the total cost of off-the-shelf chips that would be needed to implement the
same function(s). Moreover, if a single chip can be used instead of multiple chips to achieve
the same goal, then a smaller area is needed on a PCB that houses the chips in the final
product. This results in a further reduction in cost.

A disadvantage of the custom-design approach is that manufacturing a custom chip
often takes a considerable amount of time, on the order of months. In contrast, if a PLD
can be used instead, then the chips are programmed by the end user and no manufacturing
delays are involved.

1.2 The Design Process

The availability of computer-based tools has greatly influenced the design process in a wide
variety of design environments. For example, designing an automobile is similar in the
general approach to designing a furnace or a computer. Certain steps in the development
cycle must be performed if the final product is to meet the specified objectives. We will
start by introducing a typical development cycle in the most general terms. Then we will
focus on the particular aspects that pertain to the design of logic circuits.

The flowchart in Figure 1.3 depicts a typical development process. We assume that
the process is to develop a product that meets certain expectations. The most obvious
requirements are that the product must function properly, that it must meet an expected
level of performance, and that its cost should not exceed a given target.

The process begins with the definition of product specifications. The essential features
of the product are identified, and an acceptable method of evaluating the implemented
features in the final product is established. The specifications must be tight enough to
ensure that the developed product will meet the general expectations, but should not be
unnecessarily constraining (that is, the specifications should not prevent design choices that
may lead to unforeseen advantages).

From a complete set of specifications, it is necessary to define the general structure of
an initial design of the product. This step is difficult to automate. It is usually performed by
a human designer because there is no clear-cut strategy for developing a product’s overall
structure—it requires considerable design experience and intuition.

After the general structure is established, CAD tools are used to work out the details.
Many types of CAD tools are available, ranging from those that help with the design
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Figure 1.3 The development process.

of individual parts of the system to those that allow the entire system’s structure to be
represented in a computer. When the initial design is finished, the results must be verified
against the original specifications. Traditionally, before the advent of CAD tools, this step
involved constructing a physical model of the designed product, usually including just the
key parts. Today it is seldom necessary to build a physical model. CAD tools enable
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designers to simulate the behavior of incredibly complex products, and such simulations
are used to determine whether the obtained design meets the required specifications. If
errors are found, then appropriate changes are made and the verification of the new design
is repeated through simulation. Although some design flaws may escape detection via
simulation, usually all but the most subtle problems are discovered in this way.

When the simulation indicates that the design is correct, a complete physical prototype
of the product is constructed. The prototype is thoroughly tested for conformance with the
specifications. Any errors revealed in the testing must be fixed. The errors may be minor,
and often they can be eliminated by making small corrections directly on the prototype of
the product. In case of large errors, it is necessary to redesign the product and repeat the
steps explained above. When the prototype passes all the tests, then the product is deemed
to be successfully designed and it can go into production.

1.3 Design of Digital Hardware

Our previous discussion of the development process is relevant in a most general way. The
steps outlined in Figure 1.3 are fully applicable in the development of digital hardware.
Before we discuss the complete sequence of steps in this development environment, we
should emphasize the iterative nature of the design process.

1.3.1 Basic Design Loop

Any design process comprises a basic sequence of tasks that are performed in various
situations. This sequence is presented in Figure 1.4. Assuming that we have an initial
concept about what should be achieved in the design process, the first step is to generate
an initial design. This step often requires a lot of manual effort because most designs
have some specific goals that can be reached only through the designer’s knowledge, skill,
and intuition. The next step is the simulation of the design at hand. There exist excellent
CAD tools to assist in this step. To carry out the simulation successfully, it is necessary
to have adequate input conditions that can be applied to the design that is being simulated
and later to the final product that has to be tested. Applying these input conditions, the
simulator tries to verify that the designed product will perform as required under the orig-
inal product specifications. If the simulation reveals some errors, then the design must
be changed to overcome the problems. The redesigned version is again simulated to de-
termine whether the errors have disappeared. This loop is repeated until the simulation
indicates a successful design. A prudent designer expends considerable effort to rem-
edy errors during simulation because errors are typically much harder to fix if they are
discovered late in the design process. Even so, some errors may not be detected during
simulation, in which case they have to be dealt with in later stages of the development
cycle.
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Figure 1.4 The basic design loop.

1.3.2 Design of a Digital Hardware Unit

Digital hardware products usually involve one or more PCBs that contain many chips and
other components. Development of such products starts with the definition of the overall
structure. Then the required integrated circuit chips are selected, and the PCBs that house
and connect the chips together are designed. If the selected chips include PLDs or custom
chips, then these chips must be designed before the PCB-level design is undertaken. Since
the complexity of circuits implemented on individual chips and on the circuit boards is
usually very high, it is essential to make use of good CAD tools.

An example of a PCB is given in Figure 1.5. The PCB is a part of a large computer
system designed at the University of Toronto. This computer, calledNUMAchine[4,5], is
a multiprocessor, which means that it contains many processors that can be used together
to work on a particular task. The PCB in the figure contains one processor chip and various
memory and support chips. Complex logic circuits are needed to form the interface between
the processor and the rest of the system. A number of PLDs are used to implement these
logic circuits.

To illustrate the complete development cycle in more detail, we will consider the steps
needed to produce a digital hardware unit that can be implemented on a PCB. This hardware
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Figure 1.5 A printed circuit board.

could be viewed as a very complex logic circuit that performs the functions defined by the
product specifications. Figure 1.6 shows the design flow, assuming that we have a design
concept that defines the expected behavior and characteristics of this large circuit.

An orderly way of dealing with the complexity involved is to partition the circuit into
smaller blocks and then to design each block separately. Breaking down a large task into
more manageable smaller parts is known as the divide-and-conquer approach. The design
of each block follows the procedure outlined in Figure 1.4. The circuitry in each block is
defined, and the chips needed to implement it are chosen. The operation of this circuitry is
simulated, and any necessary corrections are made.

Having successfully designed all blocks, the interconnection between the blocks must
be defined, which effectively combines these blocks into a single large circuit. Now it
is necessary to simulate this complete circuit and correct any errors. Depending on the
errors encountered, it may be necessary to go back to the previous steps as indicated by the
paths A, B, and C in the flowchart. Some errors may be caused by incorrect connections
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Figure 1.6 Design flow for logic circuits.
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between the blocks, in which case these connections have to be redefined, following path C.
Some blocks may not have been designed correctly, in which case path B is followed and the
erroneous blocks are redesigned. Another possibility is that the very first step of partitioning
the overall large circuit into blocks was not done well, in which case path A is followed.
This may happen, for example, if none of the blocks implement some functionality needed
in the complete circuit.

Successful completion of functional simulation suggests that the designed circuit will
correctly perform all of its functions. The next step is to decide how to realize this circuit
on a PCB. The physical location of each chip on the board has to be determined, and the
wiring pattern needed to make connections between the chips has to be defined. We refer
to this step as thephysical designof the PCB. CAD tools are relied on heavily to perform
this task automatically.

Once the placement of chips and the actual wire connections on the PCB have been
established, it is desirable to see how this physical layout will affect the performance of
the circuit on the finished board. It is reasonable to assume that if the previous functional
simulation indicated that all functions will be performed correctly, then the CAD tools
used in the physical design step will ensure that the required functional behavior will not
be corrupted by placing the chips on the board and wiring them together to realize the
final circuit. However, even though the functional behavior may be correct, the realized
circuit may operate more slowly than desired and thus lead to inadequate performance. This
condition occurs because the physical wiring on the PCB involves metal traces that present
resistance and capacitance to electrical signals and thus may have a significant impact on the
speed of operation. To distinguish between simulation that considers only the functionality
of the circuit and simulation that also considers timing behavior, it is customary to use
the termsfunctional simulationand timing simulation. A timing simulation may reveal
potential performance problems, which can then be corrected by using the CAD tools to
make changes in the physical design of the PCB.

Having completed the design process, the designed circuit is ready for physical im-
plementation. The steps needed to implement a prototype board are indicated in Figure
1.7. A first version of the board is built and tested. Most minor errors that are detected can
usually be corrected by making changes directly on the prototype board. This may involve
changes in wiring or perhaps reprogramming some PLDs. Larger problems require a more
substantial redesign. Depending on the nature of the problem, the designer may have to
return to any of the points A, B, C, or D in the design process of Figure 1.6.

We have described the development process where the final circuit is implemented
using many chips on a PCB. The material presented in this book is directly applicable to
this type of design problem. However, for practical reasons the design examples that appear
in the book are relatively small and can be realized in a single integrated circuit, either a
custom-designed chip or a PLD. All the steps in Figure 1.6 are relevant in this case as well,
with the understanding that the circuit blocks to be designed are on a smaller scale.

1.4 Logic Circuit Design in This Book

In this book we use PLDs extensively to illustrate many aspects of logic circuit design.
We selected this technology because it is widely used in real digital hardware products
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Figure 1.7 Completion of PCB development.

and because the chips are user programmable. PLD technology is particularly well suited
for educational purposes because many readers have access to facilities for programming
PLDs, which enables the reader to actually implement the sample circuits. To illustrate
practical design issues, in this book we use two types of PLDs—they are the two types
of devices that are widely used in digital hardware products today. One type is known as
complex programmable logic devices(CPLDs) and the other asfield-programmable gate
arrays(FPGAs). These chips are introduced in Chapter 3.

We will illustrate the automated design of logic circuits using a sophisticated CAD
system from Altera Corporation, one of the world’s leading suppliers of PLDs. The system
is calledMAX+plusII. This industrial-quality software supports all phases of the design
cycle and is powerful and easy to use. To allow the reader to obtain hands-on experience
with the CAD tools, a CD-ROM containing the MAX+plusII software accompanies the
book. The software is easily installed on a suitable personal computer, and we provide a
sequence of complete step-by-step tutorials to illustrate the proper use of the CAD tools in
concert with the book.

For educational purposes Altera provides a laboratory development PCB, which is
called the UP-1 board. This PCB, shown in Figure 1.8, contains both a CPLD and an FPGA
chip and has an interface for connecting the board to a personal computer. Logic circuits can
be designed on the computer using MAX+plusII and thendownloadedinto the PLDs, thus
realizing the designed circuit. The reader is encouraged to obtain the board from Altera,
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Figure 1.8 The Altera UP-1 laboratory development board.

which can be done by accessing the University Program part of Altera’s Web site. All the
examples of logic circuits presented in this book can be implemented on the UP-1 board.

1.5 Theory and Practice

Modern design of logic circuits depends heavily on CAD tools, but the discipline of logic
design evolved long before CAD tools were invented. This chronology is quite obvious
because the very first computers were built with logic circuits, and there certainly were no
computers available on which to design them!

Numerous manual design techniques have been developed to deal with logic circuits.
Boolean algebra, which we will introduce in Chapter 2, was adopted as a mathematical
means for representing such circuits. An enormous amount of “theory” was developed,
showing how certain design issues may be treated. To be successful, a designer had to
apply this knowledge in practice.

CAD tools not only made it possible to design incredibly complex circuits but also
made the design work much simpler in general. They perform many tasks automatically,
which may suggest that today’s designer need not understand the theoretical concepts used
in the tasks performed by CAD tools. An obvious question would then be, Why should one
study the theory that is no longer needed for manual design? Why not simply learn how to
use the CAD tools?

There are three big reasons for learning the relevant theory. First, although the CAD
tools perform the automatic tasks of optimizing a logic circuit to meet particular design
objectives, the designer has to give the original description of the logic circuit. If the
designer specifies a circuit that has inherently bad properties, then the final circuit will also
be of poor quality. Second, the algebraic rules and theorems for design and manipulation
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of logic circuits are directly implemented in today’s CAD tools. It is not possible for a user
of the tools to understand what the tools do without grasping the underlying theory. Third,
CAD tools offer many optional processing steps that a user can invoke when working on
a design. The designer chooses which options to use by examining the resulting circuit
produced by the CAD tools and deciding whether it meets the required objectives. The
only way that the designer can know whether or not to apply a particular option in a given
situation is to know what the CAD tools will do if that option is invoked—again, this implies
that the designer must be familiar with the underlying theory. We discuss the classical logic
circuit theory extensively in this book, because it is not possible to become an effective
logic circuit designer without understanding the fundamental concepts.

On a final note, there is another good reason to learn some logic circuit theory even if it
were not required for CAD tools. Simply put, it is interesting and intellectually challenging.
In the modern world filled with sophisticated automatic machinery, it is tempting to rely on
tools as a substitute for thinking. However, in logic circuit design, as in any type of design
process, computer-based tools are not a substitute for human intuition and innovation.
Computer-based tools can produce good digital hardware designs only when employed by
a designer who thoroughly understands the nature of logic circuits.
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The study of logic circuits is motivated mostly by their use in digital computers. But such circuits also form
the foundation of many other digital systems where performing arithmetic operations on numbers is not of
primary interest. For example, in a myriad of control applications actions are determined by some simple
logical operations on input information, without having to do extensive numerical computations.

Logic circuits perform operations on digital signals and are usually implemented as electronic circuits
where the signal values are restricted to a few discrete values. Inbinary logic circuits there are only two
values, 0 and 1. In decimallogic circuits there are 10 values, from 0 to 9. Since each signal value is naturally
represented by a digit, such logic circuits are referred to asdigital circuits. In contrast, there existanalog
circuits where the signals may take on a continuous range of values between some minimum and maximum
levels.

In this book we deal with binary circuits, which have the dominant role in digital technology. We hope to
provide the reader with an understanding of how these circuits work, how are they represented in mathematical
notation, and how are they designed using modern design automation techniques. We begin by introducing
some basic concepts pertinent to the binary logic circuits.

2.1 Variables and Functions

The dominance of binary circuits in digital systems is a consequence of their simplicity,
which results from constraining the signals to assume only two possible values. The simplest
binary element is a switch that has two states. If a given switch is controlled by an input
variablex, then we will say that the switch is open ifx = 0 and closed ifx = 1, as illustrated
in Figure 2.1a. We will use the graphical symbol in Figure 2.1b to represent such switches
in the diagrams that follow. Note that the control inputx is shown explicitly in the symbol.
In Chapter 3 we will explain how such switches are implemented with transistors.

Consider a simple application of a switch, where the switch turns a small lightbulb
on or off. This action is accomplished with the circuit in Figure 2.2a. A battery provides
the power source. The lightbulb glows when sufficient current passes through its filament,
which is an electrical resistance. The current flows when the switch is closed, that is, when
x = 1. In this example the input that causes changes in the behavior of the circuit is the

x 1=x 0=

(a) Two states of a switch

S

x

(b) Symbol for a switch

Figure 2.1 A binary switch.
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Figure 2.2 A light controlled by a switch.

switch controlx. The output is defined as the state (or condition) of the lightL. If the light
is on, we will say thatL = 1. If the the light is off, we will say thatL = 0. Using this
convention, we can describe the state of the lightL as a function of the input variablex.
SinceL = 1 if x = 1 andL = 0 if x = 0, we can say that

L(x) = x

This simplelogic expressiondescribes the output as a function of the input. We say that
L(x) = x is a logic functionand thatx is aninput variable.

The circuit in Figure 2.2a can be found in an ordinary flashlight, where the switch is a
simple mechanical device. In an electronic circuit the switch is implemented as a transistor
and the light may be a light-emitting diode (LED). An electronic circuit is powered by
a power supply of a certain voltage, perhaps 5 volts. One side of the power supply is
connected to ground, as shown in Figure 2.2b. The ground connection may also be used as
the return path for the current, to close the loop, which is achieved by connecting one side
of the light to ground as indicated in the figure. Of course, the light can also be connected
by a wire directly to the grounded side of the power supply, as in Figure 2.2a.

Consider now the possibility of using two switches to control the state of the light. Let
x1 andx2 be the control inputs for these switches. The switches can be connected either
in series or in parallel as shown in Figure 2.3. Using a series connection, the light will be
turned on only if both switches are closed. If either switch is open, the light will be off.
This behavior can be described by the expression

L(x1, x2) = x1 · x2

where L = 1 if x1 = 1 andx2 = 1,
L = 0 otherwise.

The “·” symbol is called theAND operator, and the circuit in Figure 2.3a is said to implement
a logical AND function.
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(a) The logical AND function (series connection)

S

x1 L
Power
supply

S

x2

S

x1

L
Power
supply S

x2

(b) The logical OR function (parallel connection)

Light

Light

Figure 2.3 Two basic functions.

The parallel connection of two switches is given in Figure 2.3b. In this case the light
will be on if eitherx1 or x2 switch is closed. The light will also be on if both switches are
closed. The light will be off only if both switches are open. This behavior can be stated as

L(x1, x2) = x1+ x2

where L = 1 if x1 = 1 orx2 = 1 or if x1 = x2 = 1,
L = 0 if x1 = x2 = 0.

The+ symbol is called theOR operator, and the circuit in Figure 2.3b is said to implement
a logical OR function.

In the above expressions for AND and OR, the outputL(x1, x2) is a logic function with
input variablesx1 andx2. The AND and OR functions are two of the most important logic
functions. Together with some other simple functions, they can be used as building blocks

S

x1

L
Power
supply S

x2

Light

S

x3

Figure 2.4 A series-parallel connection.



April 5, 1999 14:05 g02-ch2 Sheet number 5 Page number 21 black

2.2 Inversion 21

for the implementation of all logic circuits. Figure 2.4 illustrates how three switches can be
used to control the light in a more complex way. This series-parallel connection of switches
realizes the logic function

L(x1, x2, x3) = (x1+ x2) · x3

The light is on ifx3 = 1 and, at the same time, at least one of thex1 or x2 inputs is equal
to 1.

2.2 Inversion

So far we have assumed that some positive action takes place when a switch is closed, such
as turning the light on. It is equally interesting and useful to consider the possibility that a
positive action takes place when a switch is opened. Suppose that we connect the light as
shown in Figure 2.5. In this case the switch is connected in parallel with the light, rather
than in series. Consequently, a closed switch will short-circuit the light and prevent the
current from flowing through it. Note that we have included an extra resistor in this circuit
to ensure that the closed switch does not short-circuit the power supply. The light will be
turned on when the switch is opened. Formally, we express this functional behavior as

L(x) = x
where L = 1 if x = 0,

L = 0 if x = 1

The value of this function is the inverse of the value of the input variable. Instead of
using the wordinverse, it is more common to use the termcomplement. Thus we say that
L(x) is a complement ofx in this example. Another frequently used term for the same
operation is theNOT operation. There are several commonly used notations for indicating
the complementation. In the preceding expression we placed an overbar on top ofx. This
notation is probably the best from the visual point of view. However, when complements
are needed in expressions that are typed using a computer keyboard, which is often done
when using CAD tools, it is impractical to use overbars. Instead, either an apostrophe is

Sx L

Power
supply

R

Figure 2.5 An inverting circuit.
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placed after the variable, or the exclamation mark or the word NOT is placed in front of the
variable to denote the complementation. Thus the following are equivalent:

x = x′ = !x = NOT x

The complement operation can be applied to a single variable or to more complex
operations. For example, if

f (x1, x2) = x1+ x2

then the complement off is

f (x1, x2) = x1+ x2

This expression yields the logic value 1 only when neitherx1 nor x2 is equal to 1, that is,
whenx1 = x2 = 0. Again, the following notations are equivalent:

x1+ x2 = (x1+ x2)
′ =!(x1+ x2) = NOT (x1+ x2)

2.3 Truth Tables

We have introduced the three most basic logic operations—AND, OR, and complement—by
relating them to simple circuits built with switches. This approach gives these operations a
certain “physical meaning.” The same operations can also be defined in the form of a table,
called atruth table, as shown in Figure 2.6. The first two columns (to the left of the heavy
vertical line) give all four possible combinations of logic values that the variablesx1 andx2

can have. The next column defines the AND operation for each combination of values ofx1

andx2, and the last column defines the OR operation. Because we will frequently need to
refer to “combinations of logic values” applied to some variables, we will adopt a shorter
term,valuation, to denote such a combination of logic values.

The truth table is a useful aid for depicting information involving logic functions. We
will use it in this book to define specific functions and to show the validity of certain func-
tional relations. Small truth tables are easy to deal with. However, they grow exponentially
in size with the number of variables. A truth table for three input variables has eight rows
because there are eight possible valuations of these variables. Such a table is given in Figure
2.7, which defines three-input AND and OR functions. For four-input variables the truth
table has 16 rows, and so on.

x1 x2 x1 · x2 x1+ x2

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

AND OR

Figure 2.6 A truth table for the AND and OR operations.
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x1 x2 x3 x1 · x2 · x3 x1+ x2 + x3

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure 2.7 Three-input AND and OR operations.

The AND and OR operations can be extended ton variables. An AND function
of variablesx1, x2, · · · , xn has the value 1 only if alln variables are equal to 1. An OR
function of variablesx1, x2, · · · , xn has the value 1 if at least one, or more, of the variables
is equal to 1.

2.4 Logic Gates and Networks

The three basic logic operations introduced in the previous sections can be used to implement
logic functions of any complexity. A complex function may require many of these basic
operations for its implementation. Each logic operation can be implemented electronically
with transistors, resulting in a circuit element called alogic gate. A logic gate has one or
more inputs and one output that is a function of its inputs. It is often convenient to describe
a logic circuit by drawing a circuit diagram, orschematic, consisting of graphical symbols
representing the logic gates. The graphical symbols for the AND, OR, and NOT gates are
shown in Figure 2.8. The figure indicates on the left side how the AND and OR gates are
drawn when there are only a few inputs. On the right side it shows how the symbols are
augmented to accommodate a greater number of inputs. We will show how logic gates are
built using transistors in Chapter 3.

A larger circuit is implemented by anetworkof gates. For example, the logic function
from Figure 2.4 can be implemented by the network in Figure 2.9. The complexity of a
given network has a direct impact on its cost. Because it is always desirable to reduce
the cost of any manufactured product, it is important to find ways for implementing logic
circuits as inexpensively as possible. We will see shortly that a given logic function can
be implemented with a number of different networks. Some of these networks are simpler
than others, hence searching for the solutions that entail minimum cost is prudent.

In technical jargon a network of gates is often called alogic networkor simply alogic
circuit. We will use these terms interchangeably.
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x1
x2

xn

x1 x2 … xn+ + +
x1
x2

x1 x2+

x1
x2

xn

x1
x2

x1 x2⋅ x1 x2 … xn⋅ ⋅ ⋅

(a) AND gates

(b) OR gates

x x

(c) NOT gate

Figure 2.8 The basic gates.

2.4.1 Analysis of a Logic Network

A designer of digital systems is faced with two basic issues. For an existing logic network,
it must be possible to determine the function performed by the network. This task is referred
to as theanalysisprocess. The reverse task of designing a new network that implements a
desired functional behavior is referred to as thesynthesisprocess. The analysis process is
rather straightforward and much simpler than the synthesis process.

Figure 2.10a shows a simple network consisting of three gates. To determine its
functional behavior, we can consider what happens if we apply all possible input signals to
it. Suppose that we start by makingx1 = x2 = 0. This forces the output of the NOT gate

x1
x2
x3

f x1 x2+( ) x3⋅=

Figure 2.9 The function from Figure 2.4.
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x1

x2

1 1 0 0→ → →

f

0 0 0 1→ → →

1 1 0 1→ → →

0 0 1 1→ → →

0 1 0 1→ → →

(a) Network that  implements f x1 x1 x2⋅+=

x1 x2 f x1 x2,( )
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(b) Truth table for f
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1
0

1
0

1
0

1
0

1
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x1

x2

A

B

f
Time

(c) Timing diagram

1 1 0 0→ → →0 0 1 1→ → →

1 1 0 1→ → →
0 1 0 1→ → → g

x1

x2

(d) Network that implements g x1 x2+=

Figure 2.10 An example of logic networks.

to be equal to 1 and the output of the AND gate to be 0. Because one of the inputs to the
OR gate is 1, the output of this gate will be 1. Therefore,f = 1 if x1 = x2 = 0. If we let
x1 = 0 andx2 = 1, then no change in the value off will take place, because the outputs of
the NOT and AND gates will still be 1 and 0, respectively. Next, if we applyx1 = 1 and
x2 = 0, then the output of the NOT gate changes to 0 while the output of the AND gate
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remains at 0. Both inputs to the OR gate are then equal to 0; hence the value off will be 0.
Finally, letx1 = x2 = 1. Then the output of the AND gate goes to 1, which in turn causes
f to be equal to 1. Our verbal explanation can be summarized in the form of the truth table
shown in Figure 2.10b.

Timing Diagram
We have determined the behavior of the network in Figure 2.10aby considering the four

possible valuations of the inputsx1 andx2. Suppose that the signals that correspond to these
valuations are applied to the network in the order of our discussion; that is,(x1, x2) = (0, 0)
followed by(0, 1), (1, 0), and(1, 1). Then changes in the signals at various points in the
network would be as indicated in blue in the figure. The same information can be presented
in graphical form, known as atiming diagram, as shown in Figure 2.10c. The time runs
from left to right, and each input valuation is held for some fixed period. The figure shows
the waveforms for the inputs and output of the network, as well as for the internal signals
at the points labeledA andB.

Timing diagrams are used for many purposes. They depict the behavior of a logic
circuit in a form that can be observed when the circuit is tested using instruments such as
logic analyzers and oscilloscopes. Also, they are often generated by CAD tools to show
the designer how a given circuit is expected to behave before it is actually implemented
electronically. We will introduce the CAD tools later in this chapter and will make use of
them throughout the book.

Functionally Equivalent Networks
Now consider the network in Figure 2.10d. Going through the same analysis procedure,

we find that the outputg changes in exactly the same way asf does in part (a) of the figure.
Therefore,g(x1, x2) = f (x1, x2), which indicates that the two networks are functionally
equivalent; the output behavior of both networks is represented by the truth table in Figure
2.10b. Since both networks realize the same function, it makes sense to use the simpler
one, which is less costly to implement.

In general, a logic function can be implemented with a variety of different networks,
probably having different costs. This raises an important question: How does one find the
best implementation for a given function? Many techniques exist for synthesizing logic
functions. We will discuss the main approaches in Chapter 4. For now, we should note that
some manipulation is needed to transform the more complex network in Figure 2.10a into
the network in Figure 2.10d. Sincef (x1, x2) = x1 + x1 · x2 andg(x1, x2) = x1 + x2, there
must exist some rules that can be used to show the equivalence

x1+ x1 · x2 = x1+ x2

We have already established this equivalence through detailed analysis of the two circuits and
construction of the truth table. But the same outcome can be achieved through algebraic
manipulation of logic expressions. In the next section we will discuss a mathematical
approach for dealing with logic functions, which provides the basis for modern design
techniques.
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2.5 Boolean Algebra

In 1849 George Boole published a scheme for the algebraic description of processes involved
in logical thought and reasoning [1]. Subsequently, this scheme and its further refinements
became known asBoolean algebra. It was almost 100 years later that this algebra found
application in the engineering sense. In the late 1930s Claude Shannon showed that Boolean
algebra provides an effective means of describing circuits built with switches [2]. The
algebra can, therefore, be used to describe logic circuits. We will show that this algebra
is a powerful tool that can be used for designing and analyzing logic circuits. The reader
will come to appreciate that it provides the foundation for much of our modern digital
technology.

Axioms of Boolean Algebra
Like any algebra, Boolean algebra is based on a set of rules that are derived from a

small number of basic assumptions. These assumptions are calledaxioms. Let us assume
that Boolean algebraB involves elements that take on one of two values, 0 and 1. Assume
that the following axioms are true:

1a. 0 · 0= 0

1b. 1+ 1= 1

2a. 1 · 1= 1

2b. 0+ 0= 0

3a. 0 · 1= 1 · 0= 0

3b. 1+ 0= 0+ 1= 1

4a. If x = 0, thenx = 1

4b. If x = 1, thenx = 0

Single-Variable Theorems
From the axioms we can define some rules for dealing with single variables. These

rules are often calledtheorems. If x is a variable inB, then the following theorems hold:

5a. x · 0= 0

5b. x+ 1= 1

6a. x · 1= x

6b. x+ 0= x

7a. x · x = x

7b. x+ x = x

8a. x · x = 0

8b. x+ x = 1

9. x = x

It is easy to prove the validity of these theorems by perfect induction, that is, by substituting
the valuesx = 0 andx = 1 into the expressions and using the axioms given above. For
example, in theorem 5a, if x = 0, then the theorem states that 0· 0 = 0, which is true
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according to axiom 1a. Similarly, if x = 1, then theorem 5a states that 1· 0 = 0, which
is also true according to axiom 3a. The reader should verify that theorems 5a to 9 can be
proven in this way.

Duality
Notice that we have listed the axioms and the single-variable theorems in pairs. This

is done to reflect the importantprinciple of duality. Given a logic expression, itsdual is
obtained by replacing all+ operators with· operators, and vice versa, and by replacing
all 0s with 1s, and vice versa. The dual of any true statement (axiom or theorem) in
Boolean algebra is also a true statement. At this point in the discussion, the reader will
not appreciate why duality is a useful concept. However, this concept will become clear
later in the chapter, when we will show that duality implies that at least two different ways
exist to express every logic function with Boolean algebra. Often, one expression leads to
a simpler physical implementation than the other and is thus preferable.

Two- and Three-Variable Properties
To enable us to deal with a number of variables, it is useful to define some two- and

three-variable algebraic identities. For each identity, its dual version is also given. These
identities are often referred to asproperties. They are known by the names indicated below.
If x, y, andz are the variables inB, then the following properties hold:

10a. x · y= y · x Commutative

10b. x+ y= y+ x

11a. x · ( y · z) = (x · y) · z Associative

11b. x+ ( y+ z) = (x+ y)+ z

12a. x · ( y+ z) = x · y+ x · z Distributive

12b. x+ y · z= (x+ y) · (x+ z)

13a. x+ x · y= x Absorption

13b. x · (x+ y) = x

14a. x · y+ x · y= x Combining

14b. (x+ y) · (x+ y) = x

15a. x · y= x+ y DeMorgan’s theorem

15b. x+ y= x · y
16a. x+ x · y= x+ y

16b. x · (x+ y) = x · y
Again, we can prove the validity of these properties either by perfect induction or by
performing algebraic manipulation. Figure 2.11 illustrates how perfect induction can be
used to prove DeMorgan’s theorem, using the format of a truth table. The evaluation of
left-hand and right-hand sides of the identity in 15a gives the same result.

We have listed a number of axioms, theorems, and properties. Not all of these are
necessary to define Boolean algebra. For example, assuming that the+ and· operations
are defined, it is sufficient to include theorems 5 and 8 and properties 10 and 12. These
are sometimes referred to as Huntington’s basic postulates [3]. The other identities can be
derived from these postulates.
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x y x · y x · y x y x+ y

0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0︸ ︷︷ ︸ ︸ ︷︷ ︸

LHS RHS

Figure 2.11 Proof of DeMorgan’s theorem in 15a.

The preceding axioms, theorems, and properties provide the information necessary for
performing algebraic manipulation of more complex expressions.

Example 2.1Let us prove the validity of the logic equation

(x1+ x3) · (x1+ x3) = x1 · x3+ x1 · x3

The left-hand side can be manipulated as follows. Using the distributive property, 12a,
gives

LHS= (x1+ x3) · x1+ (x1+ x3) · x3

Applying the distributive property again yields

LHS= x1 · x1+ x3 · x1+ x1 · x3+ x3 · x3

Note that the distributive property allows ANDing the terms in parenthesis in a way analo-
gous to multiplication in ordinary algebra. Next, according to theorem 8a, the termsx1 · x1

andx3 · x3 are both equal to 0. Therefore,

LHS= 0+ x3 · x1+ x1 · x3+ 0

From 6b it follows that

LHS= x3 · x1+ x1 · x3

Finally, using the commutative property, 10a and 10b, this becomes

LHS= x1 · x3+ x1 · x3

which is the same as the right-hand side of the initial equation.

Example 2.2Consider the logic equation

x1 · x3+ x2 · x3+ x1 · x3+ x2 · x3 = x1 · x2 + x1 · x2 + x1 · x2

The left-hand side can be manipulated as follows

LHS= x1 · x3+ x1 · x3+ x2 · x3+ x2 · x3 using 10b
= x1 · (x3+ x3)+ x2 · (x3+ x3) using 12a
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= x1 · 1+ x2 · 1 using 8b
= x1+ x2 using 6a

The right-hand side can be manipulated as

RHS= x1 · x2 + x1 · (x2 + x2) using 12a
= x1 · x2 + x1 · 1 using 8b
= x1 · x2 + x1 using 6a
= x1+ x1 · x2 using 10b
= x1+ x2 using 16a

Being able to manipulate both sides of the initial equation into identical expressions estab-
lishes the validity of the equation. Note that the same logic function is represented by either
the left- or the right-hand side of the above equation; namely

f (x1, x2, x3) = x1 · x3+ x2 · x3+ x1 · x3+ x2 · x3

= x1 · x2 + x1 · x2 + x1 · x2

As a result of manipulation, we have found a much simpler expression

f (x1, x2, x3) = x1+ x2

which also represents the same function. This simpler expression would result in a lower-
cost logic circuit that could be used to implement the function.

Examples 2.1 and 2.2 illustrate the purpose of the axioms, theorems, and properties
as a mechanism for algebraic manipulation. Even these simple examples suggest that it is
impractical to deal with highly complex expressions in this way. However, these theorems
and properties provide the basis for automating the synthesis of logic functions in CAD
tools. To understand what can be achieved using these tools, the designer needs to be aware
of the fundamental concepts.

2.5.1 The Venn Diagram

We have suggested that perfect induction can be used to verify the theorems and properties.
This procedure is quite tedious and not very informative from the conceptual point of view.
A simple visual aid that can be used for this purpose also exists. It is called the Venn
diagram, and the reader is likely to find that it provides for a more intuitive understanding
of how two expressions may be equivalent.

The Venn diagram has traditionally been used in mathematics to provide a graphical
illustration of various operations and relations in the algebra of sets. A sets is a collection
of elements that are said to be the members ofs. In the Venn diagram the elements of
a set are represented by the area enclosed by a contour such as a square, a circle, or an
ellipse. For example, in a universeN of integers from 1 to 10, the set of even numbers is
E = {2, 4, 6, 8, 10}. A contour representingE encloses the even numbers. The odd numbers
form the complement ofE; hence the area outside the contour representsE = {1, 3, 5, 7, 9}.
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Since in Boolean algebra there are only two values (elements) in the universe,B =
{0, 1}, we will say that the area within a contour corresponding to a setsdenotes thats= 1,
while the area outside the contour denotess = 0. In the diagram we will shade the area
wheres= 1. The concept of the Venn diagram is illustrated in Figure 2.12. The universeB
is represented by a square. Then the constants 1 and 0 are represented as shown in parts (a)
and (b) of the figure. A variable, say,x, is represented by a circle, such that the area inside
the circle corresponds tox = 1, while the area outside the circle corresponds tox = 0.
This is illustrated in part (c). An expression involving one or more variables is depicted by

x y

z

x y

x y x y

x x xx

(a) Constant 1 (b) Constant 0

(c) Variable x (d)

(e) (f)

(g) (h)

x

x y⋅ x y+

x y z+⋅x y⋅

Figure 2.12 The Venn diagram representation.
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shading the area where the value of the expression is equal to 1. Part (d) indicates how the
complement ofx is represented.

To represent two variables,x andy, we draw two overlapping circles. Then the area
where the circles overlap represents the case wherex = y = 1, namely, the AND ofx and
y, as shown in part (e). Since this common area consists of the intersecting portions ofx
andy, the AND operation is often referred to formally as theintersectionof x andy. Part
( f ) illustrates the OR operation, wherex+ y represents the total area within both circles,
namely, where at least one ofx or y is equal to 1. Since this combines the areas in the
circles, the OR operation is formally often called theunionof x andy.

Part (g) depicts the product termx · y, which is represented by the intersection of the
area forx with that fory. Part (h) gives a three-variable example; the expressionx · y+ z
is the union of the area forz with that of the intersection ofx andy.

To see how we can use Venn diagrams to verify the equivalence of two expressions,
let us demonstrate the validity of the distributive property, 12a, in section 2.5. Figure 2.13
gives the construction of the left and right sides of the identity that defines the property

x · ( y+ z) = x · y+ x · z
Part (a) shows the area wherex = 1. Part (b) indicates the area fory+ z. Part (c) gives the
diagram forx · ( y+ z), the intersection of shaded areas in parts (a) and (b). The right-hand

x y

z

x y

z

x y

z

x y

z

x y

z

x y

z

x x y⋅

x y⋅ x+ z⋅x y z+( )⋅

(a) (d)

(c) (f)

x z⋅y z+(b) (e)

Figure 2.13 Verification of the distributive property x · ( y+ z) = x · y+ x · z.
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side is constructed in parts (d ), (e), and (f ). Parts (d ) and (e) describe the termsx · y and
x · z, respectively. The union of the shaded areas in these two diagrams then corresponds
to the expressionx · y+ x · z, as seen in part (f ). Since the shaded areas in parts (c) and (f )
are identical, it follows that the distributive property is valid.

As another example, consider the identity

x · y+ x · z+ y · z= x · y+ x · z
which is illustrated in Figure 2.14. Notice that this identity states that the termy · z is fully
covered by the termsx · y andx · z; therefore, this term can be omitted.

The reader should use the Venn diagram to prove some other identities. It is particularly
instructive to prove the validity of DeMorgan’s theorem in this way.

x y

z

yx

z

x y

z

x y⋅

y z⋅ x y⋅ x+ z⋅

x z⋅

x y

z

x y⋅

x y

z

x z⋅

x y⋅ x+ z y z⋅+⋅

x y

z

x y

z

Figure 2.14 Verification of x · y+ x · z+ y · z= x · y+ x · z.
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2.5.2 Notation and Terminology

Boolean algebra is based on the AND and OR operations. We have adopted the symbols
· and+ to denote these operations. These are also the standard symbols for the familiar
arithmetic multiplication and addition operations. Considerable similarity exists between
the Boolean operations and the arithmetic operations, which is the main reason why the
same symbols are used. In fact, when single digits are involved there is only one significant
difference; the result of 1+ 1 is equal to 2 in ordinary arithmetic, whereas it is equal to 1
in Boolean algebra as defined by theorem 7b in section 2.5.

When dealing with digital circuits, most of the time the+ symbol obviously represents
the OR operation. However, when the task involves the design of logic circuits that perform
arithmetic operations, some confusion may develop about the use of the+ symbol. To
avoid such confusion, an alternative set of symbols exists for the AND and OR operations.
It is quite common to use the∧ symbol to denote the AND operation, and the∨ symbol for
the OR operation. Thus, instead ofx1 · x2, we can writex1 ∧ x2, and instead ofx1+ x2, we
can writex1 ∨ x2.

Because of the similarity with the arithmetic addition and multiplication operations,
the OR and AND operations are often called thelogical sumandproductoperations. Thus
x1+ x2 is the logical sum ofx1 andx2, andx1 · x2 is the logical product ofx1 andx2. Instead
of saying “logical product” and “logical sum,” it is customary to say simply “product” and
“sum.” Thus we say that the expression

x1 · x2 · x3+ x1 · x4 + x2 · x3 · x4

is a sum of three product terms, whereas the expression

(x1+ x3) · (x1+ x3) · (x2 + x3+ x4)

is a product of three sum terms.

2.5.3 Precedence of Operations

Using the three basic operations—AND, OR, and NOT—it is possible to construct an infinite
number of logic expressions. Parentheses can be used to indicate the order in which the
operations should be performed. However, to avoid an excessive use of parentheses, another
convention defines the precedence of the basic operations. It states that in the absence of
parentheses, operations in a logic expression must be performed in the order: NOT, AND,
and then OR. Thus in the expression

x1 · x2 + x1 · x2

it is first necessary to generate the complements ofx1 andx2. Then the product termsx1 · x2

andx1 · x2 are formed, followed by the sum of the two product terms. Observe that in the
absence of this convention, we would have to use parentheses to achieve the same effect as
follows:

(x1 · x2)+ ((x1) · (x2))
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Finally, to simplify the appearance of logic expressions, it is customary to omit the·
operator when there is no ambiguity. Therefore, the preceding expression can be written as

x1x2 + x1x2

We will use this style throughout the book.

2.6 Synthesis Using AND, OR, and NOT Gates

Armed with some basic ideas, we can now try to implement arbitrary functions using the
AND, OR, and NOT gates. Suppose that we wish to design a logic circuit with two inputs,
x1 andx2. Assume thatx1 andx2 represent the states of two switches, either of which may
be open (0) or closed (1). The function of the circuit is to continuously monitor the state
of the switches and to produce an output logic value 1 whenever the switches(x1, x2) are
in states(0, 0), (0, 1), or (1, 1). If the state of the switches is(1, 0), the output should be
0. Another way of stating the required functional behavior of this circuit is that the output
must be equal to 0 if the switchx1 is closed andx2 is open; otherwise, the output must be
1. We can express the required behavior using a truth table, as shown in Figure 2.15.

A possible procedure for designing a logic circuit that implements the truth table is to
create a product term that has a value of 1 for each valuation for which the output function
f has to be 1. Then we can take a logical sum of these product terms to realizef . Let us
begin with the fourth row of the truth table, which corresponds tox1 = x2 = 1. The product
term that is equal to 1 for this valuation isx1 · x2, which is just the AND ofx1 andx2. Next
consider the first row of the table, for whichx1 = x2 = 0. For this valuation the value 1 is
produced by the product termx1 · x2. Similarly, the second row leads to the termx1 · x2.
Thusf may be realized as

f (x1, x2) = x1x2 + x1x2 + x1x2

The logic network that corresponds to this expression is shown in Figure 2.16a.
Although this network implementsf correctly, it is not the simplest such network. To

find a simpler network, we can manipulate the obtained expression using the theorems and

x1 x2 f (x1, x2)

0 0 1
0 1 1
1 0 0
1 1 1

Figure 2.15 A function to be synthesized.
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f

(a) Canonical sum-of-products

f

(b) Minimal-cost realization

x2

x1

x1

x2

Figure 2.16 Two implementations of the function in Figure 2.15.

properties from section 2.5. According to theorem 7b, we can replicate any term in a logical
sum expression. Replicating the third product term, the above expression becomes

f (x1, x2) = x1x2 + x1x2 + x1x2 + x1x2

Using the commutative property 10b to interchange the second and third product terms
gives

f (x1, x2) = x1x2 + x1x2 + x1x2 + x1x2

Now the distributive property 12a allows us to write

f (x1, x2) = (x1+ x1)x2 + x1(x2 + x2)

Applying theorem 8b we get

f (x1, x2) = 1 · x2 + x1 · 1
Finally, theorem 6a leads to

f (x1, x2) = x2 + x1

The network described by this expression is given in Figure 2.16b. Obviously, the cost of
this network is much less than the cost of the network in part (a) of the figure.

This simple example illustrates two things. First, a straightforward implementation of
a function can be obtained by using a product term (AND gate) for each row of the truth
table for which the function is equal to 1. Each product term contains all input variables,
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and it is formed such that if the input variablexi is equal to 1 in the given row, thenxi is
entered in the term; ifxi = 0, thenxi is entered. The sum of these product terms realizes
the desired function. Second, there are many different networks that can realize a given
function. Some of these networks may be simpler than others. Algebraic manipulation can
be used to derive simplified logic expressions and thus lower-cost networks.

The process whereby we begin with a description of the desired functional behavior
and then generate a circuit that realizes this behavior is calledsynthesis. Thus we can
say that we “synthesized” the networks in Figure 2.16 from the truth table in Figure 2.15.
Generation of AND-OR expressions from a truth table is just one of many types of synthesis
techniques that we will encounter in this book.

2.6.1 Sum-of-Products and Product-of-Sums Forms

Having introduced the synthesis process by means of a very simple example, we will now
present it in more formal terms using the terminology that is encountered in the technical
literature. We will also show how the principle of duality, which was introduced in section
2.5, applies broadly in the synthesis process.

If a functionf is specified in the form of a truth table, then an expression that realizes
f can be obtained by considering either the rows in the table for whichf = 1, as we have
already done, or by considering the rows for whichf = 0, as we will explain shortly.

Minterms
For a function ofn variables, a product term in which each of then variables appears

once is called aminterm. The variables may appear in a minterm either in uncomplemented
or complemented form. For a given row of the truth table, the minterm is formed by
includingxi if xi = 1 and by includingxi if xi = 0.

To illustrate this concept, consider the truth table in Figure 2.17. We have num-
bered the rows of the table from 0 to 7, so that we can refer to them easily. (The
reader who is already familiar with the binary number representation will realize that the
row numbers chosen are just the numbers represented by the bit patterns of variablesx1,
x2, andx3; we will discuss number representation in Chapter 5.) The figure shows all
minterms for the three-variable table. For example, in the first row the variables have
the valuesx1 = x2 = x3 = 0, which leads to the mintermx1x2x3. In the second row
x1 = x2 = 0 andx3 = 1, which gives the mintermx1x2x3, and so on. To be able to
refer to the individual minterms easily, it is convenient to identify each minterm by an
index that corresponds to the row numbers shown in the figure. We will use the nota-
tion mi to denote the minterm for row numberi. Thusm0 = x1x2x3, m1 = x1x2x3, and
so on.

Sum-of-Products Form
A functionf can be represented by an expression that is a sum of minterms, where each

minterm is ANDed with the value off for the corresponding valuation of input variables.
For example, the two-variable minterms arem0 = x1x2, m1 = x1x2, m2 = x1x2, and
m3 = x1x2. The function in Figure 2.15 can be represented as
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Row
number x1 x2 x3 Minterm Maxterm

0 0 0 0 m0 = x1x2x3 M0 = x1+ x2 + x3

1 0 0 1 m1 = x1x2x3 M1 = x1+ x2 + x3

2 0 1 0 m2 = x1x2x3 M2 = x1+ x2 + x3

3 0 1 1 m3 = x1x2x3 M3 = x1+ x2 + x3

4 1 0 0 m4 = x1x2x3 M4 = x1+ x2 + x3

5 1 0 1 m5 = x1x2x3 M5 = x1+ x2 + x3

6 1 1 0 m6 = x1x2x3 M6 = x1+ x2 + x3

7 1 1 1 m7 = x1x2x3 M7 = x1+ x2 + x3

Figure 2.17 Three-variable minterms and maxterms.

f = m0 · 1+m1 · 1+m2 · 0+m3 · 1
= m0 +m1+m3

= x1x2 + x1x2 + x1x2

which is the form that we derived in the previous section using an intuitive approach. Only
the minterms that correspond to the rows for whichf = 1 appear in the resulting expression.

Any function f can be represented by a sum of minterms that correspond to the rows
in the truth table for whichf = 1. The resulting implementation is functionally correct and
unique, but it is not necessarily the lowest-cost implementation off . A logic expression
consisting of product (AND) terms that are summed (ORed) is said to be of thesum-of-
productsform. If each product term is a minterm, then the expression is called acanonical
sum-of-productsfor the functionf . As we have seen in the example of Figure 2.16, the first
step in the synthesis process is to derive a canonical sum-of-products expression for the
given function. Then we can manipulate this expression, using the theorems and properties
of section 2.5, with the goal of finding a functionally equivalent sum-of-products expression
that has a lower cost.

As another example, consider the three-variable functionf (x1, x2, x3), specified by the
truth table in Figure 2.18. To synthesize this function, we have to include the mintermsm1,
m4, m5, andm6. Copying these minterms from Figure 2.17 leads to the following canonical
sum-of-products expression forf

f (x1, x2, x3) = x1x2x3+ x1x2x3+ x1x2x3+ x1x2x3

This expression can be manipulated as follows

f = (x1+ x1)x2x3+ x1(x2 + x2)x3

= 1 · x2x3+ x1 · 1 · x3

= x2x3+ x1x3

This is the minimum-cost sum-of-products expression forf . It describes the circuit shown
in Figure 2.19a. A good indication of thecostof a logic circuit is the total number of gates



April 5, 1999 14:05 g02-ch2 Sheet number 23 Page number 39 black

2.6 Synthesis Using AND, OR, and NOT Gates 39

Row
number x1 x2 x3 f (x1, x2, x3)

0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Figure 2.18 A three-variable function.

plus the total number of inputs to all gates in the circuit. Using this measure, the cost of
the network in Figure 2.19a is 13, because there are five gates and eight inputs to the gates.
By comparison, the network implemented on the basis of the canonical sum-of-products
would have a cost of 27; from the preceding expression, the OR gate has four inputs, each
of the four AND gates has three inputs, and each of the three NOT gates has one input.

f

(a) A minimal sum-of-products realization

f

(b) A minimal product-of-sums realization

x1

x2

x3

x2

x1

x3

Figure 2.19 Two realizations of the function in Figure 2.18.
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Minterms, with their row-number subscripts, can also be used to specify a given function
in a more concise form. For example, the function in Figure 2.18 can be specified as

f (x1, x2, x3) =
∑

(m1,m4,m5,m6)

or even more simply as

f (x1, x2, x3) =
∑

m(1, 4, 5, 6)

The
∑

sign denotes the logical sum operation. This shorthand notation is often used in
practice.

Maxterms
The principle of duality suggests that if it is possible to synthesize a functionf by

considering the rows in the truth table for whichf = 1, then it should also be possible to
synthesizef by considering the rows for whichf = 0. This alternative approach uses the
complements of minterms, which are calledmaxterms. All possible maxterms for three-
variable functions are listed in Figure 2.17. We will refer to a maxtermMj by the same row
number as its corresponding mintermmj as shown in the figure.

Product-of-Sums Form
If a given functionf is specified by a truth table, then its complementf can be rep-

resented by a sum of minterms for whichf = 1, which are the rows wheref = 0. For
example, for the function in Figure 2.15

f (x1, x2) = m2

= x1x2

If we complement this expression using DeMorgan’s theorem, the result is

f = f = x1x2

= x1+ x2

Note that we obtained this expression previously by algebraic manipulation of the canonical
sum-of-products form for the functionf . The key point here is that

f = m2 = M2

whereM2 is the maxterm for row 2 in the truth table.
As another example, consider again the function in Figure 2.18. The complement of

this function can be represented as

f (x1, x2, x3)=m0 +m2 +m3+m7

= x1x2x3+ x1x2x3+ x1x2x3+ x1x2x3

Thenf can be expressed as

f =m0 +m2 +m3+m7

=m0 ·m2 ·m3 ·m7
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=M0 ·M2 ·M3 ·M7

= (x1+ x2 + x3)(x1+ x2 + x3)(x1+ x2 + x3)(x1+ x2 + x3)

This expression representsf as a product of maxterms.
A logic expression consisting of sum (OR) terms that are the factors of a logical product

(AND) is said to be of theproduct-of-sumsform. If each sum term is a maxterm, then the
expression is called acanonical product-of-sumsfor the given function. Any functionf can
be synthesized by finding its canonical product-of-sums. This involves taking the maxterm
for each row in the truth table for whichf = 0 and forming a product of these maxterms.

Returning to the preceding example, we can attempt to reduce the complexity of the
derived expression that comprises a product of maxterms. Using the commutative property
10b and the associative property 11b from section 2.5, this expression can be written as

f = ((x1+ x3)+ x2)((x1+ x3)+ x2)(x1+ (x2 + x3))(x1+ (x2 + x3))

Then, using the combining property 14b, the expression reduces to

f = (x1+ x3)(x2 + x3)

The corresponding network is given in Figure 2.19b. The cost of this network is 13. While
this cost happens to be the same as the cost of the sum-of-products version in Figure 2.19a,
the reader should not assume that the cost of a network derived in the sum-of-products form
will in general be equal to the cost of a corresponding circuit derived in the product-of-sums
form.

Using the shorthand notation, an alternative way of specifying our sample function is

f (x1, x2, x3) = 5(M0,M2,M3,M7)

or more simply

f (x1, x2, x3) = 5M(0, 2, 3, 7)

The5 sign denotes the logical product operation.
The preceding discussion has shown how logic functions can be realized in the form

of logic circuits, consisting of networks of gates that implement basic functions. A given
function may be realized with circuits of a different structure, which usually implies a
difference in cost. An important objective for a designer is to minimize the cost of the
designed circuit. We will discuss the most important techniques for finding minimum-cost
implementations in Chapter 4.

2.7 Design Examples

Logic circuits provide a solution to a problem. They implement functions that are needed to
carry out specific tasks. Within the framework of a computer, logic circuits provide complete
capability for execution of programs and processing of data. Such circuits are complex and
difficult to design. But regardless of the complexity of a given circuit, a designer of logic
circuits is always confronted with the same basic issues. First, it is necessary to specify the
desired behavior of the circuit. Second, the circuit has to be synthesized and implemented.
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Finally, the implemented circuit has to be tested to verify that it meets the specifications.
The desired behavior is often initially described in words, which then must be turned into
a formal specification. In this section we give two simple examples of design.

2.7.1 Three-Way Light Control

Assume that a large room has three doors and that a switch near each door controls a light
in the room. It has to be possible to turn the light on or off by changing the state of any one
of the switches.

As a first step, let us turn this word statement into a formal specification using a truth
table. Letx1, x2, andx3 be the input variables that denote the state of each switch. Assume
that the light is off if all switches are open. Closing any one of the switches will turn the
light on. Then turning on a second switch will have to turn off the light. Thus the light
will be on if exactly one switch is closed, and it will be off if two (or no) switches are
closed. If the light is off when two switches are closed, then it must be possible to turn
it on by closing the third switch. Iff (x1, x2, x3) represents the state of the light, then the
required functional behavior can be specified as shown in the truth table in Figure 2.20.
The canonical sum-of-products expression for the specified function is

f =m1+m2 +m4 +m7

= x1x2x3+ x1x2x3+ x1x2x3+ x1x2x3

This expression cannot be simplified into a lower-cost sum-of-products expression. The
resulting circuit is shown in Figure 2.21a.

An alternative realization for this function is in the product-of-sums forms. The canon-
ical expression of this type is

f =M0 ·M3 ·M5 ·M6

= (x1+ x2 + x3)(x1+ x2 + x3)(x1+ x2 + x3)(x1+ x2 + x3)

The resulting circuit is depicted in Figure 2.21b. It has the same cost as the circuit in part
(a) of the figure.

x1 x2 x3 f

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Figure 2.20 Truth table for the three-way light control.
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f

(a) Sum-of-products realization

(b) Product-of-sums realization

x1

x2

x3

f

x1

x2

x3

Figure 2.21 Implementation of the function in Figure 2.20.

When the designed circuit is implemented, it can be tested by applying the various
input valuations to the circuit and checking whether the output corresponds to the values
specified in the truth table. A straightforward approach is to check that the correct output
is produced for all eight possible input valuations.

2.7.2 Multiplexer Circuit

In computer systems it is often necessary to choose data from exactly one of a number
of possible sources. Suppose that there are two sources of data, provided as input signals
x1 andx2. The values of these signals change in time, perhaps at regular intervals. Thus
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sequences of 0s and 1s are applied on each of the inputsx1 andx2. We want to design a
circuit that produces an output that has the same value as eitherx1 or x2, dependent on the
value of a selection control signals. Therefore, the circuit should have three inputs:x1,
x2, ands. Assume that the output of the circuit will be the same as the value of inputx1 if
s= 0, and it will be the same asx2 if s= 1.

Based on these requirements, we can specify the desired circuit in the form of a truth
table given in Figure 2.22a. From the truth table, we derive the canonical sum of products

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

(a)  Truth table

f

x1

x2

s
f

s

x1

x2

0

1

(c) Graphical symbol(b) Circuit

0

1

(d)  More compact truth-table representation

Figure 2.22 Implementation of a multiplexer.
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f (s, x1, x2) = sx1x2 + sx1x2 + sx1x2 + sx1x2

Using the distributive property, this expression can be written as

f = sx1(x2 + x2)+ s(x1+ x1)x2

Applying theorem 8b yields

f = sx1 · 1+ s · 1 · x2

Finally, theorem 6a gives

f = sx1+ sx2

A circuit that implements this function is shown in Figure 2.22b. Circuits of this type are
used so extensively that they are given a special name. A circuit that generates an output
that exactly reflects the state of one of a number of data inputs, based on the value of one
or more selection control inputs, is called amultiplexer. We say that a multiplexer circuit
“multiplexes” input signals onto a single output.

In this example we derived a multiplexer with two data inputs, which is referred to
as a “2-to-1 multiplexer.” A commonly used graphical symbol for the 2-to-1 multiplexer
is shown in Figure 2.22c. The same idea can be extended to larger circuits. A 4-to-1
multiplexer has four data inputs and one output. In this case two selection control inputs
are needed to choose one of the four data inputs that is transmitted as the output signal. An
8-to-1 multiplexer needs eight data inputs and three selection control inputs, and so on.

Note that the statement “f = x1 if s = 0, andf = x2 if s = 1” can be presented in a
more compact form of a truth table, as indicated in Figure 2.22d. In later chapters we will
have occasion to use such representation.

We showed how a multiplexer can be built using AND, OR, and NOT gates. In Chap-
ter 3 we will show other possibilities for constructing multiplexers. In Chapter 6 we will
discuss the use of multiplexers in considerable detail.

Designers of logic circuits rely heavily on CAD tools. We want to encourage the reader
to become familiar with the CAD tool support provided with this book as soon as possible.
We have reached a point where an introduction to these tools is useful. The next section
presents some basic concepts that are needed to use these tools. We will also introduce, in
section 2.9, a special language for describing logic circuits, called VHDL. This language
is used to describe the circuits as an input to the CAD tools, which then proceed to derive
a suitable implementation.

2.8 Introduction to CAD Tools

The preceding sections introduced a basic approach for synthesis of logic circuits. A
designer could use this approach manually for small circuits. However, logic circuits
found in complex systems, such as today’s computers, cannot be designed manually—they
are designed using sophisticated CAD tools that automatically implement the synthesis
techniques.

To design a logic circuit, a number of CAD tools are needed. They are usually packaged
together into aCAD system, which typically includes tools for the following tasks: design
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entry, synthesis and optimization, simulation, and physical design. We will introduce some
of these tools in this section and will provide additional discussion in later chapters.

2.8.1 Design Entry

The starting point in the process of designing a logic circuit is the conception of what the
circuit is supposed to do and the formulation of its general structure. This step is done
manually by the designer because it requires design experience and intuition. The rest
of the design process is done with the aid of CAD tools. The first stage of this process
involves entering into the CAD system a description of the circuit being designed. This
stage is calleddesign entry. We will describe three design entry methods: using truth tables,
using schematic capture, and writing source code in a hardware description language.

Design Entry with Truth Tables
We have already seen that any logic function of a few variables can be described

conveniently by a truth table. Many CAD systems allow design entry using truth tables,
where the table is specified as a plain text file. Alternatively, it may also be possible to
specify a truth table as a set of waveforms in a timing diagram. We illustrated the equivalence
of these two ways of representing truth tables in the discussion of Figure 2.10. The CAD
system provided with this book supports both methods of using truth tables for design entry.
Figure 2.23 shows an example in which theWaveform Editoris used to draw the timing
diagram in Figure 2.10. The CAD system is capable of transforming this timing diagram
automatically into a network of logic gates equivalent to that shown in Figure 2.10d.

Because truth tables are practical only for functions with a small number of variables,
this design entry method is not appropriate for large circuits. It can, however, be applied
for a small logic function that is part of a larger circuit. In this case the truth table becomes
a subcircuit that can be interconnected to other subcircuits and logic gates. The most
commonly used type of CAD tool for interconnecting such circuit elements is called a
schematic capturetool. The wordschematicrefers to a diagram of a circuit in which circuit
elements, such as logic gates, are depicted as graphical symbols and connections between
circuit elements are drawn as lines.

Schematic Capture
A schematic capture tool uses the graphics capabilities of a computer and a computer

mouse to allow the user to draw a schematic diagram. To facilitate inclusion of basic gates
in the schematic, the tool provides a collection of graphical symbols that represent gates

Figure 2.23 Screen capture of the Waveform Editor.
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of various types with different numbers of inputs. This collection of symbols is called a
library. The gates in the library can be imported into the user’s schematic, and the tool
provides a graphical way of interconnecting the gates to create a logic network.

Any subcircuits that have been previously created, using either different design entry
methods or the schematic capture tool itself, can be represented as graphical symbols and
included in the schematic. In practice it is common for a CAD system user to create a circuit
that includes within it other smaller circuits. This methodology is known ashierarchical
designand provides a good way of dealing with the complexities of large circuits.

Figure 2.24 gives an example of a hierarchical design created with the schematic capture
tool, provided with the CAD system, called theGraphic Editor. The circuit includes a
subcircuit represented as a rectangular graphical symbol. This subcircuit represents the
logic function entered by way of the timing diagram in Figure 2.23. Note that the complete
circuit implements the functionf = x1+ x2x3.

In comparison to design entry with truth tables, the schematic-capture facility is more
amenable for dealing with larger circuits. A disadvantage of using schematic capture is that
every commercial tool of this type has a unique user interface and functionality. Therefore,
extensive training is often required for a designer to learn how to use such a tool, and this
training must be repeated if the designer switches to another tool at a later date. Another
drawback is that the graphical user interface for schematic capture becomes awkward to use
when the circuit being designed is large. A useful method for dealing with large circuits is
to write source code using a hardware description language to represent the circuit.

Hardware Description Languages
A hardware description language (HDL)is similar to a typical computer programming

language except that an HDL is used to describe hardware rather than a program to be exe-
cuted on a computer. Many commercial HDLs are available. Some are proprietary, meaning
that they are provided by a particular company and can be used to implement circuits only
in the technology provided by that company. We will not discuss the proprietary HDLs in
this book. Instead, we will focus on a language that is supported by virtually all vendors
that provide digital hardware technology and is officially endorsed as anInstitute of Elec-
trical and Electronics Engineers (IEEE)standard. The IEEE is a worldwide organization
that promotes technical activities to the benefit of society in general. One of its activities
involves the development of standards that define how certain technological concepts can
be used in a way that is suitable for a large body of users.

Figure 2.24 Screen capture of the Graphic Editor.
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Two HDLs are IEEE standards:VHDL (Very High Speed Integrated Circuit Hardware
Description Language)and Verilog HDL. Both languages are in widespread use in the
industry. We use VHDL in this book because it is more popular than Verilog HDL. Although
the two languages differ in many ways, the choice of using one or the other when studying
logic circuits is not particularly important, because both offer similar features. Concepts
illustrated in this book using VHDL can be directly applied when using Verilog HDL.

In comparison to performing schematic capture, using VHDL offers a number of ad-
vantages. Because it is supported by most companies that offer digital hardware technology,
VHDL provides designportability. A circuit specified in VHDL can be implemented in dif-
ferent types of chips and with CAD tools provided by different companies, without having
to change the VHDL specification. Design portability is an important advantage because
digital circuit technology changes rapidly. By using a standard language, the designer can
focus on the required functionality of the desired circuit without being overly concerned
about the details of the technology that will eventually be used for implementation.

Design entry of a logic circuit is done by writing VHDL code. Signals in the circuit are
represented as variables in the source code, and logic functions are expressed by assigning
values to these variables. VHDL source code is plain text, which makes it easy for the
designer to include within the code documentation that explains how the circuit works.
This feature, coupled with the fact that VHDL is widely used, encourages sharing and reuse
of VHDL-described circuits. This allows faster development of new products in cases
where existing VHDL code can be adapted for use in the design of new circuits.

Similar to the way in which large circuits are handled in schematic capture, VHDL
code can be written in a modular way that facilitates hierarchical design. Both small and
large logic circuit designs can be efficiently represented in VHDL code. VHDL has been
used to define circuits such as microprocessors with millions of transistors.

VHDL design entry can be combined with other methods. For example, a schematic-
capture tool can be used in which a subcircuit in the schematic is described using VHDL.
We will introduce VHDL in section 2.9.

2.8.2 Synthesis

In section 2.4.1 we said that synthesis is the process of generating a logic circuit from a
truth table. Synthesis CAD tools perform this process automatically. However, the synthesis
tools also handle many other tasks. The process oftranslating, or compiling, VHDL code
into a network of logic gates is part of synthesis.

When the VHDL code representing a circuit is passed through initial synthesis tools,
the output is a lower-level description of the circuit. For simplicity we will assume that
this process produces a set of logic expressions that describe the logic functions needed to
realize the circuit. These expressions are then manipulated further by the synthesis tools.
If the design entry is performed using schematic capture, then the synthesis tools produce
a set of logic equations representing the circuit from the schematic diagram. Similarly, if
truth tables are used for design entry, then the synthesis tools generate expressions for the
logic functions represented by the truth tables.

Regardless of what type of design entry is used, the initial logic expressions produced
by the synthesis tools are not likely to be in an optimal form. Because these expressions
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reflect the designer’s input to the CAD tools, it is difficult for a designer to manually produce
optimal results, especially for large circuits. One of the most important tasks of the synthesis
tools is to manipulate the user’s design to automatically produce an equivalent but better
circuit. This step of synthesis is calledlogic synthesis, or logic optimization.

The measure of what makes one circuit better than another depends on the particular
needs of a design project and the technology chosen for implementation. In section 2.6
we suggested that a good circuit might be one that has the lowest cost. There are other
possible optimization goals, which are motivated by the type of hardware technology used
for implementation of the circuit. We will discuss implementation technologies in Chap-
ter 3 and return to the issue of optimization goals in Chapter 4.

After logic synthesis the optimized circuit is still represented in the form of logic
equations. The final task in the synthesis process is to determine exactly how the circuit will
be realized in a specific hardware technology. This task involves deciding how each logic
function, represented by an expression, should be implemented using whatever physical
resources are available in the technology. The task involves two steps calledtechnology
mapping, followed by layout synthesis, or physical design. We will discuss these steps in
detail in Chapter 4.

2.8.3 Functional Simulation

Once the design entry and synthesis are complete, it is useful to verify that the designed
circuit functions as expected. The tool that performs this task is called afunctional simulator,
and it uses two types of information. First, the user’s initial design is represented by the logic
equations generated during synthesis. Second, the user specifies valuations of the circuit’s
inputs that should be applied to these equations during simulation. For each valuation, the
simulator evaluates the outputs produced by the equations. The output of the simulation is
provided either in truth-table form or as a timing diagram. The user examines this output
to verify that the circuit operates as required.

The logic equations used by the simulator are those produced by the synthesis tools
before any optimizations are applied during logic synthesis. There would be no advantage
in using the optimized form of the equations, because the intent is to evaluate the basic
functionality of the design, which does not change as a result of optimization. The functional
simulator assumes that the time needed for signals to propagate through the logic gates is
negligible. In real logic gates this assumption is not realistic, regardless of the hardware
technology chosen for implementation of the circuit. However, the functional simulation
provides a first step in validating the basic operation of a design without concern for the
effects of implementation technology. Accurate simulations that account for the timing
details related to technology can be obtained by using atiming simulator. We will discuss
timing simulation in Chapter 4.

2.8.4 Summary

The CAD tools discussed in this section form a part of a CAD system. A typical design flow
that the user follows is illustrated in Figure 2.25. After the design entry, initial synthesis tools
perform various steps. For a function described by a truth table, the synthesis approach
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Design conception

Truth tableTruth table VHDLSchematic capture

Simple synthesis
(see section 2.8.2)

Translation

Merge

Boolean equationsINITIAL SYNTHESIS TOOLS

DESIGN ENTRY

Design correct?

Logic synthesis, physical design, timing simulation

Functional simulation

No

Yes

(see section 4.12)

Figure 2.25 The first stages of a typical CAD system.

discussed in section 2.6 is applied to produce a logic expression for the function. For
VHDL the translation process turns the VHDL source code into logic functions, which can
be represented as logic expressions. As mentioned earlier, the designer can use a mixture of
design entry methods. In Figure 2.25 this flexibility is reflected by the step labeled Merge,
in which the components produced using any of the design entry methods are automatically
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merged into a single design. At this point the circuit is represented in the CAD system as
a set of logic equations.

After the initial synthesis the correct operation of the designed circuit can be verified by
using functional simulation. As shown in Figure 2.25, this step is not a requirement in the
CAD flow and can be skipped at the designer’s discretion. In practice, however, it is wise to
verify that the designed circuit works as expected as early in the design process as possible.
Any problems discovered during the simulation are fixed by returning to the design entry
stage. Once errors are no longer apparent, the designer proceeds with the remaining tools
in the CAD flow. These include logic synthesis, layout synthesis, timing simulation, and
others. We have mentioned these tools only briefly thus far. The remaining CAD steps will
be described in Chapter 4.

At this point the reader should have some appreciation for what is involved when using
CAD tools. However, the tools can be fully appreciated only when they are used firsthand.
In Appendexes B to D, we provide step-by-step tutorials that illustrate how to use the
MAX+plusII CAD system, which is included with this book. The tutorial in Appendix B
covers design entry with both schematic capture and VHDL, as well as functional simulation.
We strongly encourage the reader to work through the hands-on material. Because the
tutorial uses VHDL for design entry, we provide an introduction to VHDL in the following
section.

2.9 Introduction to VHDL

In the 1980s rapid advances in integrated circuit technology lead to efforts to develop
standard design practices for digital circuits. VHDL was developed as a part of that effort.
VHDL has become the industry standard language for describing digital circuits, largely
because it is an official IEEE standard. The original standard for VHDL was adopted in
1987 and called IEEE 1076. A revised standard was adopted in 1993 and called IEEE 1164.

VHDL was originally intended to serve two main purposes. First, it was used as a
documentation language for describing the structure of complex digital circuits. As an
official IEEE standard, VHDL provided a common way of documenting circuits designed
by numerous designers. Second, VHDL provided features for modeling the behavior of a
digital circuit, which allowed its use as input to software programs that were then used to
simulate the circuit’s operation.

In recent years, in addition to its use for documentation and simulation, VHDL has
also become popular for use in design entry in CAD systems. The CAD tools are used to
synthesize the VHDL code into a hardware implementation of the described circuit. In this
book our main use of VHDL will be for synthesis.

VHDL is an extremely complex, sophisticated language. Learning all of its features is
a daunting task. However, for use in synthesis only a subset of these features is important.
To avoid confusion in learning this complex language, we will discuss only the features of
VHDL that are actually used in the examples in the book. The material presented should
be sufficient to allow the reader to design a wide range of circuits. The reader who wishes
to learn the complete VHDL language can refer to one of the specialized texts [4–8].

To further simplify the task of learning VHDL, we will introduce the language in
several stages throughout the book. Our general approach will be to introduce particular
features only when they are relevant to the design topics covered in that part of the text. For
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convenience, in Appendix A we provide a complete listing of the VHDL features covered in
the book. The reader may wish to refer to that material from time to time. In the remainder
of this section, we discuss the most basic concepts needed to write simple VHDL code.

2.9.1 Representation of Digital Signals in VHDL

When using CAD tools to synthesize a logic circuit, the designer can provide the initial
description of the circuit in several different ways, as we explained in section 2.8.1. One
convenient way is to write this description in the form of VHDL source code. The VHDL
compiler translates this code into a logic circuit. Each logic signal in the circuit is represented
in VHDL code as a data object. Just as the variables declared in any high-level programming
language have associated types, such as integers or characters, data objects in VHDL can be
of various types. The original VHDL standard, IEEE 1076, includes a data type calledBIT.
An object of this type is well suited for representing digital signals because BIT objects can
have only two values, 0 and 1. In this chapter all signals in our examples will be of type
BIT. Other data types are introduced in section 4.11 and are listed in Appendix A.

2.9.2 Writing Simple VHDL Code

We will use an example to illustrate how to write simple VHDL source code. Consider the
logic circuit in Figure 2.26. If we wish to write VHDL code to represent this circuit, the
first step is to declare the input and output signals. This is done using a construct called
anentity. An appropriate entity for this example appears in Figure 2.27. An entity must

f

x3

x1

x2

Figure 2.26 A simple logic function.

ENTITY example1 IS
PORT ( x1, x2, x3 : IN BIT ;

f : OUT BIT ) ;
END example1 ;

Figure 2.27 VHDL entity declaration for the circuit in Figure 2.26.
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be assigned a name; we have chosen the nameexample1for this first example. The input
and output signals for the entity are called itsports, and they are identified by the keyword
PORT. This name derives from the electrical jargon in which the wordport refers to an
input or output connection to an electronic circuit. Each port has an associatedmodethat
specifies whether it is an input (IN) to the entity or an output (OUT) from the entity. Each
port represents a signal, hence it has an associated type. The entityexample1has four ports
in total. The first three,x1, x2, andx3, are input signals of type BIT. The port namedf is an
output of type BIT.

In Figure 2.27 we have used simple signal namesx1, x2, x3, andf for the entity’s ports.
Similar to most computer programming languages, VHDL has rules that specify which
characters are allowed in signal names. A simple guideline is that signal names can include
any letter or number, as well as the underscore character ‘_’. There are two caveats: a
signal name must begin with a letter, and a signal name cannot be a VHDL keyword.

An entity specifies the input and output signals for a circuit, but it does not give any
details as to what the circuit represents. The circuit’s functionality must be specified with a
VHDL construct called anarchitecture. An architecture for our example appears in Figure
2.28. It must be given a name, and we have chosen the nameLogicFunc. Although the name
can be any text string, it is sensible to assign a name that is meaningful to the designer.
In this case we have chosen the nameLogicFuncbecause the architecture specifies the
functionality of the design using a logic expression. VHDL has built-in support for the
following Boolean operators: AND, OR, NOT, NAND, NOR, XOR, and XNOR. (So far
we have introduced only AND, OR, and NOT operators; the others will be presented in
Chapter 3.) Following the BEGIN keyword, our architecture specifies, using the VHDL
signal assignment operator<=, that outputf should be assigned the result of the logic
expression on the right-hand side of the operator. Because VHDL does not assume any
precedence of logic operators, parentheses are used in the expression. One might expect
that an assignment statement such as

f <= x1 AND x2 OR NOTx2 AND x3

would have implied parentheses

f <= (x1 AND x2) OR ((NOT x2) AND x3)

But for VHDL code this assumption is not true. In fact, without the parentheses the VHDL
compiler would produce a compile-time error for this expression.

Complete VHDL code for our example is given in Figure 2.29. This example has
illustrated that a VHDL source code file has two main sections: an entity and an architecture.

ARCHITECTURE LogicFunc OF example1 IS
BEGIN

f <= (x1 AND x2) OR (NOT x2 AND x3) ;
END LogicFunc ;

Figure 2.28 VHDL architecture for the entity in Figure 2.27.
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ENTITY example1 IS
PORT ( x1, x2, x3 : IN BIT ;

f : OUT BIT ) ;
END example1 ;

ARCHITECTURE LogicFunc OF example1 IS
BEGIN

f <= (x1 AND x2) OR (NOT x2 AND x3) ;
END LogicFunc ;

Figure 2.29 Complete VHDL code for the circuit in Figure 2.26.

A simple analogy for what each section represents is that the entity is equivalent to a symbol
in a schematic diagram and the architecture specifies the logic circuitry inside the symbol.

A second example of VHDL code is given in Figure 2.30. This circuit has four input
signals, calledx1,x2,x3, andx4, and two output signals, namedf andg. A logic expression
is assigned to each output. A logic circuit produced by the VHDL compiler for this example
is shown in Figure 2.31.

The preceding two examples indicate that one way to assign a value to a signal in
VHDL code is by means of a logic expression. In VHDL terminology a logic expression
is called asimple assignment statement. We will see later that VHDL also supports several
other types of assignment statements and many other features that are useful for describing
circuits that are much more complex.

2.9.3 How NOT to Write VHDL Code

When learning how to use VHDL or other hardware description languages, the tendency for
the novice is to write code that resembles a computer program, containing many variables

ENTITY example2 IS
PORT ( x1, x2, x3, x4 : IN BIT ;

f, g : OUT BIT ) ;
END example2 ;

ARCHITECTURE LogicFunc OF example2 IS
BEGIN

f <= (x1 AND x3) OR (NOT x3 AND x2) ;
g<= (NOT x3 OR x1) AND (NOT x3 OR x4) ;

END LogicFunc ;

Figure 2.30 VHDL code for a four-input function.
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f

g

x3

x1

x2

x4

Figure 2.31 Logic circuit for the code in Figure 2.30.

and loops. It is difficult to determine what logic circuit the CAD tools will produce when
synthesizing such code. This book contains more than 100 examples of complete VHDL
code that represent a wide range of logic circuits. In these examples the code is easily
related to the described logic circuit. The reader is advised to adopt the same style of code.
A good general guideline is to assume that if the designer cannot readily determine what
logic circuit is described by the VHDL code, then the CAD tools are not likely to synthesize
the circuit that the designer is trying to describe.

Once complete VHDL code is written for a particular design, the reader is encour-
aged to analyze the resulting circuit synthesized by the CAD tools. Much can be learned
about VHDL, logic circuits, and logic synthesis by studying the circuits that are produced
automatically by the CAD tools.

2.10 Concluding Remarks

In this chapter we introduced the concept of logic circuits. We showed that such circuits can
be implemented using logic gates and that they can be described using a mathematical model
called Boolean algebra. Because practical logic circuits are often large, it is important to
have good CAD tools to help the designer. This book is accompanied by the MAX+PlusII
software, which is a CAD tool provided by Altera Corporation. We introduced a few basic
features of this tool and urge the reader to start using this software as soon as possible.

Our discussion so far has been quite elementary. We will deal with both the logic
circuits and the CAD tools in much more depth in the chapters that follow. But first, in
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Chapter 3 we will examine the most important electronic technologies used to construct
logic circuits. This material will give the reader an appreciation of practical constraints that
a designer of logic circuits must face.

Problems

2.1 Use algebraic manipulation to prove thatx+ yz= (x+ y) · (x+ z). Note that this is the
distributive rule, as stated in identity 12b in section 2.5.

2.2 Use algebraic manipulation to prove that(x+ y) · (x+ y) = x.

2.3 Use the Venn diagram to prove the identity in problem 1.

2.4 Use the Venn diagram to prove DeMorgan’s theorem, as given in expressions 15a and 15b
in section 2.5.

2.5 Use the Venn diagram to prove

(x1+ x2 + x3) · (x1+ x2 + x3) = x1+ x2

2.6 Determine whether or not the following expressions are valid, i.e., whether the left- and
right-hand sides represent same function.
(a)x1x3+ x1x2x3+ x1x2 + x1x2 = x2x3+ x1x3+ x2x3+ x1x2x3

(b) x1x3+ x2x3+ x2x3 = (x1+ x2 + x3)(x1+ x2 + x3)(x1+ x2 + x3)

(c) (x1+ x3)(x1+ x2 + x3)(x1+ x2) = (x1+ x2)(x2 + x3)(x1+ x3)

2.7 Draw a timing diagram for the circuit in Figure 2.19a. Show the waveforms that can be
observed on all wires in the circuit.

2.8 Repeat problem 2.7 for the circuit in Figure 2.19b.

2.9 Use algebraic manipulation to show that for three input variablesx1, x2, andx3∑
m(1, 2, 3, 4, 5, 6, 7) = x1+ x2 + x3

2.10 Use algebraic manipulation to show that for three input variablesx1, x2, andx3

5 M(0, 1, 2, 3, 4, 5, 6) = x1x2x3

2.11 Use algebraic manipulation to find the minimum sum-of-products expression for the func-
tion f = x1x3+ x1x2 + x1x2x3+ x1x2x3.

2.12 Use algebraic manipulation to find the minimum sum-of-products expression for the func-
tion f = x1x2x3+ x1x2x4 + x1x2x3x4.

2.13 Use algebraic manipulation to find the minimum product-of-sums expression for the func-
tion f = (x1+ x3+ x4) · (x1+ x2 + x3) · (x1+ x2 + x3+ x4).

2.14 Use algebraic manipulation to find the minimum product-of-sums expression for the func-
tion f = (x1+ x2 + x3) · (x1+ x2 + x3) · (x1+ x2 + x3) · (x1+ x2 + x3).

2.15 (a) Show the location of all minterms in a three-variable Venn diagram.
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(b) Show a separate Venn diagram for each product term in the functionf = x1x2x3+x1x2+
x1x3. Use the Venn diagram to find the minimal sum-of-products form off.

2.16 Represent the function in Figure 2.18 in the form of a Venn diagram and find its minimal
sum-of-products form.

2.17 Figure P2.1 shows two attempts to draw a Venn diagram for four variables. For parts (a)
and (b) of the figure, explain why the Venn diagram is not correct. (Hint: the Venn diagram
must be able to represent all 16 minterms of the four variables.)

x1 x2

x3

x4

(a)

x1 x2

x3

x4

(b)

Figure P2.1 Two attempts to draw a four-variable Venn diagram.

2.18 Figure P2.2 gives a representation of a four-variable Venn diagram and shows the location
of mintermsm0,m1, andm2. Show the location of the other minterms in the diagram.
Represent the functionf = x1x2x3x4 + x1x2x3x4 + x1x2 on this diagram.

x3

x2x1

x4

x3

x2x1

m0

m1m2

Figure P2.2 A four-variable Venn diagram.

2.19 Design the simplest sum-of-products circuit that implements the functionf (x1, x2, x3) =∑
m(3, 4, 6, 7).

2.20 Design the simplest sum-of-products circuit that implements the functionf (x1, x2, x3) =∑
m(1, 3, 4, 6, 7).
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2.21 Design the simplest product-of-sums circuit that implements the functionf (x1, x2, x3) =
5 M (0, 2, 5).

2.22 Design the simplest product-of-sums expression for the functionf (x1, x2, x3) =
5 M (0, 1, 5, 7).

2.23 Design the simplest circuit that has three inputs,x1, x2, andx3, which produces an output
value of 1 whenever two or more of the input variables have the value 1; otherwise, the
output has to be 0.

2.24 For the timing diagram in Figure P2.3, synthesize the functionf (x1, x2, x3) in the simplest
sum-of-products form.

1
0

1
0

1
0

1
0

x1

x2

Time

x3

f

Figure P2.3 A timing diagram representing a logic function.

2.25 For the timing diagram in Figure P2.4, synthesize the functionf (x1, x2, x3) in the simplest
sum-of-products form.

1
0

1
0

1
0

1
0

x1

x2

Time

x3

f

Figure P2.4 A timing diagram representing a logic function.
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2.26 Design a circuit with outputf and inputsx1, x0, y1, andy0. Let X = x1x0 be a number,
where the four possible values ofX, namely, 00, 01, 10, and 11, represent the four numbers
0, 1, 2, and 3, respectively. (We discuss representation of numbers in Chapter 5.) Similarly,
let Y = y1y0 represent another number with the same four possible values. The outputf
should be 1 if the numbers represented byX andYare not equal. Otherwise,f should be 0.
(a) Show the truth table forf.
(b) Synthesize the simplest possible product-of-sums expression forf.

2.27 Repeat problem 2.26 for the case wheref should be 1 only ifX ≥ Y.
(a) Show the truth table forf.
(b) Show the canonical sum-of-products expression forf.
(c) Show the simplest possible sum-of-products expression forf.

2.28 (a) Use the Graphic Editor in MAX+plusII to draw schematics for the following functions

f1 = x2x3x4 + x1x2x4 + x1x2x3+ x1x2x3

f2 = x2x4 + x1x2 + x2x3

(b) Use functional simulation in MAX+plusII to prove thatf1 = f2.

2.29 (a) Use the Graphic Editor in MAX+plusII to draw schematics for the following functions

f1 = (x1+ x2 + x4) · (x2 + x3+ x4) · (x1+ x3+ x4) · (x1+ x3+ x4)

f2 = (x2 + x4) · (x3+ x4) · (x1+ x4)

(b) Use functional simulation in MAX+plusII to prove thatf1 = f2.

2.30 (a) Using the Text Editor in MAX+plusII, write VHDL code to describe the following
functions

f1 = x1x3+ x2x3+ x3x4 + x1x2 + x1x4

f2 = (x1+ x3) · (x1+ x2 + x4) · (x2 + x3+ x4)

(b) Use functional simulation in MAX+plusII to prove thatf1 = f2.

2.31 Consider the following VHDL assignment statements

f1 <= ((x1 AND x3) OR (NOT x1 AND NOT x3)) AND ((x2 AND x4) OR
(NOT x2 AND NOT x4)) ;

f2 <= (x1 AND x2 AND NOT x3 AND NOT x4) OR (NOT x1 AND NOT x2 AND x3 AND x4)
OR (x1 AND NOT x2 AND NOT x3 AND x4) OR
(NOT x1 AND x2 AND x3 AND NOT x4) ;

(a) Write complete VHDL code to implement f1 and f2.
(b) Use functional simulation in MAX+plusII to prove thatf 1= f 2.
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In section 1.2 we said that logic circuits are implemented using transistors and that a number of different
technologies exist. We now explore technology issues in more detail.

Let us first consider how logic variables can be physically represented as signals in electronic circuits.
Our discussion will be restricted to binary variables, which can take on only the values 0 and 1. In a circuit
these values can be represented either as levels of voltage or current. Both alternatives are used in different
technologies. We will focus on the simplest and most popular representation, using voltage levels.

The most obvious way of representing two logic values as voltage levels is to define athresholdvoltage;
any voltage below the threshold represents one logic value, and voltages above the threshold correspond to
the other logic value. It is an arbitrary choice as to which logic value is associated with the low and high
voltage levels. Usually, logic 0 is represented by the low voltage levels and logic 1 by the high voltages. This
is known as apositive logicsystem. The opposite choice, in which the low voltage levels are used to represent
logic 1 and the higher voltages are used for logic 0 is known as anegative logicsystem. In this book we use
only the positive logic system, but negative logic is discussed briefly in section 3.4.

Using the positive logic system, the logic values 0 and 1 are referred to simply as “low” and “high.”
To implement the threshold-voltage concept, a range of low and high voltage levels is defined, as shown in
Figure 3.1. The figure gives the minimum voltage, calledVSS, and the maximum voltage, calledVDD, that can
exist in the circuit. We will assume thatVSS is 0 volts, corresponding to electrical ground, denotedGnd. The
voltageVDD represents the power supply voltage. The most common level forVDD is 5 volts, but 3.3 volts is
also popular. In this chapter we will usually assume thatVDD = 5 V. Figure 3.1 indicates that voltages in the
rangeGnd to V0,max represent logic value 0. The nameV0,max means the maximum voltage level that a logic
circuit must recognize as low. Similarly, the range fromV1,min to VDD corresponds to logic value 1, andV1,min

is the minimum voltage level that a logic circuit must interpret as high. The exact levels ofV0,max andV1,min

Logic value 1

Undefined

Logic value 0

Voltage

VDD

V1,min

V0,max

VSS (Gnd)

Figure 3.1 Representation of logic values by voltage levels.
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depend on the particular technology used; a typical example might setV0,max to 40 percent ofVDD andV1,min

to 60 percent ofVDD. The range of voltages betweenV0,max andV1,min is undefined. Logic signals do not
normally assume voltages in this range except in transition from one logic value to the other. We will discuss
the voltage levels used in logic circuits in more depth in section 3.8.3.

3.1 Transistor Switches

Logic circuits are built with transistors. A full treatment of transistor behavior is beyond
the scope of this text; it can be found in electronics textbooks, such as [1] and [2]. For
the purpose of understanding how logic circuits are built, we can assume that a transistor
operates as a simple switch. Figure 3.2ashows a switch controlled by a logic signal,x. When
x is low, the switch is open, and whenx is high, the switch is closed. The most popular type
of transistor for implementing a simple switch is themetal oxide semiconductor field-effect
transistor (MOSFET).There are two different types of MOSFETs, known asn-channel,
abbreviatedNMOS, andp-channel, denotedPMOS.

Figure 3.2b gives a graphical symbol for an NMOS transistor. It has four electrical
terminals, called thesource, drain, gate, andsubstrate. In logic circuits the substrate (also

DrainSource

x = “low” x = “high”

(a) A simple switch controlled by the input x

VDVS

(b) NMOS transistor

Gate

(c) Simplified symbol for an NMOS transistor

VG

Substrate (body)

Figure 3.2 NMOS transistor as a switch.
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calledbody) terminal is connected toGnd. We will use the simplified graphical symbol in
Figure 3.2c, which omits the substrate node. There is no physical difference between the
source and drain terminals. They are distinguished in practice by the voltage levels applied
to the transistor; by convention, the terminal with the lower voltage level is deemed to be
the source.

A detailed explanation of how the transistor operates will be presented in section 3.8.1.
For now it is sufficient to know that it is controlled by the voltageVG at the gate terminal.
If VG is low, then there is no connection between the source and drain, and we say that
the transistor isturned off. If VG is high, then the transistor isturned onand acts as a
closed switch that connects the source and drain terminals. In section 3.8.2 we show how
to calculate the resistance between the source and drain terminals when the transistor is
turned on, but for now assume that the resistance is 0�.

PMOS transistors have the opposite behavior of NMOS transistors. The former are
used to realize the type of switch illustrated in Figure 3.3a, where the switch is open when
the control inputx is high and closed whenx is low. A symbol is shown in Figure 3.3b.
In logic circuits the substrate of the PMOS transistor is always connected toVDD, leading
to the simplified symbol in Figure 3.3c. If VG is high, then the PMOS transistor is turned
off and acts like an open switch. WhenVG is low, the transistor is turned on and acts as a
closed switch that connects the source and drain. In the PMOS transistor the source is the
node with the higher voltage.

Gate

x = “high” x = “low”

(a) A switch with the opposite behavior of Figure 3.2(a)

VG

VDVS

(b) PMOS transistor

(c) Simplified symbol for an PMOS transistor

VDD

Drain Source

Substrate (body)

Figure 3.3 PMOS transistor as a switch.
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(a) NMOS transistor

VG

VD

VS = 0 V

VS = VDD

VD

VG

Closed switch
when VG = VDD

VD = 0 V

Open switch
when VG = 0 V

VD

Open switch
when VG = VDD

VD

VDD

Closed switch
when VG = 0 V

VD = VDD

VDD

(b) PMOS transistor

Figure 3.4 NMOS and PMOS transistors in logic circuits.

Figure 3.4 summarizes the typical use of NMOS and PMOS transistors in logic circuits.
An NMOS transistor is turned on when its gate terminal is high, while a PMOS transistor
is turned on when its gate is low. When the NMOS transistor is turned on, its drain is
pulled downto Gnd, and when the PMOS transistor is turned on, its drain ispulled upto
VDD. Because of the way the transistors operate, an NMOS transistor cannot be used to
pull its drain terminal completely up toVDD. Similarly, a PMOS transistor cannot be used
to pull its drain terminal completely down toGnd. We discuss the operation of MOSFETs
in considerable detail in section 3.8.

3.2 NMOS Logic Gates

The first schemes for building logic gates with MOSFETs became popular in the 1970s and
relied on either PMOS or NMOS transistors, but not both. Since the early 1980s, a combi-
nation of both NMOS and PMOS transistors has been used. We will first describe how logic
circuits can be built using NMOS transistors because these circuits are easier to understand.
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Such circuits are known as NMOS circuits. Then we will show how NMOS and PMOS tran-
sistors are combined in the presently popular technology known ascomplementary MOS,
or CMOS.

In the circuit in Figure 3.5a, whenVx = 0 V, the NMOS transistor is turned off. No
current flows through the resistorR, andVf = 5 V. On the other hand, whenVx = 5 V, the
transistor is turned on and pullsVf to a low voltage level. The exact voltage level ofVf in
this case depends on the amount of current that flows through the resistor and transistor.
Typically, Vf is about 0.2 V (see section 3.8.3). IfVf is viewed as a function ofVx, then the
circuit is an NMOS implementation of a NOT gate. In logic terms this circuit implements
the functionf = x. Figure 3.5b gives a simplified circuit diagram in which the connection
to the positive terminal on the power supply is indicated by an arrow labeledVDD and the
connection to the negative power-supply terminal is indicated by theGndsymbol. We will
use this simplified style of circuit diagram throughout this chapter.

The purpose of the resistor in the NOT gate circuit is to limit the amount of current that
flows whenVx = 5 V. Rather than using a resistor for this purpose, a transistor is normally
used. We will discuss this issue in more detail in section 3.8.3. In subsequent diagrams
a dashed box is drawn around the resistorR as a reminder that it is implemented using a
transistor.

Figure 3.5c presents the graphical symbols for a NOT gate. The left symbol shows the
input, output, power, and ground terminals, and the right symbol is simplified to show only

(b) Simplified circuit diagram

Vx

Vf

VDD

x f

(c) Graphical symbols

x f

R

Vx

Vf

R

+

-

(a) Circuit diagram

5 V

Figure 3.5 A NOT gate built using NMOS technology.
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the input and output terminals. In practice only the simplified symbol is used. Another
name often used for the NOT gate isinverter. We use both names interchangeably in this
book.

In section 2.1 we saw that a series connection of switches corresponds to the logic AND
function, while a parallel connection represents the OR function. Using NMOS transistors,
we can implement the series connection as depicted in Figure 3.6a. If Vx1 = Vx2 = 5 V,
both transistors will be on andVf will be close to 0 V. But if eitherVx1 or Vx2 is 0, then no
current will flow through the series-connected transistors andVf will be pulled up to 5 V.
The resulting truth table forf , provided in terms of logic values, is given in Figure 3.6b.
The realized function is the complement of the AND function, called theNAND function,
for NOT-AND. The circuit realizes a NAND gate. Its graphical symbols are shown in Fig-
ure 3.6c.

The parallel connection of NMOS transistors is given in Figure 3.7a. Here, if either
Vx1 = 5 V or Vx2 = 5 V, thenVf will be close to 0 V. Only if bothVx1 andVx2 are 0 willVf

be pulled up to 5 V. A corresponding truth table is given in Figure 3.7b. It shows that the
circuit realizes the complement of the OR function, called theNORfunction, for NOT-OR.
The graphical symbols for the NOR gate appear in Figure 3.7c.

Vf

VDD

(a) Circuit

(c) Graphical symbols

(b) Truth table

f f

0
0
1
1

0
1
0
1

1
1
1
0

x1 x2 f

Vx2

Vx1

x1

x2

x1

x2

Figure 3.6 NMOS realization of a NAND gate.
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Vx1
Vx2

Vf

VDD

(a) Circuit

(c) Graphical symbols

(b) Truth table

f

0
0
1
1

0
1
0
1

1
0
0
0

x1 x2 f

f
x1

x2

x1

x2

Figure 3.7 NMOS realization of a NOR gate.

Instead of the NAND and NOR gates just described, the reader would naturally be
interested in the AND and OR gates that were used extensively in the previous chapter.
Figure 3.8 indicates how an AND gate is built in NMOS technology by following a NAND
gate with an inverter. NodeA realizes the NAND of inputsx1 andx2, andf represents the
AND function. In a similar fashion an OR gate is realized as a NOR gate followed by an
inverter, as depicted in Figure 3.9.

3.3 CMOS Logic Gates

So far we have considered how to implement logic gates using NMOS transistors. For
each of the circuits that has been presented, it is possible to derive an equivalent circuit
that uses PMOS transistors. However, it is more interesting to consider how both NMOS
and PMOS transistors can be used together. The most popular such approach is known as
CMOS technology. We will see in section 3.8 that CMOS technology offers some attractive
practical advantages in comparison to NMOS technology.

In NMOS circuits the logic functions are realized by arrangements of NMOS transistors,
combined with a pull-up device that acts as a resistor. We will refer to the part of the circuit
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(a) Circuit

(c) Graphical symbols

(b) Truth table

f f

0
0
1
1

0
1
0
1

0
0
0
1

x1 x2 f

Vf

VDD

A

Vx1

Vx2

x1

x2

x1

x2

VDD

Figure 3.8 NMOS realization of an AND gate.

that involves NMOS transistors as thepull-down network (PDN).Then the structure of the
circuits in Figures 3.5 through 3.9 can be characterized by the block diagram in Figure
3.10. The concept of CMOS circuits is based on replacing the pull-up device with apull-up
network (PUN)that is built using PMOS transistors, such that the functions realized by the
PDN and PUN networks are complements of each other. Then a logic circuit, such as a
typical logic gate, is implemented as indicated in Figure 3.11. For any given valuation of
the input signals, either the PDN pullsVf down toGndor the PUN pullsVf up toVDD. The
PDN and the PUN have equal numbers of transistors, which are arranged so that the two
networks aredualsof one another. Wherever the PDN has NMOS transistors in series, the
PUN has PMOS transistors in parallel, and vice versa.

The simplest example of a CMOS circuit, a NOT gate, is shown in Figure 3.12. When
Vx = 0 V, transistorT2 is off and transistorT1 is on. This makesVf = 5 V, and sinceT2 is
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(a) Circuit

(c) Graphical symbols

(b) Truth table

f

0
0
1
1

0
1
0
1

0
1
1
1

x1 x2 f

f

Vf

VDD

Vx2
Vx1

x1

x2

x1

x2

VDD

Figure 3.9 NMOS realization of an OR gate.

off, no current flows through the transistors. WhenVx = 5 V, T2 is on andT1 is off. Thus
Vf = 0 V, and no current flows becauseT1 is off.

A key point is that no current flows in a CMOS inverter when the input is either low or
high. This is true for all CMOS circuits; no current flows, and hence no power is dissipated
under steady state conditions. This property has led to CMOS becoming the most popular
technology in use today for building logic circuits. We will discuss current flow and power
dissipation in detail in section 3.8.

Figure 3.13 provides a circuit diagram of a CMOS NAND gate. It is similar to the
NMOS circuit presented in Figure 3.6 except that the pull-up device has been replaced by
the PUN with two PMOS transistors connected in parallel. The truth table in the figure
specifies the state of each of the four transistors for each logic valuation of inputsx1 and
x2. The reader can verify that the circuit properly implements the NAND function. Under
static conditions no path exists for current flow fromVDD to Gnd.

The circuit in Figure 3.13 can be derived from the logic expression that defines the
NAND operation,f = x1x2. This expression specifies the conditions for whichf = 1;
hence it defines the PUN. Since the PUN consists of PMOS transistors, which are turned
on when their control (gate) inputs are set to 0, an input variablexi turns on a transistor if
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Vf

VDD

Pull-down network
Vx1

Vxn

(PDN)

Figure 3.10 Structure of an NMOS circuit.

xi = 0. From DeMorgan’s law, we have

f = x1x2 = x1+ x2

Thusf = 1 wheneitherinputx1 or x2 has the value 0, which means that the PUN must have
two PMOS transistors connected in parallel. The PDN must implement the complement of
f , which is

f = x1x2

Vf

VDD

Pull-down network

Pull-up network

Vx1

Vxn

(PUN)

(PDN)

Figure 3.11 Structure of a CMOS circuit.
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(a) Circuit

Vf

VDD

Vx

(b) Truth table and transistor states

on
off

off
on

1
0

0
1

fx

T 1

T 2

T 1 T 2

Figure 3.12 CMOS realization of a NOT gate.

Sincef = 1 whenboth x1 andx2 are 1, it follows that the PDN must have two NMOS
transistors connected in series.

The circuit for a CMOS NOR gate is derived from the logic expression that defines the
NOR operation

f = x1+ x2 = x1x2

Sincef = 1 only if bothx1 andx2 have the value 0, then the PUN consists of two PMOS
transistors connected in series. The PDN, which realizesf = x1 + x2, has two NMOS
transistors in parallel, leading to the circuit shown in Figure 3.14.

(a) Circuit

Vf

VDD

(b) Truth table and transistor states

on
on

on
off

0
1

0
0
1
1

0
1

off

off

on

off

off
on

f

off

on

1
1
1
0

off
off
on

on

Vx1

Vx2

T 1 T 2

T 3

T 4

x1 x2 T 1 T 2 T 3 T 4

Figure 3.13 CMOS realization of a NAND gate.
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(a) Circuit
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VDD

(b) Truth table and transistor states
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x1 x2 T 1 T 2 T 3 T 4

Figure 3.14 CMOS realization of a NOR gate.

A CMOS AND gate is built by connecting a NAND gate to an inverter, as illustrated
in Figure 3.15. Similarly, an OR gate is constructed with a NOR gate followed by a NOT
gate.

The above procedure for deriving a CMOS circuit can be applied to more general logic
functions to createcomplex gates. This process is illustrated in the following two examples.

Vf

VDD

Vx1

Vx2

VDD

Figure 3.15 CMOS realization of an AND gate.
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Example 3.1 Consider the function

f = x1+ x2x3

Since all variables appear in their complemented form, we can directly derive the PUN.
It consists of a PMOS transistor controlled byx1 in parallel with a series combination of
PMOS transistors controlled byx2 andx3. For the PDN we have

f = x1+ x2x3 = x1(x2 + x3)

This expression gives the PDN that has an NMOS transistor controlled byx1 in series with
a parallel combination of NMOS transistors controlled byx2 andx3. The circuit is shown
in Figure 3.16.

Example 3.2 Consider the function

f = x1+ (x2 + x3)x4

Then

f = x1(x2x3+ x4)

These expressions lead directly to the circuit in Figure 3.17.

Vf

VDD

Vx1

Vx2

Vx3

Figure 3.16 The circuit for Example 3.1.
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Vf

VDD

Vx1

Vx2

Vx3

Vx4

Figure 3.17 The circuit for Example 3.2.

The circuits in Figures 3.16 and 3.17 show that it is possible to implement fairly complex
logic functions using combinations of series and parallel connections of transistors (acting
as switches), without implementing each series or parallel connection as a complete AND
(using the structure introduced in Figure 3.15) or OR gate.

3.3.1 Speed of Logic Gate Circuits

In the preceding sections we have assumed that transistors operate as ideal switches that
present no resistance to current flow. Hence, while we have derived circuits that realize
the functionality needed in logic gates, we have ignored the important issue of the speed of
operation of the circuits. In reality transistor switches have a significant resistance when
turned on. Also, transistor circuits include capacitors, which are created as a side effect
of the manufacturing process. These factors affect the amount of time required for signal
values to propagate through logic gates. We provide a detailed discussion of the speed of
logic circuits, as well as a number of other practical issues, in section 3.8.
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3.4 Negative Logic System

At the beginning of this chapter, we said that logic values are represented as two distinct
ranges of voltage levels. We are using the convention that the higher voltage levels represent
logic value 1 and the lower voltages represent logic value 0. This convention is known as the
positive logic system, and it is the one used in most practical applications. In this section we
briefly consider the negative logic system in which the association between voltage levels
and logic values is reversed.

Let us reconsider the CMOS circuit in Figure 3.13, which is reproduced in Figure
3.18a. Part(b) of the figure gives a truth table for the circuit, but the table shows voltage
levels instead of logic values. In this table,L refers to the low voltage level in the circuit,
which is 0 V, andH represents the high voltage level, which isVDD. This is the style of
truth table that manufacturers of integrated circuits often use in data sheets to describe the
functionality of the chips. It is entirely up to the user of the chip as to whetherL andH are
interpreted in terms of logic values such thatL = 0 andH = 1, orL = 1 andH = 0.

Figure 3.19a illustrates the positive logic interpretation in whichL = 0 andH = 1.
As we already know from the discussions of Figure 3.13, the circuit represents a NAND
gate under this interpretation. The opposite interpretation is shown in Figure 3.19b. Here
negative logic is used so thatL = 1 andH = 0. The truth table specifies that the circuit
represents a NOR gate in this case. Note that the truth table rows are listed in the opposite
order from what we normally use, to be consistent with theL andH values in Figure 3.18b.
Figure 3.19b also gives the logic gate symbol for the NOR gate, which includes small
triangles on the gate’s terminals to indicate that the negative logic system is used.

As another example, consider again the circuit in Figure 3.15. Its truth table, in terms
of voltage levels, is given in Figure 3.20a. Using the positive logic system, this circuit

(a) Circuit

Vf

VDD

(b) Voltage levels

L
H

L
L
H
H

L
H

H
H
H
L

Vx1

Vx2

V x1
V x2

V f

Figure 3.18 Voltage levels in the circuit in Figure 3.13.
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(a) Positive logic truth table and gate symbol
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(b) Negative logic truth table and gate symbol
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Figure 3.19 Interpretation of the circuit in Figure 3.18.

represents an AND gate, as indicated in Figure 3.20b. But using the negative logic system,
the circuit represents an OR gate, as depicted in Figure 3.20c.

It is possible to use a mixture of positive and negative logic in a single circuit, which
is known as amixed logic system. In practice, the positive logic system is used in most
applications. We will not consider the negative logic system further in this book.

3.5 Standard Chips

In Chapter 1 we mentioned that several different types of integrated circuit chips are available
for implementation of logic circuits. We now discuss the available choices in some detail.

3.5.1 7400-Series Standard Chips

An approach used widely until the mid-1980s was to connect together multiple chips, each
containing only a few logic gates. A wide assortment of chips, with different types of logic
gates, is available for this purpose. They are known as 7400-series parts because the chip
part numbers always begin with the digits 74. An example of a 7400-series part is given
in Figure 3.21. Part(a) of the figure shows a type of package that the chip is provided in,
called adual-inline package (DIP).Part(b) illustrates the 7404 chip, which comprises six
NOT gates. The chip’s external connections are calledpins or leads. Two pins are used
to connect toVDD andGnd, and other pins provide connections to the NOT gates. Many
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(b) Positive logic
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Figure 3.20 Interpretation of the circuit in Figure 3.15.

7400-series chips exist, and they are described in the data books produced by manufacturers
of these chips [3–7]. Diagrams of some of the chips are also included in several textbooks,
such as [8–12].

The 7400-series chips are produced in standard forms by a number of integrated circuit
manufacturers, using agreed-upon specifications. Competition among various manufac-
turers works to the designer’s advantage because it tends to lower the price of chips and
ensures that parts are always readily available. For each specific 7400-series chip, several
variants are built with different technologies. For instance, the part called 74LS00 is built
with a technology called transistor-transistor logic (TTL), which is described in Appendix
E, whereas the 74HC00 is fabricated using CMOS technology. In general, the most popular
chips used today are the CMOS variants.

As an example of how a logic circuit can be implemented using 7400-series chips,
consider the functionf = x1x2 + x2x3, which is shown in the form of a logic diagram in
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(a) Dual-inline package

(b) Structure of 7404 chip

VDD

Gnd

Figure 3.21 A 7400-series chip.

Figure 2.26. A NOT gate is required to producex2, as well as 2 two-input AND gates
and a two-input OR gate. Figure 3.22 shows three 7400-series chips that can be used to
implement the function. We assume that the three input signalsx1, x2, andx3 are produced
as outputs by some other circuitry that can be connected by wires to the three chips. Notice
that power and ground connections are included for all three chips. This example makes
use of only a portion of the gates available on the three chips, hence the remaining gates
can be used to realize other functions.

Because of their low logic capacity, the standard chips are seldom used in practice
today, with one exception. Many modern products include standard chips that contain
buffers. Buffers are logic gates that are usually used to improve the speed of circuits. An
example of a buffer chip is depicted in Figure 3.23. It is the 74244 chip, which comprises
eighttri-state buffers. We describe how tri-state buffers work in section 3.8.8. Rather than
showing how the buffers are arranged inside the chip package, as we did for the NOT gates
in Figure 3.21, we show only the pin numbers of the package pins that are connected to the
buffers. The package has 20 pins, and they are numbered in the same manner as shown for
Figure 3.21;GndandVDD connections are provided on pins 10 and 20, respectively. Many
other buffer chips also exist. For example, the 162244 chip has 16 tri-state buffers. It is
part of a family of devices that are similar to the 7400-series chips but with twice as many
gates in each chip. These chips are available in multiple types of packages, with the most
popular being asmall-outline integrated circuit (SOIC)package. An SOIC package has a
similar shape to a DIP, but the SOIC is considerably smaller in physical size.
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VDD

x1

x2

x3
f

7404

7408 7432

Figure 3.22 An implementation of f = x1x2 + x2x3.

As integrated circuit technology has improved over time, a system of classifying chips
according to their size has evolved. The earliest chips produced, such as the 7400-series
chips, comprise only a few logic gates. The technology used to produce these chips is
referred to assmall-scale integration (SSI). Chips that include slightly more logic circuitry,
typically about 10 to 100 gates, representmedium-scale integration (MSI). Until the mid-
1980s chips that were too large to qualify as MSI were classified aslarge-scale integration

Pi
n 

2

Pi
n 

4

Pi
n 

6

Pi
n 

8

Pi
n 

1

Pi
n 

12

Pi
n 

14

Pi
n 

16

Pi
n 

18

Pi
n 

11

Pi
n 

13

Pi
n 

15

Pi
n 

17

Pi
n 

19

Pi
n 

3

Pi
n 

5

Pi
n 

7

Pi
n 

9

Figure 3.23 The 74244 buffer chip.
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(LSI). In recent years the concept of classifying circuits according to their size has become
of little practical use. Most integrated circuits today contain many thousands or millions
of transistors. Regardless of their exact size, these large chips are said to be made with
very large scale integration (VLSI)technology. The trend in digital hardware products is
to integrate as much circuitry as possible onto a single chip. Thus most of the chips used
today are built with VLSI technology, and the older types of chips are used rarely.

3.6 Programmable Logic Devices

The function provided by each of the 7400-series parts is fixed and cannot be tailored to suit
a particular design situation. This fact, coupled with the limitation that each chip contains
only a few logic gates, makes these chips inefficient for building large logic circuits. It is
possible to manufacture chips that contain relatively large amounts of logic circuitry with
a structure that is not fixed. Such chips were first introduced in the 1970s and are called
programmable logic devices (PLDs).

A PLD is a general-purpose chip for implementing logic circuitry. It contains a col-
lection of logic circuit elements that can be customized in different ways. A PLD can be
viewed as a “black box” that contains logic gates and programmable switches, as illustrated
in Figure 3.24. The programmable switches allow the logic gates inside the PLD to be
connected together to implement whatever logic circuit is needed.

3.6.1 Programmable Logic Array (PLA)

Several types of PLDs are commercially available. The first developed was thepro-
grammable logic array (PLA). The general structure of a PLA is depicted in Figure 3.25.
Based on the idea that logic functions can be realized in sum-of-products form, a PLA

Logic gates
and

programmable
switches

Inputs
(logic variables)

Outputs
(logic functions)

Figure 3.24 Programmable logic device as a black box.
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Figure 3.25 General structure of a PLA.

comprises a collection of AND gates that feeds a set of OR gates. As shown in the figure,
the PLA’s inputsx1, . . . , xn pass through a set of buffers (which provide both the true value
and complement of each input) into a circuit block called anAND plane, or AND array.
The AND plane produces a set of product termsP1, . . . ,Pk. Each of these terms can be
configured to implement any AND function ofx1, . . . , xn. The product terms serve as the
inputs to anOR plane, which produces the outputsf1, . . . , fm. Each output can be config-
ured to realize any sum ofP1, . . . ,Pk and hence any sum-of-products function of the PLA
inputs.

A more detailed diagram of a small PLA is given in Figure 3.26, which shows a PLA
with three inputs, four product terms, and two outputs. Each AND gate in the AND plane
has six inputs, corresponding to the true and complemented versions of the three input
signals. Each connection to an AND gate is programmable; a signal that is connected to
an AND gate is indicated with a wavy line, and a signal that is not connected to the gate is
shown with a broken line. The circuitry is designed such that any unconnected AND-gate
inputs do not affect the output of the AND gate. In commercially available PLAs, several
methods of realizing the programmable connections exist. Detailed explanation of how a
PLA can be built using transistors is given in section 3.10.

In Figure 3.26 the AND gate that producesP1 is shown connected to the inputsx1 and
x2. HenceP1 = x1x2. Similarly, P2 = x1x3, P3 = x1x2x3, andP4 = x1x3. Programmable
connections also exist for the OR plane. Outputf1 is connected to product termsP1,
P2, andP3. It therefore realizes the functionf1 = x1x2 + x1x3 + x1x2x3. Similarly, output
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Figure 3.26 Gate-level diagram of a PLA.

f2 = x1x2+x1x2x3+x1x3. Although Figure 3.26 depicts the PLA programmed to implement
the functions described above, by programming the AND and OR planes differently, each
of the outputsf1 and f2 could implement various functions ofx1, x2, andx3. The only
constraint on the functions that can be implemented is the size of the AND plane because it
produces only four product terms. Commercially available PLAs come in larger sizes than
we have shown here. Typical parameters are 16 inputs, 32 product terms, and eight outputs.

Although Figure 3.26 illustrates clearly the functional structure of a PLA, this style of
drawing is awkward for larger chips. Instead, it has become customary in technical literature
to use the style shown in Figure 3.27. Each AND gate is depicted as a single horizontal
line attached to an AND-gate symbol. The possible inputs to the AND gate are drawn as
vertical lines that cross the horizontal line. At any crossing of a vertical and horizontal
line, a programmable connection, indicated by anX, can be made. Figure 3.27 shows the
programmable connections needed to implement the product terms in Figure 3.26. Each
OR gate is drawn in a similar manner, with a vertical line attached to an OR-gate symbol.
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Figure 3.27 Customary schematic for the PLA in Figure 3.26.

The AND-gate outputs cross these lines, and corresponding programmable connections can
be formed. The figure illustrates the programmable connections that produce the functions
f1 andf2 from Figure 3.26.

The PLA is efficient in terms of the area needed for its implementation on an integrated
circuit chip. For this reason, PLAs are often included as part of larger chips, such as
microprocessors. In this case a PLA is created so that the connections to the AND and OR
gates are fixed, rather than programmable. In section 3.10 we will show that both fixed and
programmable PLAs can be created with similar structures.

3.6.2 Programmable Array Logic (PAL)

In a PLA both the AND and OR planes are programmable. Historically, the programmable
switches presented two difficulties for manufacturers of these devices: they were hard to
fabricate correctly, and they reduced the speed-performance of circuits implemented in the
PLAs. These drawbacks led to the development of a similar device in which the AND plane
is programmable, but the OR plane is fixed. Such a chip is known as aprogrammable array
logic (PAL)device. Because they are simpler to manufacture, and thus less expensive than
PLAs, and offer better performance, PALs have become popular in practical applications.
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An example of a PAL with three inputs, four product terms, and two outputs is given
in Figure 3.28. The product termsP1 andP2 are hardwired to one OR gate, andP3 andP4

are hardwired to the other OR gate. The PAL is shown programmed to realize the two logic
functionsf1 = x1x2x3+x1x2x3 andf2 = x1x2+x1x2x3. In comparison to the PLA in Figure
3.27, the PAL offers less flexibility; the PLA allows up to four product terms per OR gate,
whereas the OR gates in the PAL have only two inputs. To compensate for the reduced
flexibility, PALs are manufactured in a range of sizes, with various numbers of inputs and
outputs, and different numbers of inputs to the OR gates. An example of a commercial PAL
is given in Appendix E.

So far we have assumed that the OR gates in a PAL, as in a PLA, connect directly to
the output pins of the chip. In many PALs extra circuitry is added at the output of each OR
gate to provide additional flexibility. It is customary to use the termmacrocellto refer to
the OR gate combined with the extra circuitry. An example of the flexibility that may be
provided in a macrocell is given in Figure 3.29. The symbol labeledflip-flop represents a
memory element. It stores the value produced by the OR gate output at a particular point
in time and can hold that value indefinitely. The flip-flop is controlled by the signal called
clock. Whenclockmakes a transition from logic value 0 to 1, the flip-flop stores the value
at itsD input at that time and this value appears at the flip-flop’s Q output. Flip-flops are
used for implementing many types of logic circuits, as we will show in Chapter 7.

In section 2.7.2 we discussed a 2-to-1 multiplexer circuit. It has two data inputs, a
select input, and one output. The select input is used to choose one of the data inputs as

f1

P1

P2

f2

x1 x2 x3

AND plane

P3

P4

Figure 3.28 An example of a PAL.
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Figure 3.29 Extra circuitry added to OR-gate outputs from Figure 3.28.

the multiplexer’s output. In Figure 3.29 a 2-to-1 multiplexer selects as an output from the
PAL either the OR-gate output or the flip-flop output. The multiplexer’s select line can be
programmed to be either 0 or 1. Figure 3.29 shows another logic gate, called a tri-state
buffer, connected between the multiplexer and the PAL output. We discuss tri-state buffers
in section 3.8.8. Finally, the multiplexer’s output is “fed back” to the AND plane in the
PAL. This feedback connection allows the logic function produced by the multiplexer to be
used internally in the PAL, which allows the implementation of circuits that have multiple
stages, or levels, of logic gates.

A number of companies manufacture PLAs or PALs, or other, similar types ofsimple
PLDs (SPLDs).A partial list of companies, and the types of SPLDs that they manufacture, is
given in Appendix E. An interested reader can examine the information that these companies
provide on their products, which is available on the World Wide Web (WWW). The WWW
locator for each company is given in Table E.1 in Appendix E.

3.6.3 Programming of PLAs and PALs

In Figures 3.27 and 3.28, each connection between a logic signal in a PLA or PAL and the
AND/OR gates is shown as anX. We describe how these switches are implemented using
transistors in section 3.10. Users’ circuits are implemented in the devices byconfiguring,
or programming, these switches. Commercial chips contain a few thousand programmable
switches; hence it is not feasible for a user of these chips to specify manually the desired
programming state of each switch. Instead, CAD systems are employed for this purpose. We
introduced CAD tools in Chapter 2 and described methods for design entry and simulation
of circuits. For CAD systems that support targeting of circuits to PLDs, the tools have the
capability to automatically produce the necessary information for programming each of the
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switches in the device. A computer system that runs the CAD tools is connected by a cable
to a dedicatedprogramming unit. Once the user has completed the design of a circuit, the
CAD tools generate a file, often called aprogramming fileor fuse map, that specifies the
state that each switch in the PLD should have, to realize correctly the designed circuit. The
PLD is placed into the programming unit, and the programming file is transferred from the
computer system. The programming unit then places the chip into a specialprogramming
modeand configures each switch individually. A photograph of a programming unit is
shown in Figure 3.30. Several adaptors are shown beside the main unit; each adaptor is
used for a specific type of chip package.

The programming procedure may take a few minutes to complete. Usually, the pro-
gramming unit can automatically “read back” the state of each switch after programming,
to verify that the chip has been programmed correctly. A detailed discussion of the process
involved in using CAD tools to target designed circuits to programmable chips is given in
Appendices B, C, and D.

PLAs or PALs used as part of a logic circuit usually reside with other chips on a printed
circuit board (PCB). The procedure described above assumes that the chip can be removed
from the circuit board for programming in the programming unit. Removal is made possible
by using a socket on the PCB, as illustrated in Figure 3.31. Although PLAs and PALs are
available in the DIP packages shown in Figure 3.21a, they are also available in another
popular type of package, called aplastic-leaded chip carrier (PLCC), which is depicted in
Figure 3.31. On all four of its sides, the PLCC package has pins that “wrap around” the
edges of the chip, rather than extending straight down as in the case of a DIP. The socket
that houses the PLCC is attached by solder to the circuit board, and the PLCC is held in the
socket by friction.

Figure 3.30 A PLD programming unit (courtesy of Data IO Corp.).
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Printed circuit b
oard

Figure 3.31 A PLCC package with socket.

Instead of relying on a programming unit to configure a chip, it would be advantageous
to be able to perform the programming while the chip is still attached to its circuit board. This
method of programming is calledin-system programming (ISP). It is not usually provided
for PLAs or PALs, but is available for the more sophisticated chips that are described below.

3.6.4 Complex Programmable Logic Devices (CPLDs)

PLAs and PALs are useful for implementing a wide variety of small digital circuits. Each
device can be used to implement circuits that do not require more than the number of inputs,
product terms, and outputs that are provided in the particular chip. These chips are limited
to fairly modest sizes, typically supporting a combined number of inputs plus outputs of not
more than 32. For implementation of circuits that require more inputs and outputs, either
multiple PLAs or PALs can be employed or else a more sophisticated type of chip, called
acomplex programmable logic device (CPLD), can be used.

A CPLD comprises multiple circuit blocks on a single chip, with internal wiring re-
sources to connect the circuit blocks. Each circuit block is similar to a PLA or a PAL; we
will refer to the circuit blocks asPAL-like blocks. An example of a CPLD is given in Figure
3.32. It includes four PAL-like blocks that are connected to a set ofinterconnection wires.
Each PAL-like block is also connected to a subcircuit labeledI/O block, which is attached
to a number of the chip’s input and output pins.
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Figure 3.32 Structure of a complex programmable logic device (CPLD).

Figure 3.33 shows an example of the wiring structure and the connections to a PAL-like
block in a CPLD. The PAL-like block includes 3 macrocells (real CPLDs typically have
about 16 macrocells in a PAL-like block), each consisting of a four-input OR gate (real
CPLDs usually provide between 5 and 20 inputs to each OR gate). The OR-gate output
is connected to another type of logic gate that we have not yet introduced. It is called an
Exclusive-OR (XOR) gate. We discuss XOR gates in section 3.9.1. The behavior of an
XOR gate is the same as for an OR gate except that if both of the inputs are 1, the XOR gate
produces a 0. One input to the XOR gate in Figure 3.33 can be programmably connected to
1 or 0; if 1, then the XOR gate complements the OR-gate output, and if 0, then the XOR gate
has no effect. In many CPLDs the XOR gates can be used in other ways also, which we will
see in Example 4.19, in Chapter 4. The macrocell also includes a flip-flop, a multiplexer,
and a tri-state buffer. As we mentioned in the discussion for Figure 3.29, the flip-flop is
used to store the output value produced by the OR gate. Each tri-state buffer (see section
3.8.8) is connected to a pin on the CPLD package. The tri-state buffer acts as a switch that
allows each pin to be used either as an output from the CPLD or as an input. To use a pin as
an output, the corresponding tri-state buffer is enabled, acting as a switch that is turned on.
If the pin is to be used as an input, then the tri-state buffer is disabled, acting as a switch
that is turned off. In this case an external source can drive a signal onto the pin, which can
be connected to other macrocells using the interconnection wiring.

The interconnection wiring contains programmable switches that are used to connect
the PAL-like blocks. Each of the horizontal wires can be connected to some of the vertical
wires that it crosses, but not to all of them. Extensive research has been done to decide
how many switches should be provided for connections between the wires. The number
of switches is chosen to provide sufficient flexibility for typical circuits without wasting
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Figure 3.33 A section of the CPLD in Figure 3.32.

many switches in practice. One detail to note is that when a pin is used as an input, the
macrocell associated with that pin cannot be used and is therefore wasted. Some CPLDs
include additional connections between the macrocells and the interconnection wiring that
avoids wasting macrocells in such situations.

Commercial CPLDs range in size from only 2 PAL-like blocks to more than 100 PAL-
like blocks. They are available in a variety of packages, including the PLCC package that
is shown in Figure 3.31. Figure 3.34a shows another type of package used to house CPLD
chips, called aquad flat pack (QFP).Like a PLCC package, the QFP package has pins on all
four sides, but whereas the PLCC’s pins wrap around the edges of the package, the QFP’s
pins extend outward from the package, with a downward-curving shape. The QFP’s pins
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Figure 3.34 CPLD packaging and programming.

are much thinner than those on a PLCC, which means that the package can support a larger
number of pins; QFPs are available with more than 200 pins, whereas PLCCs are limited
to fewer than 100 pins.

Most CPLDs contain the same type of programmable switches that are used in SPLDs,
which are described in section 3.10. Programming of the switches may be accomplished
using the same technique described in section 3.6.3, in which the chip is placed into a special-
purpose programming unit. However, this programming method is rather inconvenient for
large CPLDs for two reasons. First, large CPLDs may have more than 200 pins on the chip
package, and these pins are often fragile and easily bent. Second, to be programmed in a
programming unit, a socket is required to hold the chip. Sockets for large QFP packages
are very expensive; they sometimes cost more than the CPLD device itself. For these
reasons, CPLD devices usually support the ISP technique. A small connector is included
on the PCB that houses the CPLD, and a cable is connected between that connector and a
computer system. The CPLD is programmed by transferring the programming information
generated by a CAD system through the cable, from the computer into the CPLD. The
circuitry on the CPLD that allows this type of programming has been standardized by the
IEEE and is usually called aJTAG port. It uses four wires to transfer information between
the computer and the device being programmed. The termJTAGstands for Joint Test Action
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Group. Figure 3.34b illustrates the use of a JTAG port for programming two CPLDs on a
circuit board. The CPLDs are connected together so that both can be programmed using
the same connection to the computer system. Once a CPLD is programmed, it retains the
programmed state permanently, even when the power supply for the chip is turned off. This
property is callednonvolatileprogramming.

CPLDs are used for the implementation of many types of digital circuits. In industrial
designs that employ some type of PLD device, CPLDs are used in about half the cases
(SPLDs are used in only a small fraction of recently produced designs). A number of
companies offer competing CPLDs. Appendix E lists, in Table E.2, the names of the major
companies involved and shows the company’s WWW locator. The reader is encouraged
to examine the product information that each company provides on its Web pages. One
example of a commercially available CPLD is described in detail in Appendix E. This CPLD
family, manufactured by Altera and called the MAX 7000, is used in several examples
presented later in the book.

3.6.5 Field-Programmable Gate Arrays

The types of chips described above, 7400 series, SPLDs, and CPLDs, are useful for im-
plementation of a wide range of logic circuits. Except for CPLDs, these devices are rather
small and are suitable only for relatively simple applications. Even for CPLDs, only mod-
erately large logic circuits can be accommodated in a single chip. For cost and performance
reasons, it is prudent to implement a desired logic circuit using as few chips as possible, so
the amount of circuitry on a given chip and its functional capability are important. One way
to quantify a circuit’ssizeis to assume that the circuit is to be built using only simple logic
gates and then estimate how many of these gates are needed. A commonly used measure is
the total number of two-input NAND gates that would be needed to build the circuit; this
measure is often called the number ofequivalent gates.

Using the equivalent-gates metric, the size of a 7400-series chip is simple to measure
because each chip contains only simple gates. For SPLDs and CPLDs the typical measure
used is that each macrocell represents about 20 equivalent gates. Thus a typical PAL that
has eight macrocells can accommodate a circuit that needs up to about 160 gates, and a large
CPLD that has 1000 macrocells can implement circuits of up to about 20,000 equivalent
gates.

By modern standards, a logic circuit with 20,000 gates is not large. To implement
larger circuits, it is convenient to use a different type of chip that has a larger logic capacity.
A field-programmable gate array (FPGA)is a programmable logic device that supports
implementation of relatively large logic circuits. FPGAs are quite different from SPLDs
and CPLDs because FPGAs do not contain AND or OR planes. Instead, FPGAs provide
logic blocksfor implementation of the required functions. The general structure of an FPGA
is illustrated in Figure 3.35a. It contains three main types of resources: logic blocks, I/O
blocks for connecting to the pins of the package, and interconnection wires and switches.
The logic blocks are arranged in a two-dimensional array, and the interconnection wires
are organized as horizontal and verticalrouting channelsbetween rows and columns of
logic blocks. The routing channels contain wires and programmable switches that allow
the logic blocks to be interconnected in many ways. Figure 3.35a shows two locations for
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Figure 3.35 A field-programmable gate array (FPGA).

programmable switches; the blue boxes adjacent to logic blocks hold switches that connect
the logic block input and output terminals to the interconnection wires, and the blue boxes
that are diagonally between logic blocks connect one interconnection wire to another (such
as a vertical wire to a horizontal wire). Programmable connections also exist between the
I/O blocks and the interconnection wires. The actual number of programmable switches
and wires in an FPGA varies in commercially available chips.



April 5, 1999 14:26 g02-ch3 Sheet number 34 Page number 94 black

94 C H A P T E R 3 • Implementation Technology

FPGAs can be used to implement logic circuits of more than a few hundred thousand
equivalent gates in size. Two examples of FPGAs, called the Altera FLEX 10K and the
Xilinx XC4000, are described in Appendix E. FPGAs are available in a variety of packages,
including the PLCC and QFP packages described earlier. Figure 3.35b depicts another type
of package, called apin grid array (PGA).A PGA package may have up to a few hundred
pins in total, which extend straight outward from the bottom of the package, in a grid pattern.
Yet another packaging technology that has emerged is known as theball grid array (BGA).
The BGA is similar to the PGA except that the pins are small round balls, instead of posts.
The advantage of BGA packages is that the pins are very small; hence more pins can be
provided on the package.

Each logic block in an FPGA typically has a small number of inputs and one output.
A number of FPGA products are on the market, featuring different types of logic blocks.
The most commonly used logic block is alookup table (LUT), which containsstorage cells
that are used to implement a small logic function. Each cell is capable of holding a single
logic value, either 0 or 1. The stored value is produced as the output of the storage cell.
LUTs of varioussizesmay be created, where the size is defined by the number of inputs.
Figure 3.36a shows the structure of a small LUT. It has two inputs,x1 andx2, and one

(a) Circuit for a two-input LUT
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Figure 3.36 A two-input lookup table (LUT).
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output, f . It is capable of implementing any logic function of two variables. Because a
two-variable truth table has four rows, this LUT has four storage cells. One cell corresponds
to the output value in each row of the truth table. The input variablesx1 andx2 are used
as the select inputs of three multiplexers, which, depending on the valuation ofx1 andx2,
select the content of one of the four storage cells as the output of the LUT. We introduced
multiplexers in section 2.7.2 and will discuss storage cells in Chapter 10.

To see how a logic function can be realized in the two-input LUT, consider the truth table
in Figure 3.36b. The functionf1 from this table can be stored in the LUT as illustrated in
Figure 3.36c. The arrangement of multiplexers in the LUT correctly realizes the functionf1.
Whenx1 = x2 = 0, the output of the LUT is driven by the top storage cell, which represents
the entry in the truth table forx1x2 = 00. Similarly, for all valuations ofx1 andx2, the logic
value stored in the storage cell corresponding to the entry in the truth table chosen by the
particular valuation appears on the LUT output. Providing access to the contents of storage
cells is only one way in which multiplexers can be used to implement logic functions. A
detailed presentation of the applications of multiplexers is given in Chapter 6.

Figure 3.37 shows a three-input LUT. It has eight storage cells because a three-variable
truth table has eight rows. In commercial FPGA chips, LUTs usually have either four or
five inputs, which require 16 and 32 storage cells, respectively. In Figure 3.29 we showed
that PALs usually have extra circuitry included with their AND-OR gates. The same is true
for FPGAs, which usually have extra circuitry, besides a LUT, in each logic block. Figure
3.38 shows how a flip-flop may be included in an FPGA logic block. As discussed for
Figure 3.29, the flip-flop is used to store the value of itsD input under control of itsclock
input. Examples of logic blocks in commercial FPGAs are presented in Appendix E.

For a logic circuit to be realized in an FPGA, each logic function in the circuit must be
small enough to fit within a single logic block. In practice, a user’s circuit is automatically
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Figure 3.37 A three-input LUT.
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Figure 3.38 Inclusion of a flip-flop in an FPGA logic block.

translated into the required form by using CAD tools (see section 4.12). When a circuit
is implemented in an FPGA, the logic blocks are programmed to realize the necessary
functions and the routing channels are programmed to make the required interconnections
between logic blocks. FPGAs are configured by using the ISP method, which we explained
in section 3.6.4. The storage cells in the LUTs in an FPGA arevolatile, which means
that they lose their stored contents whenever the power supply for the chip is turned off.
Hence the FPGA has to be programmed every time power is applied. Often a small memory
chip that holds its data permanently, called aprogrammable read-only memory (PROM),
is included on the circuit board that houses the FPGA. The storage cells in the FPGA are
loaded automatically from the PROM when power is applied to the chips.

A small FPGA that has been programmed to implement a circuit is depicted in Figure
3.39. The FPGA has two-input LUTs, and there are four wires in each routing channel.
The figure shows the programmed states of both the logic blocks and wiring switches in
a section of the FPGA. Programmable wiring switches are indicated by anX. Each switch
shown in blue is turned on and makes a connection between a horizontal and vertical wire.
The switches shown in black are turned off. We describe how the switches are implemented
by using transistors in section 3.10.1. The truth tables programmed into the logic blocks in
the top row of the FPGA correspond to the functionsf1 = x1x2 andf2 = x2x3. The logic
block in the bottom right of the figure is programmed to producef = f1+ f2 = x1x2+ x2x3.

3.6.6 Using CAD Tools to Implement Circuits in CPLDs
and FPGAs

In section 2.8 we suggested that the reader should work through Tutorial 1, in Appendix
B, to gain some experience using real CAD tools. Tutorial 1 covers the steps of design
entry and functional simulation. Now that we have discussed some of the details of the
implementation of circuits in chips, the reader may wish to experiment further with the CAD
tools. In Tutorial 2, section C.3, we illustrate how to download a circuit from a computer
into a CPLD or FPGA.
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Figure 3.39 A section of a programmed FPGA.

3.7 Custom Chips, Standard Cells, and Gate Arrays

The key factor that limits the size of a circuit that can be accommodated in a PLD is the
existence of programmable switches. Although these switches provide the benefit of user
programmability, they consume a significant amount of space on the chip. They also result
in a reduction in the speed of operation of circuits. In this section we will introduce some
integrated circuit technologies that do not contain programmable switches.

Chips that provide the largest number of logic gates and the highest speed are so-called
custom chips. Whereas a PLD is prefabricated, containing logic gates and programmable
switches that are programmed to realize a user’s circuit, a custom chip is created from
scratch. The designer of a custom chip has complete flexibility to decide the size of the
chip, the number of transistors the chip contains, the placement of each transistor on the
chip, and the way the transistors are connected together. The process of defining exactly
where on the chip each transistor and wire is situated is calledchip layout. For a custom
chip the designer may create any layout that is desired. Because it may contain more than
a million transistors, a custom chip requires a large amount of design effort and therefore



April 5, 1999 14:26 g02-ch3 Sheet number 38 Page number 98 black

98 C H A P T E R 3 • Implementation Technology

is expensive. Consequently, custom chips are used only when a very large number of
transistors is needed and high-speed performance is important. Also, the product being
designed must be expected to sell in sufficient quantities to recoup the expense. Two
examples of products that are usually realized with custom chips are microprocessors and
memory chips.

Some of the design effort incurred for a custom chip can be avoided by using a technol-
ogy known asstandard cells. Chips made using this technology are often calledapplication-
specific integrated circuits (ASICs). This technology is illustrated in Figure 3.40, which
depicts a small portion of a chip. The rows of logic gates may be connected by wires that
are created in therouting channelsbetween the rows of gates. In general, many types of
logic gates may be used in such a chip. The available gates are prebuilt and are stored in
a library that can be accessed by the designer. In Figure 3.40 the wires are drawn in two
colors. This scheme is used because metal wires can be created on integrated circuits in
multiple layers, which makes it possible for two wires to cross one another without creating
a short circuit. The blue wires represent one layer of metal wires, and the black wires are a
different layer. Each blue square represents a hard-wired connection (called avia) between
a wire on one layer and a wire on the other layer. In current technology it is possible to
have eight or more layers of metal wiring. Some of the metal layers can be placed on top
of the transistors in the logic gates, resulting in a more efficient chip layout.

Like a custom chip, a standard-cell chip is created from scratch according to a user’s
specifications. The circuitry shown in Figure 3.40 implements the two logic functions
that we realized in a PLA in Figure 3.26, namely,f1 = x1x2 + x1x3 + x1x2x3 and f2 =
x1x2 + x1x2x3 + x1x3. Because of the expense involved, a standard-cell chip would never
be created for a small circuit such as this one, and thus the figure shows only a portion
of a much larger chip. The layout of individual gates (standard cells) is predesigned and
fixed. The chip layout can be created automatically by CAD tools because of the regular
arrangement of the logic gates (cells) in rows. A typical chip has many long rows of logic
gates with a large number of wires between each pair of rows. The I/O blocks around the
periphery connect to the pins of the chip package, which is usually a QFP, PGA, or BGA
package.

f 1

f 2x1

x3

x2

Figure 3.40 A section of two rows in a standard-cell chip.
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Another technology, similar to standard cells, is thegate-arraytechnology. In a gate
array parts of the chip are prefabricated, and other parts are custom fabricated for a par-
ticular user’s circuit. This concept exploits the fact that integrated circuits are fabricated
in a sequence of steps, some steps to create transistors and other steps to create wires to
connect the transistors together. In gate-array technology, the manufacturer performs most
of the fabrication steps, typically those involved in the creation of the transistors, without
considering the requirements of a user’s circuit. This process results in a silicon wafer (see
Figure 1.1) of partially finished chips, called the gate-arraytemplate. Later the template is
modified, usually by fabricating wires that connect the transistors together, to create a user’s
circuit in each finished chip. The gate-array approach provides cost savings in comparison
to the custom-chip approach because the gate-array manufacturer can amortize the cost of
chip fabrication over a large number of template wafers, all of which are identical. Many
variants of gate-array technology exist. Some have relatively large logic cells, while others
are configurable at the level of a single transistor.

An example of a gate-array template is given in Figure 3.41. The gate array contains a
two-dimensional array of logic cells. The chip’s general structure is similar to a standard-
cell chip except that in the gate array all logic cells are identical. Although the types of logic
cells used in gate arrays vary, one common example is a two- or three-input NAND gate.
In some gate arrays empty spaces exist between the rows of logic cells to accommodate
the wires that will be added later to connect the logic cells together. However, most gate
arrays do not have spaces between rows of logic cells, and the interconnection wires are
fabricated on top of the logic cells. This design is possible because, as discussed for Figure
3.40, metal wires can be created on a chip in multiple layers. This technology is known

Figure 3.41 A sea-of-gates gate array.
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f 1

x1

x3

x2

Figure 3.42 The logic function f1 = x2x3 + x1x3 in the gate array of Figure 3.41.

as thesea-of-gatestechnology. Figure 3.42 depicts a small section of a gate array that has
been customized to implement the logic functionf = x2x3 + x1x3. It is easy to verify that
this circuit with only NAND gates is equivalent to the AND-OR form of the circuit. We
will describe a process for deriving this equivalence in section 4.6.

3.8 Practical Aspects

So far in this chapter, we have described the basic aspects of logic gate circuits and given
examples of commercial chips. In this section we provide more detailed information on
several aspects of digital circuits. We describe how transistors are fabricated in silicon and
give a detailed explanation of how transistors operate. We discuss the robustness of logic
circuits and discuss the important issues of signal propagation delays and power dissipation
in logic gates.

3.8.1 MOSFET Fabrication and Behavior

To understand the operation of NMOS and PMOS transistors, we need to consider how
they are built in an integrated circuit. Integrated circuits are fabricated on silicon wafers.
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In Chapter 2 we showed that algebraic manipulation can be used to find the lowest-cost implementations of
logic functions. The purpose of that chapter was to introduce the basic concepts in the synthesis process.
The reader is probably convinced that it is easy to derive a straightforward realization of a logic function in
a canonical form, but it is not at all obvious how to choose and apply the theorems and properties of section
2.5 to find a minimum-cost circuit. Indeed, the algebraic manipulation is rather tedious and quite impractical
for functions of many variables.

If CAD tools are used to design logic circuits, the task of minimizing the cost of implementation does
not fall to the designer; the tools perform the necessary optimizations automatically. Even so, it is essential to
know something about this process. Most CAD tools have many features and options that are under control
of the user. To know when and how to apply these options, the user must have an understanding of what the
tools do.

In this chapter we will introduce some of the optimization techniques implemented in CAD tools and
show how these techniques can be automated. As a first step we will discuss a graphical approach, known as
the Karnaugh map, which provides a neat way to manually derive minimum-cost implementations of simple
logic functions. Although it is not suitable for implementation in CAD tools, it illustrates a number of key
concepts. We will show how both two-level and multilevel circuits can be designed. Then we will describe a
cubical representation for logic functions, which is suitable for use in CAD tools. We will also continue our
discussion of the VHDL language and CAD tools.

4.1 Karnaugh Map

In section 2.6 we saw that the key to finding a minimum-cost expression for a given logic
function is to reduce the number of product (or sum) terms needed in the expression, by
applying the combining property 14a (or 14b) as judiciously as possible. The Karnaugh map
approach provides a systematic way of performing this optimization. To understand how it
works, it is useful to review the algebraic approach from Chapter 2. Consider the function
f in Figure 4.1. The canonical sum-of-products expression forf consists of mintermsm0,
m2, m4, m5, andm6, so that

f = x1x2x3+ x1x2x3+ x1x2x3+ x1x2x3+ x1x2x3

The combining property 14a allows us to replace two minterms that differ in the value of
only one variable with a single product term that does not include that variable at all. For
example, bothm0 andm2 includex1 andx3, but they differ in the value ofx2 becausem0

includesx2 while m2 includesx2. Thus

x1x2x3+ x1x2x3 = x1(x2 + x2)x3

= x1 · 1 · x3

= x1x3
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Row
number x1 x2 x3 f

0 0 0 0 1
1 0 0 1 0
2 0 1 0 1
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Figure 4.1 The function f (x1, x2, x3) =∑m(0, 2, 4, 5, 6).

Hencem0 andm2 can be replaced by the single product termx1x3. Similarly, m4 andm6

differ only in the value ofx2 and can be combined using

x1x2x3+ x1x2x3 = x1(x2 + x2)x3

= x1 · 1 · x3

= x1x3

Now the two newly generated terms,x1x3 andx1x3, can be combined further as

x1x3+ x1x3 = (x1+ x1)x3

= 1 · x3

= x3

These optimization steps indicate that we can replace the four mintermsm0, m2, m4, and
m6 with the single product termx3. In other words, the mintermsm0, m2, m4, andm6 are
all includedin the termx3. The remaining minterm inf is m5. It can be combined withm4,
which gives

x1x2x3+ x1x2x3 = x1x2

Recall that theorem 7b in section 2.5 indicates that

m4 = m4 +m4

which means that we can use the mintermm4 twice—to combine with mintermsm0, m2,
andm6 to yield the termx3 as explained above and also to combine withm5 to yield the
termx1x2.

We have now accounted for all the minterms inf ; hence all five input valuations for
which f = 1 are covered by the minimum-cost expression

f = x3+ x1x2
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The expression has the product termx3 becausef = 1 whenx3 = 0 regardless of the values
of x1 andx2. The four mintermsm0, m2, m4, andm6 represent all possible minterms for
which x3 = 0; they include all four valuations, 00, 01, 10, and 11, of variablesx1 andx2.
Thus if x3 = 0, then it is guaranteed thatf = 1. This may not be easy to see directly
from the truth table in Figure 4.1, but it is obvious if we write the corresponding valuations
grouped together:

x1 x2 x3

m0 0 0 0

m2 0 1 0

m4 1 0 0

m6 1 1 0

In a similar way, if we look atm4 andm5 as a group of two

x1 x2 x3

m4 1 0 0

m5 1 0 1

it is clear that whenx1 = 1 andx2 = 0, thenf = 1 regardless of the value ofx3.
The preceding discussion suggests that it would be advantageous to devise a method

that allows easy discovery of groups of minterms for whichf = 1 that can be combined
into single terms. The Karnaugh map is a useful vehicle for this purpose.

The Karnaugh map[1] is an alternative to the truth-table form for representing a
function. The map consists ofcellsthat correspond to the rows of the truth table. Consider
the two-variable example in Figure 4.2. Part(a) depicts the truth-table form, where each
of the four rows is identified by a minterm. Part(b) shows the Karnaugh map, which has
four cells. The columns of the map are labeled by the value ofx1, and the rows are labeled
by x2. This labeling leads to the locations of minterms as shown in the figure. Compared
to the truth table, the advantage of the Karnaugh map is that it allows easy recognition of
minterms that can be combined using property 14a from section 2.5. Minterms in any two
cells that are adjacent, either in the same row or the same column, can be combined. For
example, the mintermsm2 andm3 can be combined as

m2 +m3 = x1x2 + x1x2

= x1(x2 + x2)

= x1 · 1
= x1
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x1x2

(a) Truth table (b) Karnaugh map

0

1

0 1

m0 m2

m3m1

x1 x2

0 0

0 1

1 0

1 1

m0

m1

m3

m2

Figure 4.2 Location of two-variable minterms.

The Karnaugh map is not just useful for combining pairs of minterms. As we will see in
several larger examples, the Karnaugh map can be used directly to derive a minimum-cost
circuit for a logic function.

Two-Variable Map
A Karnaugh map for a two-variable function is given in Figure 4.3. It corresponds to

the functionf of Figure 2.15. The value off for each valuation of the variablesx1 andx2

is indicated in the corresponding cell of the map. Because a 1 appears in both cells of the
bottom row and these cells are adjacent, there exists a single product term that can causef
to be equal to 1 when the input variables have the values that correspond to either of these
cells. To indicate this fact, we have circled the cell entries in the map. Rather than using
the combining property formally, we can derive the product term intuitively. Both of the
cells are identified byx2 = 1, butx1 = 0 for the left cell andx1 = 1 for the right cell.
Thus if x2 = 1, thenf = 1 regardless of whetherx1 is equal to 0 or 1. The product term
representing the two cells is simplyx2.

Similarly, f = 1 for both cells in the first column. These cells are identified byx1 = 0.
Therefore, they lead to the product termx1. Since this takes care of all instances where
f = 1, it follows that the minimum-cost realization of the function is

f = x2 + x1

Evidently, to find a minimum-cost implementation of a given function, it is necessary
to find the smallest number of product terms that produce a value of 1 for all cases where

x1x2

1 0

1 1

f x2 x1+=
0

1

0 1

Figure 4.3 The function of Figure 2.15.
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f = 1. Moreover, the cost of these product terms should be as low as possible. Note that a
product term that covers two adjacent cells is cheaper to implement than a term that covers
only a single cell. For our example once the two cells in the bottom row have been covered
by the product termx2, only one cell (top left) remains. Although it could be covered by
the termx1x2, it is better to combine the two cells in the left column to produce the product
termx1 because this term is cheaper to implement.

Three-Variable Map
A three-variable Karnaugh map is constructed by placing 2 two-variable maps side by

side. Figure 4.4 shows the map and indicates the locations of minterms in it. In this case each
valuation ofx1 andx2 identifies a column in the map, while the value ofx3 distinguishes the
two rows. To ensure that minterms in the adjacent cells in the map can always be combined
into a single product term, the adjacent cells must differ in the value of only one variable.
Thus the columns are identified by the sequence of(x1, x2) values of 00, 01, 11, and 10,
rather than the more obvious 00, 01, 10, and 11. This makes the second and third columns
different only in variablex1. Also, the first and the fourth columns differ only in variable
x1, which means that these columns can be considered as being adjacent. The reader may
find it useful to visualize the map as a rectangle folded into a cylinder where the left and the
right edges in Figure 4.4b are made to touch. (A sequence of codes, or valuations, where
consecutive codes differ in one variable only is known as theGray code. This code is used
for a variety of purposes, some of which will be encountered later in the book.)

Figure 4.5a represents the function of Figure 2.18 in Karnaugh-map form. To synthe-
size this function, it is necessary to cover the four 1s in the map as efficiently as possible.
It is not difficult to see that two product terms suffice. The first covers the 1s in the top row,
which are represented by the termx1x3. The second term isx2x3, which covers the 1s in
the bottom row. Hence the function is implemented as

f = x1x3+ x2x3

which describes the circuit obtained in Figure 2.19a.

x1x2
x3 00 01 11 10

0

1

(b) Karnaugh map

x2 x3

0 0

0 1

1 0

1 1

m0

m1

m3

m2

0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

m4

m5

m7

m6

x1

(a) Truth table

m0

m1 m3

m2 m6

m7

m4

m5

Figure 4.4 Location of three-variable minterms.
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f x1x3 x2x3+=

x1x2
x3

0 0

1 0

1 1

0 1

x1x2
x3

1 1

0 0

1 1

0 1

(a) The function of Figure 2.18

f x3 x1x2+=

(b) The function of Figure 4.1

00 01 11 10

0

1

00 01 11 10

0

1

Figure 4.5 Examples of three-variable Karnaugh maps.

In a three-variable map it is possible to combine cells to produce product terms that
correspond to a single cell, two adjacent cells, or a group of four adjacent cells. Realization
of a group of four adjacent cells using a single product term is illustrated in Figure 4.5b,
using the function from Figure 4.1. The four cells in the top row correspond to the(x1, x2, x3)

valuations 000, 010, 110, and 100. As we discussed before, this indicates that ifx3 = 0, then
f = 1 for all four possible valuations ofx1 andx2, which means that the only requirement
is thatx3 = 0. Therefore, the product termx3 represents these four cells. The remaining 1,
corresponding to mintermm5, is best covered by the termx1x2, obtained by combining the
two cells in the right-most column. The complete realization off is

f = x3+ x1x2

It is also possible to have a group of eight 1s in a three-variable map. This is the trivial case
wheref = 1 for all valuations of input variables; in other words,f is equal to the constant 1.

The Karnaugh map provides a simple mechanism for generating the product terms that
should be used to implement a given function. A product term must include only those
variables that have the same value for all cells in the group represented by this term. If the
variable is equal to 1 in the group, it appears uncomplemented in the product term; if it is
equal to 0, it appears complemented. Each variable that is sometimes 1 and sometimes 0
in the group does not appear in the product term.

Four-Variable Map
A four-variable map is constructed by placing 2 three-variable maps together to create

four rows in the same fashion as we used 2 two-variable maps to form the four columns in a
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three-variable map. Figure 4.6 shows the structure of the four-variable map and the location
of minterms. We have included in this figure another frequently used way of designating
the rows and columns. As shown in blue, it is sufficient to indicate the rows and columns
for which a given variable is equal to 1. Thusx1 = 1 for the two right-most columns,x2 = 1
for the two middle columns,x3 = 1 for the bottom two rows, andx4 = 1 for the two middle
rows.

Figure 4.7 gives four examples of four-variable functions. The functionf1 has a group
of four 1s in adjacent cells in the bottom two rows, for whichx2 = 0 andx3 = 1—they
are represented by the product termx2x3. This leaves the two 1s in the second row to
be covered, which can be accomplished with the termx1x3x4. Hence the minimum-cost
implementation of the function is

f1 = x2x3+ x1x3x4

The functionf2 includes a group of eight 1s that can be implemented by a single term,x3.
Again, the reader should note that if the remaining two 1s were implemented separately,
the result would be the product termx1x3x4. Implementing these 1s as a part of a group of
four 1s, as shown in the figure, gives the less expensive product termx1x4.

Just as the left and the right edges of the map are adjacent in terms of the assignment
of the variables, so are the top and the bottom edges. Indeed, the four corners of the map
are adjacent to each other and thus can form a group of four 1s, which may be implemented
by the product termx2x4. This case is depicted by the functionf3. In addition to this group
of 1s, there are four other 1s that must be covered to implementf3. This can be done as
shown in the figure.

In all examples that we have considered so far, a unique solution exists that leads to
a minimum-cost circuit. The functionf4 provides an example where there is some choice.
The groups of four 1s in the top-left and bottom-right corners of the map are realized by the
termsx1x3 andx1x3, respectively. This leaves the two 1s that correspond to the termx1x2x3.
But these two 1s can be realized more economically by treating them as a part of a group of
four 1s. They can be included in two different groups of four, as shown in the figure. One

x1x2x3x4 00 01 11 10

00

01

11

10

x2

x4

x1

x3

m0

m1 m5

m4 m12

m13

m8

m9

m3

m2 m6

m7 m15

m14

m11

m10

Figure 4.6 A four-variable Karnaugh map.
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x1x2x3x4
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0 0 1

0 0 0 0

1 1 1 0

1 1 0 1
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1 1 0
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1 0 0 1

1 0 0 1

00

01

11

10

x1x2x3x4

0

00 01 11 10

0 0 0

0 0 1 1

1 1 1 1

1 1 1 1

00

01

11

10

f 1 x2x3 x1x3x4+= f 2 x3 x1x4+=

f 3 x2x4 x1x3 x2x3x4+ += f 4 x1x3 x1x3+ +=
x1x2

x2x3

or

Figure 4.7 Examples of four-variable Karnaugh maps.

choice leads to the product termx1x2, and the other leads tox2x3. Both of these terms have
the same cost; hence it does not matter which one is chosen in the final circuit. Note that
the complement ofx3 in the termx2x3 does not imply an increased cost in comparison with
x1x2, because this complement must be generated anyway to produce the termx1x3, which
is included in the implementation.

Five-Variable Map
We can use 2 four-variable maps to construct a five-variable map. It is easy to imagine

a structure where one map is directly behind the other, and they are distinguished byx5 = 0
for one map andx5 = 1 for the other map. Since such a structure is awkward to draw, we
can simply place the two maps side by side as shown in Figure 4.8. For the logic function
given in this example, two groups of four 1s appear in the same place in both four-variable
maps; hence their realization does not depend on the value ofx5. The same is true for the
two groups of two 1s in the second row. The 1 in the top-right corner appears only in the
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x1x2x3x4 00 01 11 10

1 1

1 1

1 1

00

01
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x1x2x3x4 00 01 11 10

1

1 1

1 1

1 1

00

01

11

10

f 1 x1x3 x1x3x4 x1x2x3x5+ +=

x5 1=x5 0=

Figure 4.8 A five-variable Karnaugh map.

right map, wherex5 = 1; it is a part of the group of two 1s realized by the termx1x2x3x5.
Note that in this map we left blank those cells for whichf = 0, to make the figure more
readable. We will do likewise in a number of maps that follow.

Using a five-variable map is obviously more awkward than using maps with fewer
variables. Extending the Karnaugh map concept to more variables is not useful from
the practical point of view. This is not troublesome, because practical synthesis of logic
functions is done with CAD tools that perform the necessary minimization automatically.
Although Karnaugh maps are occasionally useful for designing small logic circuits, our main
reason for introducing the Karnaugh maps is to provide a simple vehicle for illustrating the
ideas involved in the minimization process.

4.2 Strategy for Minimization

For the examples in the preceding section, we used an intuitive approach to decide how the 1s
in a Karnaugh map should be grouped together to obtain the minimum-cost implementation
of a given function. Our intuitive strategy was to find as few as possible and as large as
possible groups of 1s that cover all cases where the function has a value of 1. Each group
of 1s has to comprise cells that can be represented by a single product term. The larger
the group of 1s, the fewer the number of variables in the corresponding product term. This
approach worked well because the Karnaugh maps in our examples were small. For larger
logic functions, which have many variables, such intuitive approach is unsuitable. Instead,
we must have an organized method for deriving a minimum-cost implementation. In this
section we will introduce a possible method, which is similar to the techniques that are
automated in CAD tools. To illustrate the main ideas, we will use Karnaugh maps. Later,
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in section 4.9, we will describe a different way of representing logic functions, which is
used in CAD tools.

4.2.1 Terminology

A huge amount of research work has gone into the development of techniques for synthesis
of logic functions. The results of this research have been published in numerous papers.
To facilitate the presentation of the results, certain terminology has evolved that avoids
the need for using highly descriptive phrases. We define some of this terminology in the
following paragraphs because it is useful for describing the minimization process.

Literal
A given product term consists of some number of variables, each of which may appear

either in uncomplemented or complemented form. Each appearance of a variable, either
uncomplemented or complemented, is called aliteral. For example, the product termx1x2x3

has three literals, and the termx1x3x4x6 has four literals.

Implicant
A product term that indicates the input valuation(s) for which a given function is equal

to 1 is called animplicant of the function. The most basic implicants are the minterms,
which we introduced in section 2.6.1. For ann-variable function, a minterm is an implicant
that consists ofn literals.

Consider the three-variable function in Figure 4.9. There are 11 possible implicants for
this function. This includes the five minterms:x1x2x3, x1x2x3, x1x2x3, x1x2x3, andx1x2x3.
Then there are the implicants that correspond to all possible pairs of minterms that can be
combined, namely,x1x2 (m0 andm1), x1x3 (m0 andm2), x1x3 (m1 andm3), x1x2 (m2 andm3),
andx2x3 (m3 andm7). Finally, there is one implicant that covers a group of four minterms,
which consists of a single literalx1.

Prime Implicant
An implicant is called aprime implicantif it cannot be combined into another implicant

that has fewer literals. Another way of stating this definition is to say that it is impossible
to delete any literal in a prime implicant and still have a valid implicant.

x1x2
x3

1 1

1 1

x1

0 0

1 0

00 01 11 10

0

1

x2x3

Figure 4.9 Three-variable function f (x1, x2, x3) =∑
m(0, 1, 2, 3, 7).
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In Figure 4.9 there are two prime implicants:x1 andx2x3. It is not possible to delete
a literal in either of them. Doing so forx1 would make it disappear. Forx2x3, deleting
a literal would leave eitherx2 or x3. But x2 is not an implicant because it includes the
valuation(x1, x2, x3) = 110 for whichf = 0, andx3 is not an implicant because it includes
(x1, x2, x3) = 101 for whichf = 0.

Cover
A collection of implicants that account for all valuations for which a given function is

equal to 1 is called acoverof that function. A number of different covers exist for most
functions. Obviously, a set of all minterms for whichf = 1 is a cover. It is also apparent
that a set of all prime implicants is a cover.

A cover defines a particular implementation of the function. In Figure 4.9 a cover
consisting of minterms leads to the expression

f = x1x2x3+ x1x2x3+ x1x2x3+ x1x2x3+ x1x2x3

Another valid cover is given by the expression

f = x1x2 + x1x2 + x2x3

The cover comprising the prime implicants is

f = x1+ x2x3

While all of these expressions represent the functionf correctly, the cover consisting of
prime implicants leads to the lowest-cost implementation.

Cost
In Chapter 2 we suggested that a good indication of the cost of a logic circuit is the

number of gates plus the total number of inputs to all gates in the circuit. We will use this
definition of cost throughout the book. But we will assume that primary inputs, namely,
the input variables, are available in both true and complemented forms at zero cost. Thus
the expression

f = x1x2 + x3x4

has a cost of nine because it can be implemented using two AND gates and one OR gate,
with six inputs to the AND and OR gates.

If an inversion is needed inside a circuit, then the corresponding NOT gate and its input
are included in the cost. For example, the expression

g= x1x2 + x3(x4 + x5)

is implemented using two AND gates, two OR gates, and one NOT gate to complement
(x1x2 + x3), with nine inputs. Hence the total cost is 14.

4.2.2 Minimization Procedure

We have seen that it is possible to implement a given logic function with various circuits.
These circuits may have different structures and different costs. When designing a logic
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circuit, there are usually certain criteria that must be met. One such criterion is likely to
be the cost of the circuit, which we considered in the previous discussion. In general, the
larger the circuit, the more important the cost issue becomes. In this section we will assume
that the main objective is to obtain a minimum-cost circuit.

Having said that cost is the primary concern, we should note that other optimization
criteria may be more appropriate in some cases. For instance, in Chapter 3 we described
several types of programmable-logic devices (PLDs) that have a predefined basic structure
and can be programmed to realize a variety of different circuits. For such devices the main
objective is to design a particular circuit so that it will fit into the target device. Whether or
not this circuit has the minimum cost is not important if it can be realized successfully on the
device. A CAD tool intended for design with a specific device in mind will automatically
perform optimizations that are suitable for that device. We will show in section 4.7 that the
way in which a circuit should be optimized may be different for different types of devices.

In the previous subsection we concluded that the lowest-cost implementation is achieved
when the cover of a given function consists of prime implicants. The question then is how
to determine the minimum-cost subset of prime implicants that will cover the function.
Some prime implicants may have to be included in the cover, while for others there may be
a choice. If a prime implicant includes a minterm for whichf = 1 that is not included in
any other prime implicant, then it must be included in the cover and is called anessential
prime implicant. In the example in Figure 4.9, both prime implicants are essential. The
termx2x3 is the only prime implicant that covers the mintermm7, andx1 is the only one
that covers the mintermsm0,m1, andm2. Notice that the mintermm3 is covered by both of
these prime implicants. The minimum-cost realization of the function is

f = x1+ x2x3

We will now present several examples in which there is a choice as to which prime
implicants to include in the final cover. Consider the four-variable function in Figure 4.10.
There are five prime implicants:x1x3, x2x3, x3x4, x1x2x4, andx2x3x4. The essential ones
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Figure 4.10 Four-variable function f (x1, . . . , x4) =∑
m(2, 3, 5, 6, 7, 10, 11, 13, 14).
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(highlighted in blue) arex2x3 (because ofm11), x3x4 (because ofm14), andx2x3x4 (because of
m13). They must be included in the cover. These three prime implicants cover all minterms
for which f = 1 exceptm7. It is clear thatm7 can be covered by eitherx1x3 or x1x2x4.
Becausex1x3 has a lower cost, it is chosen for the cover. Therefore, the minimum-cost
realization is

f = x2x3+ x3x4 + x2x3x4 + x1x3

From the preceding discussion, the process of finding a minimum-cost circuit involves
the following steps:

1. Generate all prime implicants for the given functionf .

2. Find the set of essential prime implicants.

3. If the set of essential prime implicants covers all valuations for whichf = 1, then this
set is the desired cover off . Otherwise, determine the nonessential prime implicants
that should be added to form a complete minimum-cost cover.

The choice of nonessential prime implicants to be included in the cover is governed by the
cost considerations. This choice is often not obvious. Indeed, for large functions there may
exist many possibilities, and someheuristicapproach (i.e., an approach that considers only
a subset of possibilities but gives good results most of the time) has to be used. One such
approach is to arbitrarily select one nonessential prime implicant and include it in the cover
and then determine the rest of the cover. Next, another cover is determined assuming that
this prime implicant is not in the cover. The costs of the resulting covers are compared, and
the less-expensive cover is chosen for implementation.

We can illustrate the process by using the function in Figure 4.11. Of the six prime
implicants, onlyx3x4 is essential. Consider nextx1x2x3 and assume first that it will be
included in the cover. Then the remaining three minterms,m10, m11, andm15, will require
two more prime implicants to be included in the cover. A possible implementation is

f = x3x4 + x1x2x3+ x1x3x4 + x1x2x3
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Figure 4.11 The function f (x1, . . . , x4) =∑
m(0, 4, 8, 10, 11, 12, 13, 15).
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The second possibility is thatx1x2x3 is not included in the cover. Thenx1x2x4 becomes
essential because there is no other way of coveringm13. Becausex1x2x4 also coversm15,
only m10 andm11 remain to be covered, which can be achieved withx1x2x3. Therefore, the
alternative implementation is

f = x3x4 + x1x2x4 + x1x2x3

Clearly, this implementation is a better choice.
Sometimes there may not be any essential prime implicants at all. An example is given

in Figure 4.12. Choosing any of the prime implicants and first including it, then excluding
it from the cover leads to two alternatives of equal cost. One includes the prime implicants
indicated in black, which yields

f = x1x3x4 + x2x3x4 + x1x3x4 + x2x3x4

The other includes the prime implicants indicated in blue, which yields

f = x1x2x4 + x1x2x3+ x1x2x4 + x1x2x3

This procedure can be used to find minimum-cost implementations of both small and
large logic functions. For our small examples it was convenient to use Karnaugh maps
to determine the prime implicants of a function and then choose the final cover. Other
techniques based on the same principles are much more suitable for use in CAD tools; we
will introduce one such technique in sections 4.9 and 4.10.

The previous examples have been based on the sum-of-products form. We will next
illustrate that the same concepts apply for the product-of-sums form.
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Figure 4.12 The function f (x1, . . . , x4) =∑
m(0, 2, 4, 5, 10, 11, 13, 15).
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4.3 Minimization of Product-of-Sums Forms

Now that we know how to find the minimum-cost sum-of-products (SOP) implementations
of functions, we can use the same techniques and the principle of duality to obtain minimum-
cost product-of-sums (POS) implementations. In this case it is the maxterms for whichf = 0
that have to be combined into sum terms that are as large as possible. Again, a sum term is
considered larger if it covers more maxterms, and the larger the term, the less costly it is to
implement.

Figure 4.13 depicts the same function as Figure 4.9 depicts. There are three maxterms
that must be covered:M4, M5, andM6. They can be covered by two sum terms shown in
the figure, leading to the following implementation:

f = (x1+ x2)(x1+ x3)

A circuit corresponding to this expression has two OR gates and one AND gate, with two
inputs for each gate. Its cost is greater than the cost of the equivalent SOP implementation
derived in Figure 4.9, which requires only one OR gate and one AND gate.

The function from Figure 4.10 is reproduced in Figure 4.14. The maxterms for which
f = 0 can be covered as shown, leading to the expression

f = (x2 + x3)(x3+ x4)(x1+ x2 + x3+ x4)

This expression represents a circuit with three OR gates and one AND gate. Two of the
OR gates have two inputs, and the third has four inputs; the AND gate has three inputs.
Assuming that both the complemented and uncomplemented versions of the input variables
x1 to x4 are available at no extra cost, the cost of this circuit is 15. This compares favorably
with the SOP implementation derived from Figure 4.10, which requires five gates and 13
inputs at a total cost of 18.

In general, as we already know from section 2.6.1, the SOP and POS implementations
of a given function may or may not entail the same cost. The reader is encouraged to find
the POS implementations for the functions in Figures 4.11 and 4.12 and compare the costs
with the SOP forms.

We have shown how to obtain minimum-cost POS implementations by finding the
largest sum terms that cover all maxterms for whichf = 0. Another way of obtaining
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x1 x2+( )

x1 x3+( )

Figure 4.13 POS minimization of f (x1, x2, x3) = 5M(4, 5, 6).
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Figure 4.14 POS minimization of f (x1, . . . , x4) =
5M(0, 1, 4, 8, 9, 12, 15).

the same result is by finding a minimum-cost SOP implementation of the complement of
f . Then we can apply DeMorgan’s theorem to this expression to obtain the simplest POS

realization becausef = f . For example, the simplest SOP implementation off in Figure
4.13 is

f = x1x2 + x1x3

Complementing this expression using DeMorgan’s theorem yields

f = f = x1x2 + x1x3

= x1x2 · x1x3

= (x1+ x2)(x1+ x3)

which is the same result as obtained above.
Using this approach for the function in Figure 4.14 gives

f = x2x3+ x3x4 + x1x2x3x4

Complementing this expression produces

f = f = x2x3+ x3x4 + x1x2x3x4

= x2x3 · x3x4 · x1x2x3x4

= (x2 + x3)(x3+ x4)(x1+ x2 + x3+ x4)

which matches the previously derived implementation.
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4.4 Incompletely Specified Functions

In digital systems it often happens that certain input conditions can never occur. For
example, suppose thatx1 andx2 control two interlocked switches such that both switches
cannot be closed at the same time. Thus the only three possible states of the switches
are that both switches are open or that one switch is open and the other switch is closed.
Namely, the input valuations(x1, x2) = 00, 01, and 10 are possible, but 11 is guaranteed not
to occur. Then we say that(x1, x2) = 11 is adon’t-care condition, meaning that a circuit
with x1 andx2 as inputs can be designed by ignoring this condition. A function that has
don’t-care condition(s) is said to beincompletely specified.

Don’t-care conditions, ordon’t caresfor short, can be used to advantage in the design
of logic circuits. Since these input valuations will never occur, the designer may assume that
the function value for these valuations is either 1 or 0, whichever is more useful in trying
to find a minimum-cost implementation. Figure 4.15 illustrates this idea. The required
function has a value of 1 for mintermsm2, m4, m5, m6, andm10. Assuming the above-
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(a) SOP implementation

(b) POS implementation

Figure 4.15 Two implementations of the function f (x1, . . . , x4) =∑
m(2, 4, 5, 6, 10)+ D(12, 13, 14, 15).
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mentioned interlocked switches, thex1 andx2 inputs will never be equal to 1 at the same
time; hence the mintermsm12, m13, m14, andm15 can all be used as don’t cares. The don’t
cares are denoted by the letterd in the map. Using the shorthand notation, the functionf is
specified as

f (x1, . . . , x4) =
∑

m(2, 4, 5, 6, 10)+ D(12, 13, 14, 15)

whereD is the set of don’t cares.
Part (a) of the figure indicates the best sum-of-products implementation. To form

the largest possible groups of 1s, thus generating the lowest-cost prime implicants, it is
necessary to assume that the don’t caresD12, D13, andD14 (corresponding to mintermsm12,
m13, andm14) have the value of 1 whileD15 has the value of 0. Then there are only two
prime implicants, which provide a complete cover off . The resulting implementation is

f = x2x3+ x3x4

Part(b) shows how the best product-of-sums implementation can be obtained. The
same values are assumed for the don’t cares. The result is

f = (x2 + x3)(x3+ x4)

The freedom in choosing the value of don’t cares leads to greatly simplified realizations. If
we were to naively exclude the don’t cares from the synthesis of the function, by assuming
that they always have a value of 0, the resulting SOP expression would be

f = x1x2x3+ x1x3x4 + x2x3x4

and the POS expression would be

f = (x2 + x3)(x3+ x4)(x1+ x2)

Both of these expressions have higher costs than the expressions obtained with a more
appropriate assignment of values to don’t cares.

Although don’t-care values can be assigned arbitrarily, an arbitrary assignment may
not lead to a minimum-cost implementation of a given function. If there arek don’t cares,
then there are 2k possible ways of assigning 0 or 1 values to them. In the Karnaugh map
we can usually see how best to do this assignment to find the simplest implementation.

Using interlocked switches to illustrate how don’t-care conditions can occur in a real
system may seem to be somewhat contrived. However, in Chapters 6, 8, and 9 we will
encounter many examples of don’t cares that occur in the course of practical design of
digital circuits.

4.5 Multiple-Output Circuits

In all previous examples we have considered single functions and their circuit implemen-
tations. In practical digital systems it is necessary to implement a number of functions
as part of some large logic circuit. Circuits that implement these functions can often be
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combined into a less-expensive single circuit with multiple outputs by sharing some of the
gates needed in the implementation of individual functions.

Example 4.1 An example of gate sharing is given in Figure 4.16. Two functions,f1 andf2, of the same
variables are to be implemented. The minimum-cost implementations for these functions
are obtained as shown in parts(a) and(b) of the figure. This results in the expressions

f1 = x1x3+ x1x3+ x2x3x4

f2 = x1x3+ x1x3+ x2x3x4

The cost off1 is four gates and 10 inputs, for a total of 14. The cost off2 is the same. Thus
the total cost is 28 if both functions are implemented by separate circuits. A less-expensive
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Figure 4.16 An example of multiple-output synthesis.
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realization is possible if the two circuits are combined into a single circuit with two outputs.
Because the first two product terms are identical in both expressions, the AND gates that
implement them need not be duplicated. The combined circuit is shown in Figure 4.16c.
Its cost is six gates and 16 inputs, for a total of 22.

In this example we reduced the overall cost by finding minimum-cost realizations off1
andf2 and then sharing the gates that implement the common product terms. This strategy
does not necessarily always work the best, as the next example shows.

Example 4.2Figure 4.17 shows two functions to be implemented by a single circuit. Minimum-cost
realizations of the individual functionsf3 andf4 are obtained from parts(a) and(b) of the
figure.

f3 = x1x4 + x2x4 + x1x2x3

f4 = x1x4 + x2x4 + x1x2x3x4

None of the AND gates can be shared, which means that the cost of the combined circuit
would be six AND gates, two OR gates, and 21 inputs, for a total of 29.

But several alternative realizations are possible. Instead of deriving the expressions for
f3 andf4 using only prime implicants, we can look for other implicants that may be shared
advantageously in the combined realization of the functions. Figure 4.17c shows the best
choice of implicants, which yields the realization

f3 = x1x2x4 + x1x2x3x4 + x1x4

f4 = x1x2x4 + x1x2x3x4 + x2x4

The first two implicants are identical in both expressions. The resulting circuit is given in
Figure 4.17d. It has the cost of six gates and 17 inputs, for a total of 23.

Example 4.3In Example 4.1 we sought the best SOP implementation for the functionsf1 and f2 in
Figure 4.16. We will now consider the POS implementation of the same functions. The
minimum-cost POS expressions forf1 andf2 are

f1 = (x1+ x3)(x1+ x2 + x3)(x1+ x3+ x4)

f2 = (x1+ x3)(x1+ x2 + x3)(x1+ x3+ x4)

There are no common sum terms in these expressions that could be shared in the imple-
mentation. Moreover, from the Karnaugh maps in Figure 4.16, it is apparent that there is
no sum term (covering the cells wheref1 = f2 = 0) that can be profitably used in realizing
bothf1 andf2. Thus the best choice is to implement each function separately, according to
the preceding expressions. Each function requires three OR gates, one AND gate, and 11
inputs. Therefore, the total cost of the circuit that implements both functions is 30. This
realization is costlier than the SOP realization derived in Example 4.1.
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Figure 4.17 Another example of multiple-output synthesis.
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Example 4.4Consider now the POS realization of the functionsf3 andf4 in Figure 4.17. The minimum-
cost POS expressions forf3 andf4 are

f3 = (x3+ x4)(x2 + x4)(x1+ x4)(x1+ x2)

f4 = (x3+ x4)(x2 + x4)(x1+ x4)(x1+ x2 + x4)

The first three sum terms are the same in bothf3 andf4; they can be shared in a combined
circuit. These terms require three OR gates and six inputs. In addition, one 2-input OR
gate and one 4-input AND gate are needed forf3, and one 3-input OR gate and one 4-input
AND gate are needed forf4. Thus the combined circuit comprises five OR gates, two AND
gates, and 19 inputs, for a total cost of 26. This cost is slightly higher than the cost of the
circuit derived in Example 4.2.

These examples show that the complexities of the best SOP or POS implementations
of given functions may be quite different. For the functions in Figures 4.16 and 4.17, the
SOP form gives better results. But if we are interested in implementing the complements
of the four functions in these figures, then the POS form would be less costly.

Sophisticated CAD tools used to synthesize logic functions will automatically perform
the types of optimizations illustrated in the preceding examples.

4.6 NAND and NOR Logic Networks

In Chapter 3 we saw that it is possible to design electronic circuits that realize basic logic
functions other than AND, OR, and NOT, which have been the focus of our discussion
to this point. From Figures 3.6 to 3.9 and Figures 3.13 to 3.15, it is obvious that NAND
and NOR gates are simpler to implement than AND and OR gates. Then we should ask
whether these gates can be used directly in the synthesis of logic circuits, rather than just
being a part of the individual AND and OR gates. In section 2.5 we introduced DeMorgan’s
theorem. Its logic gate interpretation is shown in Figure 4.18. Identity 15a from section
2.5 is interpreted in part(a) of the figure. It specifies that a NAND of variablesx1 andx2

is equivalent to first complementing each of the variables and then ORing them. Notice
on the far-right side that we have indicated the NOT gates simply as small circles, which
denote inversion of the logic value at that point. The other half of DeMorgan’s theorem,
identity 15b, appears in part (b) of the figure. It states that the NOR function is equivalent
to first inverting the input variables and then ANDing them.

In previous sections we explained how any logic function can be implemented either in
sum-of-products or product-of-sums form, which leads to logic networks that have either
an AND-OR or an OR-AND structure, respectively. We will now show that such networks
can be implemented using only NAND gates or only NOR gates.

Consider the network in Figure 4.19 as a representative of general AND-OR networks.
This network can be transformed into a network of NAND gates as shown in the figure.
First, each connection between the AND gate and an OR gate is replaced by a connection
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Figure 4.18 DeMorgan’s theorem in terms of logic gates.

that includes two inversions of the signal: one inversion at the output of the AND gate and
the other at the input of the OR gate. Such double inversion has no effect on the behavior
of the network, as stated formally in theorem 9 in section 2.5. According to Figure 4.18a,
the OR gate with inversions at its inputs is equivalent to a NAND gate. Thus we can redraw
the network using only NAND gates, as shown in Figure 4.19. This example shows that
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Figure 4.19 Using NAND gates to implement a sum-of-products.
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Figure 4.20 Using NOR gates to implement a product-of-sums.

any AND-OR network can be implemented as a NAND-NAND network having the same
topology.

Figure 4.20 gives a similar construction for a product-of-sums network, which can be
transformed into a circuit with only NOR gates. The procedure is exactly the same as the
one described for Figure 4.19 except that now the identity in Figure 4.18b is applied. The
conclusion is that any OR-AND network can be implemented as a NOR-NOR network
having the same topology.

4.7 Multilevel Synthesis

In the preceding sections our objective was to find a minimum-cost sum-of-products or
product-of-sums realization of a given logic function. Logic circuits of this type havetwo
levels(stages) of gates. In the sum-of-products form, the first level comprises AND gates
that are connected to a second-level OR gate. In the product-of-sums form, the first-level OR
gates feed the second-level AND gate. We have assumed that both true and complemented
versions of the input variables are available so that NOT gates are not needed to complement
the variables.

A two-level realization is usually efficient for functions of a few variables. However, as
the number of inputs increases, a two-level circuit may result in fan-in problems. Whether
or not this is an issue depends on the type of technology that is used to implement the circuit.
For example, consider the following function:

f (x1, . . . , x7) = x1x3x6+ x1x4x5x6+ x2x3x7+ x2x4x5x7
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This is a minimum-cost SOP expression. Now consider implementingf in two types of
PLDs: a CPLD and an FPGA. Figure 4.21 shows one of the PAL-like blocks from Figure
3.33. The figure indicates in blue the circuitry used to realize the functionf . Clearly, the
SOP form of the function is well suited to the chip architecture of the CPLD.

Next, consider implementingf in an FPGA. For this example we will use the FPGA
shown in Figure 3.39, which contains two-input LUTs. Since the SOP expression forf
requires three- and four-input AND operations and a four-input OR, it cannot be directly
implemented in this FPGA. The problem is that the fan-in required to implement the function
is too high for our target chip architecture.

To solve the fan-in problem,f must be expressed in a form that has more than two levels
of logic operations. Such a form is called amultilevellogic expression. There are several
different approaches for synthesis of multilevel circuits. We will discuss two important
techniques known asfactoringandfunctional decomposition.

4.7.1 Factoring

The distributive property in section 2.5 allows us to factor the preceding expression forf
as follows

f = x1x6(x3+ x4x5)+ x2x7(x3+ x4x5)

= (x1x6+ x2x7)(x3+ x4x5)

The corresponding circuit has a maximum fan-in of two; hence it can be realized using
two-input LUTs. Figure 4.22 gives a possible implementation using the FPGA from Figure
3.39. Note that a two-variable function that has to be realized by each LUT is indicated in
the box that represents the LUT.

D Q

PAL-like block

(From interconnection wires)

x1 x2 x3 x4 x5 x6 x7 Unused

0
0 1

f

Figure 4.21 Implementation in a CPLD.
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Figure 4.22 Implementation in an FPGA.

Fan-in Problem
In the preceding example, the fan-in restrictions were caused by the fixed structure

of the FPGA, where each LUT has only two inputs. However, even when the target chip
architecture is not fixed, the fan-in may still be an issue. To illustrate this situation, let us
consider the implementation of a circuit in a custom chip. Recall that custom chips usually
contain a large number of gates. If the chip is fabricated using CMOS technology, then
there will be fan-in limitations as discussed in section 3.8.8. In this technology the number
of inputs to a logic gate should be small. For instance, we may wish to limit the number
of inputs to an AND gate to be less than five. Under this restriction, if a logic expression
includes a seven-input product term, we would have to use 2 four-input AND gates, as
indicated in Figure 4.23.

7 inputs

Figure 4.23 Using four-input AND gates to realize a seven-input
product term.
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Factoring can be used to deal with the fan-in problem. Suppose again that the available
gates have a maximum fan-in of four and that we want to realize the function

f = x1x2x3x4x5x6+ x1x2x3x4x5x6

This is a minimal sum-of-products expression. Using the approach of Figure 4.23, we will
need four AND gates and one OR gate to implement this expression. A better solution is
to factor the expression as follows

f = x1x4x6(x2x3x5+ x2x3x5)

Then three AND gates and one OR gate suffice for realization of the required function, as
shown in Figure 4.24.

Example 4.5 In practical situations a designer of logic circuits often encounters specifications that natu-
rally lead to an initial design where the logic expressions are in a factored form. Suppose
we need a circuit that meets the following requirements. There are four inputs:x1, x2, x3,
andx4. An output,f1, must have the value 1 if at least one of the inputsx1 andx2 is equal
to 1 and bothx3 andx4 are equal to 1; it must also be 1 ifx1 = x2 = 0 and eitherx3 or x4

is 1. In all other casesf1 = 0. A different output,f2, is to be equal to 1 in all cases except
when bothx1 andx2 are equal to 0 or when bothx3 andx4 are equal to 0.

From this specification, the functionf1 can be expressed as

f1 = (x1+ x2)x3x4 + x1x2(x3+ x4)

This expression can be simplified to

f1 = x3x4 + x1x2(x3+ x4)

which the reader can verify by using a Karnaugh map.
The second function,f2, is most easily defined in terms of its complement, such that

f 2 = x1x2 + x3x4

x6

x4

x1

x5

x2

x3

x2

x3

x5

Figure 4.24 A factored circuit.
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Then using DeMorgan’s theorem gives

f2 = (x1+ x2)(x3+ x4)

which is the minimum-cost expression forf2; the cost increases significantly if the SOP
form is used.

Because our objective is to design the lowest-cost combined circuit that implementsf1
andf2, it seems that the best result can be achieved if we use the factored forms for both
functions, in which case the sum term(x3 + x4) can be shared. Moreover, observing that
x1x2 = x1+ x2, the sum term(x1+ x2) can also be shared if we expressf1 in the form

f1 = x3x4 + x1+ x2(x3+ x4)

Then the combined circuit, shown in Figure 4.25, comprises three OR gates, three AND
gates, one NOT gate, and 13 inputs, for a total of 20.

Impact on Wiring Complexity
The space on integrated circuit chips is occupied by the circuitry that implements logic

gates and by the wires needed to make connections among the gates. The amount of space
needed for wiring is a substantial portion of the chip area. Therefore, it is useful to keep
the wiring complexity as low as possible.

In a logic expression each literal corresponds to a wire in the circuit that carries the
desired logic signal. Since factoring usually reduces the number of literals, it provides a
powerful mechanism for reducing the wiring complexity in a logic circuit. In the synthesis
process the CAD tools consider many different issues, including the cost of the circuit, the
fan-in, and the wiring complexity.

4.7.2 Functional Decomposition

In the preceding examples, which illustrated the factoring approach, multilevel circuits
were used to deal with fan-in limitations. However, such circuits may be preferable to their
two-level equivalents even if fan-in is not a problem. In some cases the multilevel circuits

x1

x2

x3

x4

f 1

f 2

Figure 4.25 Circuit for Example 4.5.
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may reduce the cost of implementation. On the other hand, they usually imply longer
propagation delays, because they use multiple stages of logic gates. We will explore these
issues by means of illustrative examples.

Complexity of a logic circuit, in terms of wiring and logic gates, can often be reduced by
decomposinga two-level circuit into subcircuits, where one or more subcircuits implement
functions that may be used in several places to construct the final circuit. To achieve this
objective, a two-level logic expression is replaced by two or more new expressions, which
are then combined to define a multilevel circuit. We can illustrate this idea by a simple
example.

Example 4.6 Consider the minimum-cost sum-of-products expression

f = x1x2x3+ x1x2x3+ x1x2x4 + x1x2x4

and assume that the inputsx1 to x4 are available only in their true form. Then the expression
defines a circuit that has four AND gates, one OR gate, two NOT gates, and 18 inputs
(wires) to all gates. The fan-in is three for the AND gates and four for the OR gate. The
reader should observe that in this case we have included the cost of NOT gates needed to
complementx1 andx2, rather than assume that both true and complemented versions of all
input variables are available, as we had done before.

Factoringx3 from the first two terms andx4 from the last two terms, this expression
becomes

f = (x1x2 + x1x2)x3+ (x1x2 + x1x2)x4

Now letg(x1, x2) = x1x2 + x1x2 and observe that

g= x1x2 + x1x2

= x1x2 · x1x2

= (x1+ x2)(x1+ x2)

= x1x1+ x1x2 + x2x1+ x2x2

= 0+ x1x2 + x1x2 + 0

= x1x2 + x1x2

Thenf can be written as

f = gx3+ gx4

which leads to the circuit shown in Figure 4.26. This circuit requires an additional OR gate
and a NOT gate to invert the value ofg. But it needs only 15 inputs. Moreover, the largest
fan-in has been reduced to two. The cost of this circuit is lower than the cost of its two-level
equivalent. The trade-off is an increased propagation delay because the circuit has three
more levels of logic.

In this example the subfunctiong is a function of variablesx1 andx2. The subfunction
is used as an input to the rest of the circuit that completes the realization of the required
functionf . Leth denote the function of this part of the circuit, which depends on only three
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x1

x2

x3

x4

f
g

Figure 4.26 Logic circuit for Example 4.6.

inputs:g, x3, andx4. Then the decomposed realization off can be expressed algebraically
as

f (x1, x2, x3, x4) = h[g(x1, x2), x3, x4]
The structure of this decomposition can be described in block-diagram form as shown in
Figure 4.27.

While not evident from our first example, functional decomposition can lead to great
reductions in the complexity and cost of circuits. The reader will get a good indication of
this benefit from the next example.

Example 4.7Figure 4.28a defines a five-variable functionf in the form of a Karnaugh map. In searching
for a good decomposition for this function, it is necessary to first identify the variables that
will be used as inputs to a subfunction. We can get a useful clue from the patterns of 1s in

x1

x2

x3

x4

f

g

h

Figure 4.27 The structure of decomposition in Example 4.6.
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(a) Karnaugh map for the function f
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x5
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fx3

g
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(b) Circuit obtained using decomposition

Figure 4.28 Decomposition for Example 4.7.

the map. Note that there are only two distinct patterns in the rows of the map. The second
and fourth rows have one pattern, highlighted in blue, while the first and second rows have
the other pattern. Once we specify which row each pattern is in, then the pattern itself
depends only on the variables that define columns in each row, namely,x1, x2, andx5. Let
a subfunctiong(x1, x2, x5) represent the pattern in rows 2 and 4. This subfunction is just

g= x1+ x2 + x5

because the pattern has a 1 wherever any of these variables is equal to 1. To specify
the location of rows where the patterng occurs, we use the variablesx3 and x4. The
termsx3x4 andx3x4 identify the second and fourth rows, respectively. Thus the expression
(x3x4 + x3x4) · g represents the part off that is defined in rows 2 and 4.
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Next, we have to find a realization for the pattern in rows 1 and 3. This pattern has a 1
only in the cell wherex1 = x2 = x5 = 0, which corresponds to the termx1x2x5. But we can
make a useful observation that this term is just a complement ofg. The location of rows 1
and 3 is identified by termsx3x4 andx3x4, respectively. Thus the expression(x3x4+x3x4) ·g
representsf in rows 1 and 3.

We can make one other useful observation. The expressions(x3x4+ x3x4) and(x3x4+
x3x4) are complements of each other, as shown in Example 4.6. Therefore, if we let
k(x3, x4) = x3x4 + x3x4, the complete decomposition off can be stated as

f (x1, x2, x3, x4, x5) = h[g(x1, x2, x5), k(x3, x4)]
= kg+ kg

where g= x1+ x2 + x5

k = x3x4 + x3x4

The resulting circuit is given in Figure 4.28b. It requires a total of 11 gates and 19 inputs.
The largest fan-in is three.

For comparison, a minimum-cost sum-of-products expression forf is

f = x1x3x4 + x1x3x4 + x2x3x4 + x2x3x4 + x3x4x5+ x3x4x5+ x1x2x3x4x5+ x1x2x3x4x5

The corresponding circuit requires a total of 14 gates (including the five NOT gates to
complement the primary inputs) and 41 inputs. The fan-in for the output OR gate is eight.
Obviously, functional decomposition results in a much simpler implementation of this
function.

In both of the preceding examples, the decomposition is such that a decomposed sub-
function depends on some primary input variables, whereas the remainder of the imple-
mentation depends on the rest of the variables. Such decompositions are calleddisjoint
decompositionsin the technical literature. It is possible to have anon-disjoint decomposi-
tion, where the variables of the subfunction are also used in realizing the remainder of the
circuit. The following example illustrates this possibility.

Example 4.8Exclusive-OR (XOR) is a very useful function. In section 3.9.1 we showed how it can be
realized using a special circuit. It can also be realized using AND and OR gates as shown
in Figure 4.29a. In section 4.6 we explained how any AND-OR circuit can be realized as
a NAND-NAND circuit that has the same structure.

Let us now try to exploit functional decomposition to find a better implementation of
XOR using only NAND gates. Let the symbol↑ represent the NAND operation so that
x1 ↑ x2 = x1 · x2. A sum-of-products expression for the XOR function is

x1⊕ x2 = x1x2 + x1x2
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x1 x2⊕

x2

x1

x2

x1

g

x1 x2⊕

x1 x2⊕

(a) Sum-of-products  implementation

(b) NAND gate implementation

(c) Optimal NAND gate implementation

Figure 4.29 Implementation of XOR.

From the discussion in section 4.6, this expression can be written in terms of NAND
operations as

x1⊕ x2 = (x1 ↑ x2) ↑ (x1 ↑ x2)

This expression requires five NAND gates, and it is implemented by the circuit in Figure
4.29b. Observe that an inverter is implemented using a two-input NAND gate by tying the
two inputs together.
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To find a decomposition, we can manipulate the term (x1 ↑ x2) as follows:

(x1 ↑ x2) = (x1x2) = (x1(x1+ x2)) = (x1 ↑ (x1+ x2))

We can perform a similar manipulation for (x1 ↑ x2) to generate

x1⊕ x2 = (x1 ↑ (x1+ x2)) ↑ ((x1+ x2) ↑ x2)

DeMorgan’s theorem states thatx1+ x2 = x1 ↑ x2; hence we can write

x1⊕ x2 = (x1 ↑ (x1 ↑ x2)) ↑ ((x1 ↑ x2) ↑ x2)

Now we have a decomposition

x1⊕ x2= (x1 ↑ g) ↑ (g ↑ x2)

g= x1 ↑ x2

The corresponding circuit, which requires only four NAND gates, is given in Figure 4.29c.

Practical Issues
Functional decomposition is a powerful technique for reducing the complexity of cir-

cuits. It can also be used to implement general logic functions in circuits that have built-in
constraints. For example, in programmable logic devices (PLDs) that were introduced in
Chapter 3 it is necessary to “fit” a desired logic circuit into logic blocks that are available
on these devices. The available blocks are a target for decomposed subfunctions that may
be used to realize larger functions.

A big problem in functional decomposition is finding the possible subfunctions. For
functions of many variables, an enormous number of possibilities should be tried. This
situation precludes attempts at finding optimal solutions. Instead, heuristic approaches that
lead to acceptable solutions are used.

Full discussion of functional decomposition and factoring is beyond the scope of this
book. An interested reader may consult other references [2–5]. Modern CAD tools use the
concept of decomposition extensively.

4.7.3 Multilevel NAND and NOR Circuits

In section 4.6 we showed that two-level circuits consisting of AND and OR gates can be
easily converted into circuits that can be realized with NAND and NOR gates, using the
same gate arrangement. In particular, an AND-OR (sum-of products) circuit can be realized
as a NAND-NAND circuit, while an OR-AND (product-of-sums) circuit becomes a NOR-
NOR circuit. The same conversion approach can be used for multilevel circuits. We will
illustrate this approach by an example.

Example 4.9Figure 4.30a gives a four-level circuit consisting of AND and OR gates. Let us first derive
a functionally equivalent circuit that comprises only NAND gates. Each AND gate is
converted to a NAND by inverting its output. Each OR gate is converted to a NAND by
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(a) Circuit with AND and OR gates

(b) Inversions needed to convert to NANDs

(c) NAND-gate circuit

Figure 4.30 Conversion to a NAND-gate circuit.
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inverting its inputs. This is just an application of DeMorgan’s theorem, as illustrated in
Figure 4.18a. Figure 4.30bshows the necessary inversions in blue. Note that an inversion is
applied at both ends of a given wire. Now each gate becomes a NAND gate. This accounts
for most of the inversions added to the original circuit. But, there are still four inversions
that are not a part of any gate; therefore, they must be implemented separately. These
inversions are at inputsx1, x5, andx6 and at the outputf . They can be implemented as
two-input NAND gates, where the inputs are tied together. The resulting circuit is shown
in Figure 4.30c.

A similar approach can be used to convert the circuit in Figure 4.30a into a circuit that
comprises only NOR gates. An OR gate is converted to a NOR gate by inverting its output.
An AND becomes a NOR if its inputs are inverted, as indicated in Figure 4.18b. Using this
approach, the inversions needed for our sample circuit are shown in blue in Figure 4.31a.

x2

x1

x3

x4

x5

x6

x7

x2

x1

x3

x4

x5

x6 x7

f

f

(a) Inversions needed to convert to NORs

(b) NOR-gate circuit

Figure 4.31 Conversion to a NOR-gate circuit.
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Then each gate becomes a NOR gate. The three inversions at inputsx2, x3, andx4 can be
realized as two-input NOR gates, where the inputs are tied together. The resulting circuit
is presented in Figure 4.31b.

It is evident that the basic topology of a circuit does not change substantially when
converting from AND and OR gates to either NAND or NOR gates. However, it may be
necessary to insert additional gates to serve as NOT gates that implement inversions not
absorbed as a part of other gates in the circuit.

4.8 Analysis of Multilevel Circuits

The preceding section showed that it may be advantageous to implement logic functions
using multilevel circuits. It also presented the most commonly used approaches for syn-
thesizing functions in this way. In this section we will consider the task of analyzing an
existing circuit to determine the function that it implements.

For two-level circuits the analysis process is simple. If a circuit has an AND-OR
(NAND-NAND) structure, then its output function can be written in the SOP form by
inspection. Similarly, it is easy to derive a POS expression for an OR-AND (NOR-NOR)
circuit. The analysis task is more complicated for multilevel circuits because it is difficult to
write an expression for the function by inspection. We have to derive the desired expression
by tracing the circuit and determining its functionality. The tracing can be done either
starting from the input side and working towards the output, or by starting at the output side
and working back towards the inputs. At intermediate points in the circuit, it is necessary
to evaluate the subfunctions realized by the logic gates.

Example 4.10 Figure 4.32 replicates the circuit from Figure 4.30a. To determine the functionf imple-
mented by this circuit, we can consider the functionality at internal points that are the outputs

x2

x1

x3

x4

x5

x6

x7

f

P3

P1

P4

P5
P2

Figure 4.32 Circuit for Example 4.10.
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of various gates. These points are labeledP1 to P5 in the figure. The functions realized at
these points are

P1= x2x3

P2= x5+ x6

P3= x1+ P1 = x1+ x2x3

P4= x4P2 = x4(x5+ x6)

P5= P4 + x7 = x4(x5+ x6)+ x7

Thenf can be evaluated as

f = P3P5

= (x1+ x2x3)(x4(x5+ x6)+ x7)

Applying the distributive property to eliminate the parentheses gives

f = x1x4x5+ x1x4x6+ x1x7+ x2x3x4x5+ x2x3x4x6+ x2x3x7

Note that the expression represents a circuit comprising six AND gates, one OR gate, and
25 inputs. The cost of this two-level circuit is higher than the cost of the circuit in Figure
4.32, but the circuit has lower propagation delay.

Example 4.11In Example 4.7 we derived the circuit in Figure 4.28b. In addition to AND gates and OR
gates, the circuit has some NOT gates. It is reproduced in Figure 4.33, and the internal
points are labeled fromP1 to P10 as shown. The following subfunctions occur

P1= x1+ x2 + x5

P2= x4

P3= x3

P4= x3P2

P5= x4P3

P6= P4 + P5

P7= P1

P8= P6

P9= P1P6

P10= P7P8

We can derivef by tracing the circuit from the output towards the inputs as follows

f = P9+ P10

= P1P6+ P7P8
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Figure 4.33 Circuit for Example 4.11.

= (x1+ x2 + x5)(P4 + P5)+ P1P6

= (x1+ x2 + x5)(x3P2 + x4P3)+ x1x2x5P4P5

= (x1+ x2 + x5)(x3x4 + x4x3)+ x1x2x5(x3+ P2)(x4 + P3)

= (x1+ x2 + x5)(x3x4 + x3x4)+ x1x2x5(x3+ x4)(x4 + x3)

= x1x3x4 + x1x3x4 + x2x3x4 + x2x3x4 + x5x3x4 + x5x3x4 +
x1x2x5x3x4 + x1x2x5x4x3

This is the same expression as stated in Example 4.7.

Example 4.12 Circuits based on NAND and NOR gates are slightly more difficult to analyze because each
gate involves an inversion. Figure 4.34a depicts a simple NAND-gate circuit that illustrates
the effect of inversions. We can convert this circuit into a circuit with AND and OR gates
using the reverse of the approach described in Example 4.9. Bubbles that denote inversions
can be moved, according to DeMorgan’s theorem, as indicated in Figure 4.34b. Then the
circuit can be converted into the circuit in part(c) of the figure, which consists of AND and
OR gates. Observe that in the converted circuit, the inputsx3 andx5 are complemented.
From this circuit the functionf is determined as

f = (x1x2 + x3)x4 + x5

= x1x2x4 + x3x4 + x5

It is not necessary to convert a NAND circuit into a circuit with AND and OR gates
to determine its functionality. We can use the approach from Examples 4.10 and 4.11 to
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(c) Circuit with AND and OR gates

(b) Moving bubbles to convert to ANDs and ORs

(a) NAND-gate circuit

x3

Figure 4.34 Circuit for Example 4.12.

derivef as follows. LetP1, P2, andP3 label the internal points as shown in Figure 4.34a.
Then

P1= x1x2

P2= P1x3

P3= P2x4
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f = P3x5 = P3+ x5

= P2x4 + x5 = P2x4 + x5

= P1x3x4 + x5 = (P1+ x3)x4 + x5

= (x1x2 + x3)x4 + x5

= (x1x2 + x3)x4 + x5

= x1x2x4 + x3x4 + x5

Example 4.13 The circuit in Figure 4.35 consists of NAND and NOR gates. It can be analyzed as follows.

P1= x2x3

P2= x1P1 = x1+ P1

P3= x3x4 = x3+ x4

P4= P2 + P3

f = P4 + x5 = P4x5

= P2 + P3 · x5

= (P2 + P3)x5

= (x1+ P1+ x3+ x4)x5

= (x1+ x2x3+ x3+ x4)x5

= (x1+ x2 + x3+ x4)x5

= x1x5+ x2x5+ x3x5+ x4x5

Note that in deriving the second to the last line, we used property 16a in section 2.5 to
simplify x2x3+ x3 into x2 + x3.

x2

x3

x1

x4

x5

f

P3

P1

P2

P4

Figure 4.35 Circuit for Example 4.13.
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Analysis of circuits is much simpler than synthesis. With a little practice one can
develop an ability to easily analyze even fairly complex circuits.

We have now covered a considerable amount of material on synthesis and analysis of
logic functions. We have used the Karnaugh map as a vehicle for illustrating the concepts
involved in finding optimal implementations of logic functions. We have also shown that
logic functions can be realized in a variety of forms, both with two levels of logic and
with multiple levels. In a modern design environment, logic circuits are synthesized using
CAD tools, rather than by hand. The concepts that we have discussed in this chapter are
quite general; they are representative of the strategies implemented in CAD algorithms.
As we have said before, the Karnaugh map scheme for representing logic functions is not
appropriate for use in CAD tools. In the next section we discuss an alternative representation
of logic functions, which is suitable for use in CAD algorithms.

4.9 Cubical Representation

The Karnaugh map is an excellent vehicle for illustrating concepts, and it is even useful for
manual design if the functions have only a few variables. To deal with larger functions it is
necessary to have techniques that are algebraic, rather than graphical, which can be applied
to functions of any number of variables.

Many algebraic optimization techniques have been developed. As early as the 1950s,
a tabular approach proposed by Willard Quine [6] and Edward McCluskey [7] became
popular under the name Quine-McCluskey method. Almost all textbooks on logic design
discuss this method at length [8–18]. We will not do so because there exist more attractive
alternatives that can be incorporated into CAD tools.

We will not pursue algebraic optimization techniques in great detail, but we will attempt
to provide the reader with an appreciation of the tasks involved. This helps in gaining an
understanding of what the CAD tools can do and what results can be expected from them.
The approach that we will present makes use of a cubical representation of logic functions.

4.9.1 Cubes and Hypercubes

So far in this book, we have encountered four different forms for representing logic func-
tions: truth tables, algebraic expressions, Venn diagrams, and Karnaugh maps. Another
possibility is to map a function ofn variables onto ann-dimensional cube.

Two-Dimensional Cube
A two-dimensional cube is shown in Figure 4.36. The four corners in the cube are

calledvertices, which correspond to the four rows of a truth table. Each vertex is identified
by two coordinates. The horizontal coordinate is assumed to correspond to variablex1, and
vertical coordinate tox2. Thus vertex 00 is the bottom-left corner, which corresponds to
row 0 in the truth table. Vertex 01 is the top-left corner, wherex1 = 0 andx2 = 1, which
corresponds to row 1 in the truth table, and so on for the other two vertices.
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Figure 4.36 Representation of f (x1, x2) =∑m(1, 2, 3).

We will map a function onto the cube by indicating with blue circles those vertices for
which f = 1. In Figure 4.36f = 1 for vertices 01, 10, and 11. We can express the function
as a set of vertices, using the notationf = {01, 10, 11}. The functionf is also shown in the
form of a truth table in the figure.

An edge joins two vertices for which the labels differ in the value of only one variable.
Therefore, if two vertices for whichf = 1 are joined by an edge, then this edge represents
that portion of the function just as well as the two individual vertices. For example,f = 1
for vertices 10 and 11. They are joined by the edge that is labeled 1x. It is customary to use
the letter x to denote the fact that the corresponding variable can be either 0 or 1. Hence 1x
means thatx1 = 1, while x2 can be either 0 or 1. Similarly, vertices 01 and 11 are joined
by the edge labeled x1, indicating thatx1 can be either 0 or 1, butx2 = 1. The reader must
not confuse the use of the letter x for this purpose, in contrast to the subscripted use where
x1 andx2 refer to the variables.

Two vertices being represented by a single edge is the embodiment of the combining
property 14a from section 2.5. The edge 1x is the logical sum of vertices 10 and 11. It
essentially defines the termx1, which is the sum of mintermsx1x2 andx1x2. The property
14a indicates that

x1x2 + x1x2 = x1

Therefore, finding edges for whichf = 1 is equivalent to applying the combining property.
Of course, this is also analogous to finding pairs of adjacent cells in a Karnaugh map for
which f = 1.

The edges 1x and x1 define fully the function in Figure 4.36; hence we can represent
the function asf = {1x, x1}. This corresponds to the logic expression

f = x1+ x2

which is also obvious from the truth table in the figure.

Three-Dimensional Cube
Figure 4.37 illustrates a three-dimensional cube. Thex1, x2, andx3 coordinates are as

shown on the left. Each vertex is identified by a specific valuation of the three variables.
The functionf mapped onto the cube is the function from Figure 4.1, which was used in
Figure 4.5b. There are five vertices for whichf = 1, namely, 000, 010, 100, 101, and
110. These vertices are joined by the five edges shown in blue, namely, x00, 0x0, x10, 1x0,
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Figure 4.37 Representation of f (x1, x2, x3) =∑m(0, 2, 4, 5, 6).

and 10x. Because the vertices 000, 010, 100, and 110 include all valuations ofx1 andx2,
whenx3 is 0, they can be specified by the term xx0. This term means thatf = 1 if x3 = 0,
regardless of the values ofx1 andx2. Notice that xx0 represents the front side of the cube,
which is shaded in blue.

From the preceding discussion it is evident that the functionf can be represented in
several ways. Some of the possibilities are

f = {000, 010, 100, 101, 110}

= {0x0, 1x0, 101}

= {x00, x10, 101}

= {x00, x10, 10x}

= {xx0, 10x}

In a physical realization each of the above terms is a product term implemented by an
AND gate. Obviously, the least-expensive circuit is obtained iff = {xx0, 10x}, which is
equivalent to the logic expression

f = x3+ x1x2

This is the expression that we derived using the Karnaugh map in Figure 4.5b.

Four-Dimensional Cube
Graphical images of two- and three-dimensional cubes are easy to draw. A four-

dimensional cube is more difficult. It consists of 2 three-dimensional cubes with their
corners connected. The simplest way to visualize a four-dimensional cube is to have one
cube placed inside the other cube, as depicted in Figure 4.38. We have assumed that thex1,
x2, andx3 coordinates are the same as in Figure 4.37, whilex4 = 0 defines the outer cube
andx4 = 1 defines the inner cube. Figure 4.38 indicates how the functionf3 of Figure 4.7
is mapped onto the four-dimensional cube. To avoid cluttering the figure with too many
labels, we have labeled only those vertices for whichf3 = 1. Again, all edges that connect
these vertices are highlighted in blue.
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Figure 4.38 Representation of function f3 from Figure 4.7.

There are two groups of four adjacent vertices for whichf3 = 1 that can be represented
as planes. The group comprising 0000, 0010, 1000, and 1010 is represented by x0x0. The
group 0010, 0011, 0110, and 0111 is represented by 0x1x. These planes are shaded in the
figure. The functionf3 can be represented in several ways, for example

f3 = {0000, 0010, 0011, 0110, 0111, 1000, 1010, 1111}

= {00x0, 10x0, 0x10, 0x11, x111}

= {x0x0, 0x1x, x111}

Since each x indicates that the corresponding variable can be ignored, because it can be
either 0 or 1, the simplest circuit is obtained iff = {x0x0, 0x1x, x111}, which is equivalent
to the expression

f3 = x2x4 + x1x3+ x2x3x4

We derived the same expression in Figure 4.7.

n-Dimensional Cube
A function that hasn variables can be mapped onto ann-dimensional cube. Although

it is impractical to draw graphical images of cubes that have more than four variables, it
is not difficult to extend the ideas introduced above to a generaln-variable case. Because
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visual interpretation is not possible and because we normally use the wordcubeonly for
a three-dimensional structure, many people use the wordhypercubeto refer to structures
with more than three dimensions. We will continue to use the wordcubein our discussion.

It is convenient to refer to a cube as being of a certainsizethat reflects the number of
vertices in the cube. Vertices have the smallest size. Each variable has a value of 0 or 1 in
a vertex. A cube that has an x in one variable position is larger because it consists of two
vertices. For example, the cube 1x01 consists of vertices 1001 and 1101. A cube that has
two x’s consists of four vertices, and so on. A cube that hask x’s consists of 2k vertices.

An n-dimensional cube has 2n vertices. Two vertices are adjacent if they differ in the
value of only one coordinate. Because there aren coordinates (axes in then-dimensional
cube), each vertex is adjacent ton other vertices. Then-dimensional cube contains cubes of
lower dimensionality. Cubes of the lowest dimension are vertices. Because their dimension
is zero, we will call them 0-cubes. Edges are cubes of dimension 1; hence we will call them
1-cubes. A side of a three-dimensional cube is a 2-cube. An entire three-dimensional cube
is a 3-cube, and so on. In general, we will refer to a set of 2k adjacent vertices as ak-cube.

From the examples in Figures 4.37 and 4.38, it is apparent that the largest possible
k-cubesthat exist for a given function are equivalent to its prime implicants. Next, we will
describe a minimization technique that uses the cubical representation of functions.

4.10 Minimization Using Cubical Representation

Cubical representation of logic functions is well suited for implementation of minimization
algorithms that can be programmed and run efficiently on computers. Such algorithms
are included in modern CAD tools. While the CAD tools can be used effectively without
detailed knowledge of how their minimization algorithms are implemented, the reader may
find it interesting to gain some insight into how this may be accomplished. In this section we
will outline a relatively simple algorithm, which illustrates the main concepts and indicates
some of the problems that arise. A reader who intends to use the CAD tools, but is not
interested in the details of automated minimization, may skip this section without loss of
continuity.

4.10.1 Generation of Prime Implicants

As mentioned in section 4.9, the prime implicants of a given logic functionf are the largest
possiblek-cubes for whichf = 1. For incompletely specified functions, which include
a set of don’t-care vertices, the prime implicants are the largestk-cubes for which either
f = 1 or f is unspecified.

In section 4.2.2 we presented a strategy for finding the minimum-cost sum-of-products
form of a logic function. Assume that the initial specification of a functionf is given in
terms of implicants that are not necessarily either minterms or prime implicants. Then it
is necessary to define an operation that will generate other implicants that are not given
explicitly in the initial specification, but which will eventually lead to the prime implicants
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of f . One such possibility is known as the∗-productoperation, which is usually pronounced
the “star-product” operation. We will refer to it simply as the∗-operation.

∗-Operation
The∗-operation provides a simple way of deriving a new cube by combining two cubes

that differ in the value of only one variable. LetA = A1A2 . . .An andB = B1B2 . . .Bn be
two cubes that are implicants of ann-variable function. Thus each coordinateAi andBi

is specified as having the value 0, 1, or x. There are two distinct steps in the∗-operation.
First, the∗-operation is evaluated for each pairAi andBi , in coordinatesi = 1, 2, . . . ,n,
according to the table in Figure 4.39. Then based on the results of using the table, a set of
rules is applied to determine the overall result of the∗-operation. The table in Figure 4.39
defines the coordinate∗-operation,Ai ∗Bi . It specifies the result ofAi ∗Bi for each possible
combination of values ofAi andBi . This result is the intersection (i.e., the common part) of
A andB in this coordinate. Note that whenAi andBi have the opposite values (0 and 1, or
vice versa), the result of the coordinate∗-operation is indicated by the symbol ø. We say
that the intersection ofAi andBi is empty. Using the table, the complete∗-operation forA
andB is defined as follows:

C = A ∗ B, such that

1. C = ø if Ai ∗ Bi = ø for more than onei.

2. Otherwise,Ci = Ai ∗ Bi whenAi ∗ Bi 6= ø, andCi = x for the coordinate where
Ai ∗ Bi = ø.

For example, letA= {0x0} andB= {111}. ThenA1∗B1 = 0∗1= ø,A2∗B2 = x∗1= 1,
andA3∗B3 = 0∗1= ø. Because the result is ø in two coordinates, it follows from condition
1 thatA ∗ B = ø. In other words, these two cubes cannot be combined into another cube,
because they differ in two coordinates.

As another example, considerA= {11x} andB= {10x}. In this caseA1∗B1 = 1∗1=
1, A2 ∗B2 = 1∗ 0= ø, andA3 ∗B3 = x ∗ x = x. According to condition 2 above,C1 = 1,
C2 = x, andC3 = x, which givesC = A∗ B= {1xx}. A larger 2-cube is created from two
1-cubes that differ in one coordinate only.

The result of the∗-operation may be a smaller cube than the two cubes involved in the
operation. ConsiderA = {1x1} andB = {11x}. ThenC = A ∗ B = {111}. Notice thatC
is included in bothA andB, which means that this cube will not be useful in searching for
prime implicants. Therefore, it should be discarded by the minimization algorithm.

o

o0 0

1 1

10 x

10 x
BiAi

0

1

x

Ai Bi*

Figure 4.39 The coordinate ∗-operation.



April 13, 1999 12:52 g02-ch4 Sheet number 49 Page number 191 black

4.10 Minimization Using Cubical Representation 191

As a final example, considerA= {x10} andB= {0x1}. ThenC = A∗B= {01x}. All
three of these cubes are the same size, butC is not included in eitherA or B. HenceC has
to be considered in the search for prime implicants. The reader may find it helpful to draw
a Karnaugh map to see how cubeC is related to cubesA andB.

Using the∗-Operation to Find Prime Implicants
The essence of the∗-operation is to find new cubes from pairs of existing cubes. In

particular, it is of interest to find new cubes that are not included in the existing cubes. A
procedure for finding the prime implicants may be organized as follows.

Suppose that a functionf is specified by means of a set of implicants that are represented
as cubes. Let this set be denoted as the coverCk of f . Let ci andcj be any two cubes in
Ck. Then apply the∗-operation to all pairs of cubes inCk; let Gk+1 be the set of newly
generated cubes. Hence

Gk+1 = ci ∗ cj for all ci , cjε Ck

Now a new cover forf may be formed by using the cubes inCk andGk+1. Some of these
cubes may be redundant because they are included in other cubes; they should be removed.
Let the new cover be

Ck+1 = Ck ∪Gk+1− redundant cubes

where∪ denotes the logical union of two sets, and the minus sign (−) denotes the removal
of elements of a set. IfCk+1 6= Ck, then a new coverCk+2 is generated using the same
process. IfCk+1 = Ck, then the cubes in the cover are the prime implicants off . For an
n-variable function, it is necessary to repeat the step at mostn times.

Redundant cubes that have to be removed are identified through pairwise comparison
of cubes. CubeA = A1A2 . . .An should be removed if it is included in some cubeB =
B1B2 . . .Bn, which is the case ifAi = Bi or Bi = x for every coordinatei.

Example 4.14Consider the functionf (x1, x2, x3) of Figure 4.9. Assume thatf is initially specified as a set
of vertices that correspond to the minterms,m0, m1, m2, m3, andm7. Hence let the initial
cover beC0 = {000, 001, 010, 011, 111}. Using the∗-operation to generate a new set of
cubes, we obtainG1 = {00x, 0x0, 0x1, 01x, x11}. ThenC1 = C0 ∪G1 – redundant cubes.
Observe that each cube inC0 is included in one of the cubes inG1; therefore, all cubes in
C0 are redundant. ThusC1 = G1.

The next step is to apply the∗-operation to the cubes inC1, which yieldsG2 = {000,
001, 0xx, 0x1, 010, 01x, 011}. Note that all of these cubes are included in the cube 0xx;
therefore, all but 0xx are redundant. Now it is easy to see that

C2 = C1 ∪G2 – redundant terms

= {x11, 0xx}

since all cubes ofC1, except x11, are redundant because they are covered by 0xx.
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Applying the∗-operation toC2 yieldsG3 = {011} and

C3 = C2 ∪G3 – redundant terms

= {x11, 0xx}

SinceC3 = C2, the conclusion is that the prime implicants off are the cubes {x11, 0xx},
which represent the product termsx2x3 andx1. This is the same set of prime implicants that
we derived using a Karnaugh map in Figure 4.9.

Example 4.15 As another example, consider the four-variable function of Figure 4.10. Assume that this
function is initially specified as the coverC0 = {0101, 1101, 1110, 011x, x01x}. Then
successive applications of the∗-operation and removing the redundant terms gives

C1 = {x01x, x101, 01x1, x110, 1x10, 0x1x}

C2 = {x01x, x101, 01x1, 0x1x, xx10}

C3 = C2

Therefore, the prime implicants arex2x3, x2x3x4, x1x2x4, x1x3, andx3x4.

4.10.2 Determination of Essential Prime Implicants

From a cover that consists of all prime implicants, it is necessary to extract a minimal
cover. As we saw in section 4.2.2, allessentialprime implicants must be included in the
minimal cover. To find the essential prime implicants, it is useful to define an operation
that determines a part of a cube (implicant) that isnot covered by another cube. One such
operation is called the#-operation(pronounced the “sharp operation”), which is defined as
follows.

#-Operation
Again, letA = A1A2 . . .An andB = B1B2 . . .Bn be two cubes (implicants) of ann-

variable function. The sharp operationA#B leaves as a result “that part ofA that is not
covered byB.” Similar to the∗-operation, the #-operation has two steps:Ai#Bi is evaluated
for each coordinatei, and then a set of rules is applied to determine the overall result.
The sharp operation for each coordinate is defined in Figure 4.40. After this operation is
performed for all pairs(Ai ,Bi), the complete #-operation is defined as follows:

C = A#B, such that

1. C = A if Ai#Bi = ø for somei.

2. C = ø if Ai#Bi = ε for all i.

3. Otherwise,C =⋃i(A1,A2, . . . ,Bi , . . . ,An) , where the union is for alli for which
Ai = x andBi 6= x.

The first condition corresponds to the case where cubesA andB do not intersect at all;
namely,A andB differ in the value of at least one variable, which means that no part of
A is covered byB. For example, letA = 0x1 andB = 11x. The coordinate #-products are
A1#B1 = ø,A2#B2 = 0, andA3#B3 = ε. Then from rule 1 it follows that 0x1 # 11x = 0x1.
The second condition reflects the case whereA is fully covered byB. For example, 0x1
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Figure 4.40 The coordinate #-operation.

# 0xx = ø. The third condition is for the case where only a part ofA is covered byB. In
this case the #-operation generates one or more cubes. Specifically, it generates one cube
for each coordinatei that is x inAi , but is not x inBi . Each cube generated is identical to
A, except thatAi is replaced byBi . For example, 0xx # 01x = 00x, and 0xx # 010 = {00x,
0x1}.

We will now show how the #-operation can be used to find the essential prime implicants.
Let P be the set of all prime implicants of a given functionf . Let pi denote one prime
implicant in the setP. Also, let DC denote the don’t-care vertices forf . Thenpi is an
essential prime implicant if and only if

pi # (P− pi) # DC 6= ø

This means thatpi is essential if there exists at least one vertex for whichf = 1 that is
covered bypi , but not by any other prime implicant. The #-operation is also performed with
the set of don’t-care cubes because vertices inpi that correspond to don’t-care conditions
are not essential to cover. The meaning ofpi # (P− pi) is that the #-operation is applied
successively to each prime implicant inP. For example, considerP = {p1, p2, p3, p4} and
DC = {d1, d2}. To check whetherp3 is essential, we evaluate

((((p3 # p1) # p2) # p4) # d1) # d2

If the result of this expression is not ø, thenp3 is essential.

Example 4.16In Example 4.14 we determined that the cubes x11 and 0xx are the prime implicants of
the functionf in Figure 4.9. We can discover whether each of these prime implicants is
essential as follows

x11 # 0xx = 1116= ø

0xx # x11 = {00x, 0x0} 6= ø

The cube x11 is essential because it is the only prime implicant that covers the vertex 111,
for which f = 1. The prime implicant 0xx is essential because it is the only one that covers
the vertices 000, 001, and 010. This can be seen in the Karnaugh map in Figure 4.9.

Example 4.17In Example 4.15 we found that the prime implicants of the function in Figure 4.10 areP =
{x01x, x101, 01x1, 0x1x, xx10}. Because this function has no don’t cares, we compute
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x01x # (P – x01x) = 10116= ø

This is computed in the following steps: x01x # x101 = x01x, then x01x # 01x1 = x01x,
then x01x # 0x1x = 101x, and finally 101x # xx10 = 1011. Similarly, we obtain

x101 # (P – x101) = 11016= ø

01x1 # (P – 01x1) = ø

0x1x # (P – 0x1x) = ø

xx10 # (P – xx10) = 11106= ø

Therefore, the essential prime implicants are x01x, x101, and xx10 because they are the
only ones that cover the vertices 1011, 1101, and 1110, respectively. This is obvious from
the Karnaugh map in Figure 4.10.

When checking whether a cubeA is essential, the #-operation with one of the cubes in
P−A may generate multiple cubes. If so, then each of these cubes has to be checked using
the #-operation with all of the remaining cubes inP− A.

4.10.3 Complete Procedure for Finding a Minimal Cover

Having introduced the∗- and #-operations, we can now outline a complete procedure for
finding a minimal cover for anyn-variable function. Assume that the functionf is specified
in terms of vertices for whichf = 1; these vertices are often referred to as theON-setof
the function. Also, assume that the don’t-care conditions are specified as aDC-set. Then
the initial cover forf is a union of the ON and DC sets.

Prime implicants off can be generated using the∗-operation, as explained in section
4.10.1. Then the #-operation can be used to find the essential prime implicants as presented
in section 4.10.2. If the essential prime implicants cover the entire ON-set, then they form
the minimum-cost cover forf . Otherwise, it is necessary to include other prime implicants
until all vertices in the ON-set are covered.

A nonessential prime implicantpi should be deleted if there exists a less-expensive
prime implicantpj that covers all vertices of the ON-set that are covered bypi . If the
remaining nonessential prime implicants have the same cost, then a possible heuristic ap-
proach is to arbitrarily select one of them, include it in the cover, and determine the rest of
the cover. Then an alternative cover is generated by excluding this prime implicant, and
the lower-cost cover is chosen for implementation. We already used this approach, which
is often referred to as thebranchingheuristic, in section 4.2.2.

The preceding discussion can be summarized in the form of the following minimization
procedure:

1. LetC0 = ON ∪ DC be the initial cover of functionf and its don’t-care conditions.

2. Find all prime implicants ofC0 using the∗-operation; letP be this set of prime
implicants.

3. Find the essential prime implicants using the #-operation. A prime implicantpi is
essential ifpi # (P− pi) # DC 6= ø.



April 13, 1999 12:52 g02-ch4 Sheet number 53 Page number 195 black

4.10 Minimization Using Cubical Representation 195

If the essential prime implicants cover all vertices of the ON-set, then these
implicants form the minimum-cost cover.

4. Delete any nonessentialpi that is more expensive (i.e., a smaller cube) than some
other prime implicantpj if pi # DC # pj = ø.

5. Choose the lowest-cost prime implicants to cover the remaining vertices of the
ON-set. Use the branching heuristic on the prime implicants of equal cost and retain
the cover with the lowest cost.

Example 4.18To illustrate the minimization procedure, we will use the function

f (x1, x2, x3, x4, x5) =
∑

m(0, 1, 4, 8, 13, 15, 20, 21, 23, 26, 31)+ D(5, 10, 24, 28)

To help the reader follow the discussion, this function is also shown in the form of a
Karnaugh map in Figure 4.41.

The initial coverC0 consists of the ON-set and the DC-set:

C0 = {00000, 00001, 00100, 01000, 01101, 01111, 10100, 10101, 10111, 11010, 11111,

00101, 01010, 11000, 11100}

Using the∗-operation, the subsequent covers obtained are

C1 = {0000x, 00x00, 0x000, 00x01, x0100, 0010x, 010x0, x1000, 011x1, 0x101, x1111,

1010x, 1x100, 101x1, x0101, 1x111, x1010, 110x0, 11x00}

C2 = {0x000, 011x1, 0x101, x1111, 1x100, 101x1, 1x111, 11x00, 00x0x, x010x, x10x0}

C3 = C2

Therefore,P = C2.
Using the #-operation, we find that there are two essential prime implicants: 00x0x

(because it is the only one that covers the vertex 00001) and x10x0 (because it is the only
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Figure 4.41 The function for Example 4.18.
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one that covers the vertex 11010). The minterms off covered by these two prime implicants
arem(0, 1, 4, 8, 26).

Next, we find that 1x100 can be deleted because the only ON-set vertex that it covers is
10100 (m20), which is also covered by x010x and the cost of this prime implicant is lower.
Note that having removed 1x100, the prime implicant x010x becomes essential because
none of the other remaining prime implicants covers the vertex 10100. Therefore, x010x
has to be included in the final cover. It coversm(20, 21).

There remains to find prime implicants to coverm(13, 15, 23, 31). Using the branching
heuristic, the lowest-cost cover is obtained by including the prime implicants 011x1 and
1x111. Thus the final cover is

Cminimum= {00x0x, x10x0, x010x, 011x1, 1x111}

The corresponding sum-of-products expression is

f = x1x2x4 + x2x3x5+ x2x3x4 + x1x2x3x5+ x1x3x4x5

Although this procedure is tedious when performed by hand, it is not difficult to write a
computer program to implement the algorithm automatically. The reader should check the
validity of our solution by finding the optimal realization from the Karnaugh map in Fig-
ure 4.41.

4.11 Practical Considerations

The purpose of the preceding section was to give the reader some idea about how mini-
mization of logic functions may be automated for use in CAD tools. We chose a scheme
that is not too difficult to explain. From the practical point of view, this scheme has some
drawbacks. The main difficulty is that the number of cubes that must be considered in the
process can be extremely large.

If the goal of minimization is relaxed so that it is not imperative to find a minimum-cost
implementation, then it is possible to derive heuristic techniques that produce good results
in reasonable time. A technique of this type forms the basis of the widely used Espresso
program, which is available from the University of California at Berkeley via the World
Wide Web. Espresso is a two-level optimization program. Both input to the program and
its output are specified in the format of cubes. Instead of using the∗-operation to find the
prime implicants, Espresso uses an implicant-expansion technique. (See problem 4.27 for
an illustration of the expansion of implicants.) A comprehensive explanation of Espresso
is given in [19], while simplified outlines can be found in [3, 12].

The University of California at Berkeley also provides two software programs that
can be used for design of multilevel circuits, called MIS [20] and SIS [21]. They allow a
user to apply various multilevel optimization techniques to a logic circuit. The user can
experiment with different optimization strategies by applying techniques such as factoring
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and decomposition to all or part of a circuit. SIS also includes the Espresso algorithm for
two-level minimization of functions, as well as many other optimization techniques.

Numerous commercial CAD systems are on the market. Three companies whose
products are widely used are Cadence Design Systems, Mentor Graphics, and Synopsys.
Information on their products is available on the World Wide Web. Each company provides
logic synthesis software that can be used to target various types of chips, such as PLDs,
gate arrays, standard cells, and custom chips. Because there are many possible ways to
synthesize a given circuit, as we saw in the previous sections, each commercial product
uses a proprietary logic optimization strategy based on heuristics.

To describe CAD tools, some new terminology has been invented. In particular, we
should mention two terms that are widely used in industry:technology-independent logic
synthesisandtechnology mapping. The first term refers to techniques that are applied when
optimizing a circuit without considering the resources available in the target chip. Most
of the techniques presented in this chapter are of this type. The second term, technology
mapping, refers to techniques that are used to ensure that the circuit produced by logic
synthesis can be realized using the logic resources available in the target chip. A good
example of technology mapping is the transformation from a circuit in the form of logic
operations such as AND and OR into a circuit that consists of only NAND operations. This
type of technology mapping is done when targeting a circuit to a gate array that contains
only NAND gates. Another example is the translation from logic operations to lookup
tables, which is done when targeting a design to an FPGA. It should be noted that the
terminology is sometimes used inconsistently. For instance, some CAD systems consider
factoring, which was discussed in section 4.7.1, to be technology independent, whereas
other systems consider it to be a part of the technology mapping. Still other systems, such
as MAX+plusII, do not use these two terms at all, even though they clearly implement both
types of techniques. We will not rely on these terms in this book and have mentioned them
only for completeness.

The next section provides a more detailed discussion of CAD tools. To give an example
of the features provided in these tools, we use the MAX+plusII system that accompanies the
book. Of course, different CAD systems offer different features. MAX+plusII synthesizes
designs for implementation in PLDs. It includes all the optimization techniques introduced
in this chapter.

4.12 CAD Tools

In section 2.8 we introduced the concept of a CAD system and described CAD tools for
performing design entry, initial synthesis, and functional simulation. In this section we
introduce the remaining tools in a typical CAD system, which are used for performing
logic synthesis and optimization, physical design, and timing simulation. The principles
behind such tools are quite general; the details may vary from one system to another. We
will discuss the main aspects of the tools in as general a fashion as possible. However, to
provide a sufficient degree of reality, we will use illustrative examples based on the Altera
MAX+plusII system that is provided with the book. To fully grasp the concepts presented
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in the following discussion, the reader should go through the material in Tutorials 1 and 2,
which are presented in Appendices B and C.

A typical CAD system comprises tools for performing the following tasks:

• Design entryallows the designer to enter a description of the desired circuit in the form
of truth tables, schematic diagrams, or HDL code.

• Initial synthesisgenerates an initial circuit, based on data entered during the design
entry stage.

• Functional simulationis used to verify the functionality of the circuit, based on inputs
provided by the designer.

• Logic synthesis and optimizationapplies optimization techniques to derive an optimized
circuit.

• Physical designdetermines how to implement the optimized circuit in a given target
technology, for example, in a PLD chip.

• Timing simulationdetermines the propagation delays that are expected in the imple-
mented circuit.

• Chip configurationconfigures the actual chip to realize the designed circuit.

The first three of these tools are discussed in Chapter 2. The rest are described below.

4.12.1 Logic Synthesis and Optimization

The optimization techniques described in this chapter are automatically applied by CAD
tools when synthesizing logic circuits. Consider the VHDL code in Figure 4.42. It describes
the functionf from Figure 4.5a in the canonical form, which consists of minterms. We
used the MAX+plusII system to synthesizef for implementation in a FLEX 10K FPGA.
The result obtained was

f = x2x3+ x1x3

which is the same minimal sum-of-products expression derived in Figure 4.5a. This result
was displayed in areport file, which is produced by the CAD system. The report file
includes a set of logic equations that describe the synthesized circuit.

CAD tools often include many optional features that can be invoked by the user. Figure
4.43 shows some of the logic synthesis options provided by MAX+plusII. Although the
reader may not recognize all the options shown, the meaning of terms such as minimization,
multilevel synthesis, factoring, and decomposition should be obvious at this point. Detailed
explanation of various synthesis procedures can be found in specialized texts [5, 22].

The optimized circuit produced by the logic synthesis tools depends both on the type
of logic resources available in the target chip and on the particular CAD system that is used.
For example, if the target chip is a CPLD, then each logic function in the circuit is expressed
in terms of the gates available in a macrocell. For an FPGA that contains lookup tables
(LUTs), the number of inputs to each logic function in the circuit is constrained by the size
of the LUTs. If the target chip is a gate array, then the logic functions in the optimized
circuit are expressed using only the type of logic cells available in the gate array. Finally,
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ENTITY func1 IS
PORT ( x1, x2, x3 : IN BIT ;

f : OUT BIT ) ;
END func1 ;

ARCHITECTURE LogicFunc OF func1 IS
BEGIN

f <= (NOT x1 AND NOT x2 AND x3) OR
(x1 AND NOT x2 AND NOT x3) OR
(x1 AND NOT x2 AND x3) OR
(x1 AND x2 AND NOT x3) ;

END LogicFunc ;

Figure 4.42 VHDL code for the function in Figure 4.5a.

if standard-cell technology is used, then the circuit comprises whatever types of logic cells
can be fabricated on the standard-cell chip.

4.12.2 Physical Design

After logic synthesis the next step in the design flow is to determine exactly how to implement
the circuit in the target technology. This step is usually calledphysical design, or layout
synthesis. There are two main parts to physical design: placement and routing.

Figure 4.43 Logic synthesis options in MAX+plusII.
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A placementCAD tool determines where in the target device each logic function in
the optimized circuit will be realized. The placement task is highly dependent on the
implementation technology. For example, if a PLD is used for implementation, then the
structure of the chip is predefined and the placement tool determines which logic resources
in the chip are to be used to realize each logic function in the circuit. In the case of a CPLD,
the logic functions are assigned to macrocells. For an FPGA each logic function is assigned
to a logic cell.

Continuing with our example, the MAX+plusII placement tool realizes the functionf
from Figure 4.42 in the FLEX 10K FPGA as depicted in Figure 4.44. The figure represents a
screen capture of theFloorplan Editor, which displays the results generated by the physical
design tools. The small squares in the diagram represent the logic cells in the FPGA, which
are four-input LUTs (see Appendix E). The logic cell at the top left is used to realize the
function f . At the bottom of the window, the Floorplan Editor shows the logic expression
contained in the LUT forf . Lines are drawn to indicate the input and output connections
of this logic cell. They connect to the I/O cells that are used for inputsx1, x2, andx3, as
well as for the outputf .

After the placement has been completed, the next step is to decide which of the wires in
the chip are to be used to realize the required interconnections. This step is calledrouting.
Like the placement task, routing is highly dependent on the implementation technology.

Figure 4.44 The results of physical design for the VHDL code in Figure 4.42.
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For a CPLD the programming switches attached to the interconnection wires must be set
to connect the macrocells together as needed for the implemented circuit. Similarly, for
an FPGA the programming switches are used to connect the logic cells together. If the
implementation technology is a gate array or a standard-cell chip, then the routing tool
specifies the interconnection wires that are to be fabricated between the rows of logic cells.
Some small examples of routing were presented in Chapter 3, in Figures 3.59 and 3.67.

Both the placement and routing tasks can be difficult problems to solve for the CAD
tools, especially for the larger devices, such as FPGAs, gate arrays, and standard-cell chips.
Much research effort has gone into the development of algorithms for these tasks. Detailed
explanations of these algorithms can be found in more specialized books [23, 24].

4.12.3 Timing Simulation

In section 2.8.3 we described functional simulation and said that it is used to ensure that a
logic circuit description entered into a CAD system functions as expected by the designer.
In functional simulation it is assumed that signal propagation delays through logic gates
are negligible. In this section we considertiming simulation, which simulates the actual
propagation delays in the technology chosen for implementation.

After the physical design tasks are completed, the CAD system has determined exactly
how the designed circuit is to be realized in the target technology. It is then possible for the
CAD tools to create a model of the circuit that includes all timing aspects of the target chip.
The model represents the delays associated with the logic resources in the chip (macrocells
or logic cells) and with the interconnection wires.

The results of timing simulation for the functionf from Figure 4.42 are shown in
Figure 4.45. They were obtained using the timing simulator in MAX+plusII. The simulator
allows the designer to specify a waveform for each of the inputsx1, x2, andx3, and the tool
generates the corresponding waveform produced at the outputf . Part(a) of the figure gives
the timing expected when the circuit is implemented in the FLEX 10K FPGA. Observe that
a heavy vertical line, which is called thereference line, is set at the point wheref first makes
a transition from 0 to 1. The simulator specifies in the box labeled Ref that the reference
line is set at 32.8 ns from the start time of the simulation. The change inx1x2x3 from 000 to
001 takes place at 20 ns; hence 32.8− 20= 12.8 ns are required for the change in inputs
to causef to change to 1. The reason for the delay atf is that the signals must propagate
through the transistor circuits in the FPGA. The timing aspects of transistor circuits are
discussed in Chapter 3.

Figure 4.45bshows the same simulation for the circuit when it is implemented in a MAX
7000 CPLD. Of course, the circuit implements the same function as when implemented in
the FLEX 10K FPGA, but the timing is different. In the MAX 7000 CPLD,f changes 7.5
ns after the inputs change. The speed of a circuit may vary considerably when implemented
in different types of chips. Although our example suggests that the CPLD provides much
faster speed than the FPGA, the difference is exaggerated because of the small size of
the circuit. In general, when larger circuits are implemented, CPLDs and FPGAs provide
similar speeds.
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(a) Timing in an FPGA

(b) Timing in a CPLD

Figure 4.45 Timing simulation for the VHDL code in Figure 4.42.

4.12.4 Summary of Design Flow

Figure 4.46 summarizes the design flow of a complete CAD system. After initial synthesis
the logic synthesis tool automatically optimizes the circuit being designed. The physical
design tool then determines exactly how to implement the circuit in the chosen technology.
Timing simulation ensures that the implemented circuit meets the required performance.
Note that if functional correctness has already been ascertained using functional simulation,
as discussed in section 2.8, then the functionality of the circuit need not be verified using
timing simulation. However, if functional simulation was not done, then timing simulation
can be used to check for proper functionality as well. If timing or functional problems
are discovered, they are corrected by returning to the previous steps in the design flow.
For functional errors it is necessary to revisit the design entry step. For timing errors it
may be possible to correct the problems by using the logic synthesis tool. For example,
the window displayed in Figure 4.43 shows a sliding bar that can be used to change the
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Design conception

Design correct?

Chip configuration

Timing simulation

No

Yes

Design entry, initial synthesis, and functional simulation

(see section 2.8)

Physical design

Logic synthesis/optimization

Figure 4.46 A complete CAD system.

emphasis of the logic synthesis algorithms between circuit cost or circuit speed. Cost is
optimized by minimizing the amount of area needed on the chip to implement the circuit.
Speed is optimized by minimizing the propagation delay of signals in the circuit. It may
also be possible to use a faster speed grade of the selected chip or to select a different type of
chip that results in a faster circuit, as in the example from Figure 4.45. If the logic synthesis
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tool cannot resolve the timing problems, then it is necessary to return to the beginning of
the design flow to consider other design alternatives. The final step is to configure the target
chip to implement the desired circuit.

4.12.5 Examples of Circuits Synthesized from VHDL Code

In section 2.9 we showed how simple VHDL programs can be written to describe logic
functions. This section introduces additional features of VHDL and provides some examples
of circuits designed using VHDL code.

Recall that a logic signal is represented in VHDL as a data object, and each data object
has an associated type. In the examples in section 2.9, all data objects have the type BIT,
which means that they can assume only the values 0 and 1. To give more flexibility, VHDL
provides another data type calledSTD_LOGIC. Signals represented using this type can have
several different values.

As its name implies, STD_LOGIC is meant to serve as the standard data type for
representation of logic signals. An example using the STD_LOGIC type is given in Figure
4.47. The VHDL code shown is the same as that given in Figure 4.42 except that here the
type STD_LOGIC is used instead of BIT. The VHDL compiler would synthesize this code
in exactly the same way as described for the code in Figure 4.42.

To use the STD_LOGIC type, VHDL code must include the two lines given at the
beginning of Figure 4.47. These statements serve as directives to the VHDL compiler.
They are needed because the original VHDL standard, IEEE 1076, did not include the
STD_LOGIC type. The way that the new type was added to the language, in the IEEE 1164
standard, was to provide the definition of STD_LOGIC as a set of files that can be included
with VHDL code when compiled. The set of files is called alibrary. The purpose of the
first line in Figure 4.47 is to declare that the code will make use of the IEEE library.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY func2 IS
PORT ( x1, x2, x3 : IN STD_LOGIC ;

f : OUT STD_LOGIC ) ;
END func2 ;

ARCHITECTURE LogicFunc OF func2 IS
BEGIN

f <= (NOT x1 AND NOT x2 AND x3) OR
(x1 AND NOT x2 AND NOT x3) OR
(x1 AND NOT x2 AND x3) OR
(x1 AND x2 AND NOT x3) ;

END LogicFunc ;

Figure 4.47 The VHDL code in Figure 4.42 using STD_LOGIC.
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In VHDL there are two main aspects to the definition of a new data type. First, the set
of values that a data object of the new type can assume must be specified. For STD_LOGIC,
there are a number of legal values, but the ones that are the most important for describing
logic functions are 0, 1, Z, and−. We introduced the logic value Z, which represents
the high-impedance state, in section 3.8.8. The− logic value represents the don’t-care
condition, which we labeled asd in section 4.4. The second requirement is that all legal
uses in VHDL code of the new data type must be specified. For example, it is necessary to
specify that the type STD_LOGIC is legal for use with Boolean operators.

In the IEEE library one of the files defines the STD_LOGIC data type itself and specifies
some basic legal uses, such as for Boolean operations. In Figure 4.47 the second line of
code tells the VHDL compiler to use the definitions in this file when compiling the code.
The file encapsulates the definition of STD_LOGIC in what is known as apackage. The
package is named std_logic_1164. It is possible to instruct the VHDL compiler to use only
a subset of the package, but the normal use is to specify the wordall to indicate that the
entire package is of interest, as we have done in Figure 4.47.

The IEEE library files are plain text files that can be examined with any text editor.
Although it is not necessary for purposes of understanding the examples in this book,
an interested reader can examine the IEEE library files distributed with the MAX+plusII
system that accompanies the book. When the software is installed on a computer running a
Microsoft Windows operating system, the IEEE library files are normally installed in the file
system in the location C:\maxplus2\max2vhdl\ieee. The file that defines the STD_LOGIC
type is named “std1164.vhd.”

For the examples of VHDL code given in this book, we will almost always use only
the type STD_LOGIC. Besides simplifying the code, using just one data type has another
benefit. VHDL is a strongly type-checked language. This means that the VHDL compiler
carefully checks all data object assignment statements to ensure that the type of the data
object on the left side of the assignment statement is exactly the same as the type of the data
object on the right side. Even if two data objects seem compatible from an intuitive point
of view, such as an object of type BIT and one of type STD_LOGIC, the VHDL compiler
will not allow one to be assigned to the other. Many synthesis tools provide conversion
utilities to convert from one type to another, but we will avoid this issue by using only the
STD_LOGIC data type in most cases. In the remainder of this section, a few examples of
VHDL code are presented. We show the results of synthesizing the code for implementation
in two different types of chips, a CPLD and an FPGA.

Example 4.19Consider the VHDL code in Figure 4.48. The logic expression forf corresponds to the truth
table in Figure 4.1. We derived the minimal sum-of-products form,f = x3 + x1x2, using
the Karnaugh map in Figure 4.5b. If we compile the VHDL code for implementation in a
MAX 7000 CPLD, the MAX+plusII tools produce the expression

f = x3+ x1x2x3

It is easy to show that this expression is not fully minimized. Using the identity 16a in
section 2.5, the expression can be reduced tof = x3+ x1x2, which is the minimal form that
we derived manually. However, because the circuit is being implemented in a CPLD, the



April 13, 1999 12:52 g02-ch4 Sheet number 64 Page number 206 black

206 C H A P T E R 4 • Optimized Implementation of Logic Functions

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY func3 IS
PORT ( x1, x2, x3 : IN STD_LOGIC ;

f : OUT STD_LOGIC ) ;
END func3 ;

ARCHITECTURE LogicFunc OF func3 IS
BEGIN

f <= (NOT x1 AND NOT x2 AND NOT x3) OR
(NOT x1 AND x2 AND NOT x3) OR
(x1 AND NOT x2 AND NOT x3) OR
(x1 AND NOT x2 AND x3) OR
(x1 AND x2 AND NOT x3) ;

END LogicFunc ;

Figure 4.48 The VHDL code for the function in Figure 4.1.

extra literal in the product termx1x2x3 does not increase the cost. Figure 4.49 shows the
expression forf realized in a macrocell. Observe that since the XOR gate in the macrocell
is not used for the circuit, one input to the XOR gate is connected to 0.

As we have said before, CAD tools include many options that can affect the results of
the synthesis procedure. Some of the options available in MAX+plusII are shown in the
window in Figure 4.43. One of the options is calledXOR synthesis, which is a synthesis

D Q

PAL-like block

(From interconnection wires)

x1 x2 x3 Unused

0

0 1

Figure 4.49 Implementation of the VHDL code in Figure 4.48.
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technique that attempts to use XOR gates as judiciously as possible. If this option is turned
on and the VHDL code in Figure 4.48 is synthesized again, the resulting expression forf
becomes

f = x3⊕ x1x2x3

The reader should verify that this is functionally equivalent to the sum-of-products form
given above. The implementation of this expression in a MAX 7000 macrocell is depicted
in Figure 4.50. The XOR gate is now used as part of the function, with one input connected
to x3. Since it occupies a single macrocell, the cost of the implementation is the same as for
the circuit in Figure 4.49. Although not true in this example, for some logic functions the
XOR gates lead to greatly reduced cost. We should note that it is even possible to realize
any arbitrary logic function using only AND and XOR gates [4]. We discuss some typical
uses of XOR gates in Chapter 5. As this example illustrates, for any given logic function,
several different implementations often have the same cost in a given chip.

Figure 4.51 gives the results of synthesizing the VHDL code in Figure 4.48 into a
FLEX 10K FPGA. In this case the compiler generates the same sum-of-products form
that we derived manually. Because the logic cells in the FLEX 10K chip are four-input
lookup tables, only a single logic cell is needed for this function. The figure shows that the
variablesx1, x2, andx3 are connected to the LUT inputs calledi2, i3, andi4. Input i1 is not
used because the function requires only three inputs. The truth table in the LUT indicates
that the unused input is treated as a don’t care. Thus only half of the rows in the table are
shown, since the other half is identical. The unused LUT input is shown connected to 0 in
the figure, but it could just as well be connected to 1.

It is interesting to consider the benefits provided by the optimizations used in logic
synthesis. For the implementation in the CPLD, the function was simplified from the
original five product terms in the canonical form to just two product terms. However, both

D Q

PAL-like block

(From interconnection wires)

x1 x2 x3 Unused

0 1

Figure 4.50 Implementation of the VHDL code in Figure 4.48 using XOR synthesis.
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Figure 4.51 The VHDL code in Figure 4.48 implemented in a LUT.

the optimized and nonoptimized forms fit into a single macrocell in the chip, and thus they
have the same cost (Appendix E shows that the MAX 7000 CPLD has five product terms
in each macrocell). Similarly, for the FPGA, since a LUT is used for implementation, it
does not matter whether the function is minimized, because it fits in a single LUT. The
reason is that our example circuit is very small. For large circuits it is essential to perform
the optimization. Examples 4.20 and 4.21 illustrate logic functions for which the cost of
implementation is reduced when optimized.

Example 4.20 The VHDL code in Figure 4.52 corresponds to the functionf1 in Figure 4.7. Because there
are six product terms in the canonical form, two macrocells would be needed in a MAX
7000 CPLD. When synthesized by the CAD tools, the resulting expression is

f = x2x3+ x1x3x4

which is the same as the expression derived in Figure 4.7. Because the optimized expression
has only two product terms, it can be realized using just one macrocell and hence results in
a lower cost.

When f1 is synthesized for implementation in a FLEX 10K FPGA, the expression
generated is the same as for the CPLD. Since the function has only four inputs, it needs just
one LUT.

Example 4.21 In section 4.7 we used a seven-variable logic function as a motivation for multilevel syn-
thesis. This function is given in the VHDL code in Figure 4.53. The logic expression is
in minimal sum-of-products form. When it is synthesized for implementation in a MAX
7000 CPLD, no optimizations are performed by the CAD tools. The function requires one
macrocell. This function is more interesting when we consider its implementation in the
FLEX 10K FPGA. Because there are seven inputs, more than one LUT is required. If the
function is implemented directly as given in the VHDL code, then five LUTs are needed, as
depicted in Figure 4.54a. Rather than showing the truth table programmed in each LUT, we
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY func4 IS
PORT ( x1, x2, x3, x4 : IN STD_LOGIC ;

f : OUT STD_LOGIC ) ;
END func4 ;

ARCHITECTURE LogicFunc OF func4 IS
BEGIN

f <= (NOT x1 AND NOT x2 AND x3 AND NOT x4) OR
(NOT x1 AND NOT x2 AND x3 AND x4) OR
(x1 AND NOT x2 AND NOT x3 AND x4) OR
(x1 AND NOT x2 AND x3 AND NOT x4) OR
(x1 AND NOT x2 AND x3 AND x4) OR
(x1 AND x2 AND NOT x3 AND x4) ;

END LogicFunc ;

Figure 4.52 The VHDL code for f1 in Figure 4.7.

show the logic function that is implemented at the LUT output. Synthesis with MAX+plusII
results in the following expression:

f = (x1x6+ x2x7)(x3+ x4x5)

We derived the same expression by using factoring in section 4.7. As illustrated in
Figure 4.54b, it can be implemented using only two LUTs. One LUT produces the term
S= x1x6+ x2x7. The other LUT implements the four-input functionf = Sx3+ Sx4x5.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY func5 IS
PORT ( x1, x2, x3, x4, x5, x6, x7 : IN STD_LOGIC ;

f : OUT STD_LOGIC ) ;
END func5 ;

ARCHITECTURE LogicFunc OF func5 IS
BEGIN

f <= (x1 AND x3 AND NOT x6) OR
(x1 AND x4 AND x5 AND NOT x6) OR
(x2 AND x3 AND x7) OR
(x2 AND x4 AND x5 AND x7) ;

END LogicFunc ;

Figure 4.53 The VHDL code for the function of section 4.7.
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Figure 4.54 Implementation of the VHDL code in Figure 4.53.

4.13 Concluding Remarks

This chapter has attempted to provide the reader with an understanding of various aspects
of synthesis for logic functions and how synthesis is automated using modern CAD tools.
Now that the reader is comfortable with the fundamental concepts, we can examine digital
circuits of a more sophisticated nature. The next chapter describes circuits that perform
arithmetic operations, which are a key part of computers.
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Problems

4.1 Find the minimum-cost SOP and POS forms for the functionf (x1, x2, x3) =∑m(1, 2, 3, 5).

4.2 Repeat problem 4.1 for the functionf (x1, x2, x3) =∑m(1, 4, 7)+ D(2, 5).

4.3 Repeat problem 4.1 for the functionf (x1, . . . , x4) = 5M(0, 1, 2, 4, 5, 7, 8, 9, 10, 12, 14,
15).

4.4 Repeat problem 4.1 for the functionf (x1, . . . , x4) = ∑m(0, 2, 8, 9, 10, 15) + D(1, 3, 6,
7).

4.5 Repeat problem 4.1 for the functionf (x1, . . . , x5) = 5M(1, 4, 6, 7, 9, 12,15, 17, 20, 21,
22, 23, 28, 31).

4.6 Repeat problem 4.1 for the functionf (x1, . . . , x5) =∑m(0, 1, 3, 4, 6, 8, 9, 11, 13, 14, 16,
19, 20, 21, 22, 24, 25)+ D(5, 7, 12, 15, 17, 23).

4.7 Repeat problem 4.1 for the functionf (x1, . . . , x5) =∑m(1, 4, 6, 7, 9, 10, 12, 15, 17, 19,
20, 23, 25, 26, 27, 28, 30, 31)+ D(8, 16, 21, 22).

4.8 Find 5 three-variable functions for which the product-of-sums form has lower cost than the
sum-of-products form.

4.9 A four-variable logic function that is equal to 1 if any three or all four of its variables are
equal to 1 is called amajority function. Design a minimum-cost circuit that implements
this majority function.

4.10 Derive a minimum-cost realization of the four-variable function that is equal to 1 if exactly
two or exactly three of its variables are equal to 1; otherwise it is equal to 0.

4.11 Prove or show a counter-example for the statement: If a functionf has a unique minimum-
cost SOP expression, then it also has a unique minimum-cost POS expression.

4.12 A circuit with two outputs has to implement the following functions

f (x1, . . . , x4)=
∑

m(0, 2, 4, 6, 7, 9)+ D(10, 11)

g(x1, . . . , x4)=
∑

m(2, 4, 9, 10, 15)+ D(0, 13, 14)

Design the minimum-cost circuit and compare its cost with combined costs of two circuits
that implementf andg separately. Assume that the input variables are available in both
uncomplemented and complemented forms.

4.13 Repeat problem 4.12 for the following functions

f (x1, . . . , x5)=
∑

m(1, 4, 5, 11, 27, 28)+ D(10, 12, 14, 15, 20, 31)

g(x1, . . . , x5)=
∑

m(0, 1, 2, 4, 5, 8, 14, 15, 16, 18, 20, 24, 26, 28, 31)

+ D(10, 11, 12, 27)
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4.14 Implement the logic circuit in Figure 4.26 using NAND gates only.

4.15 Implement the logic circuit in Figure 4.26 using NOR gates only.

4.16 Implement the logic circuit in Figure 4.28 using NAND gates only.

4.17 Implement the logic circuit in Figure 4.28 using NOR gates only.

4.18 Consider the functionf = x3x5 + x1x2x4 + x1x2x4 + x1x3x4 + x1x3x4 + x1x2x5 + x1x2x5.
Derive a minimum-cost circuit that implements this function using NOT, AND, and OR
gates.

4.19 Derive a minimum-cost circuit that implements the functionf (x1, . . . , x4) =∑m(4, 7, 8,
11)+ D(12, 15).

4.20 Find the simplest realization of the functionf (x1, . . . , x4) =∑m(0, 3, 4, 7, 9, 10, 13, 14),
assuming that the logic gates have a maximum fan-in of two.

4.21 Find the minimum-cost circuit for the functionf (x1, . . . , x4) = ∑
m(0, 4, 8, 13, 14, 15).

Assume that the input variables are available in uncomplemented form only. (Hint: use
functional decomposition.)

4.22 Use functional decomposition to find the best implementation of the functionf (x1, . . . , x5) =∑
m(1, 2, 7, 9, 10, 18, 19, 25, 31)+D(0, 15, 20, 26). How does your implementation com-

pare with the lowest-cost SOP implementation? Give the costs.

4.23 Show that the following distributive-like rules are valid

(A · B)#C= (A#C) · (B#C)

(A+ B)#C= (A#C)+ (B#C)

4.24 Use the cubical representation and the method discussed in section 4.10 to find a minimum-
cost SOP realization of the functionf (x1, . . . , x4) =∑m(0, 2, 4, 5, 7, 8, 9, 15).

4.25 Repeat problem 4.24 for the functionf (x1, . . . , x5) = x1x3x5 + x1x2x3 + x2x3x4x5 +
x1x2x3x4 + x1x2x3x4x5+ x1x2x4x5+ x1x3x4x5.

4.26 Use the cubical representation and the method discussed in section 4.10 to find a minimum-
cost SOP realization of the functionf (x1, . . . , x4) defined by the ON-set ON = {00x0, 100x,
x010, 1111} and the don’t-care set DC = {00x1, 011x}.

4.27 In section 4.10.1 we showed how the∗-product operation can be used to find the prime
implicants of a given functionf . Another possibility is to find the prime implicants by
expanding the implicants in the initial cover of the function. An implicant isexpanded
by removing one literal to create a larger implicant (in terms of the number of vertices
covered). A larger implicant is valid only if it does not include any vertices for which
f = 0. The largest valid implicants obtained in the process of expansion are the prime
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x2x3 x1x3 x1x2

x3 x2 x3 x1 x2 x1

x1x2x3

NONONONO

Figure P4.1 Expansion of implicant x1x2x3.

implicants. Figure P4.1 illustrates the expansion of the implicantx1x2x3 of the function in
Figure 4.9, which is also used in Example 4.14. Note from Figure 4.9 that

f = x1x2x3+ x1x2x3+ x1x2x3

In Figure P4.1 the word NO is used to indicate that the expanded term is not valid,
because it includes one or more vertices fromf . From the graph it is clear that the largest
valid implicants that arise from this expansion arex2x3 andx1; they are prime implicants
of f .

Expand the other four implicants given in the initial cover in Example 4.14 to find all
prime implicants off . What is the relative complexity of this procedure compared to the
∗-product technique?

Note: A technique based on such expansion of implicants is used to find the prime
implicants in the Espresso CAD program [19].

4.28 Repeat problem 4.27 for the function in Example 4.15. Expand the implicants given in the
initial coverC0.

4.29 Consider the logic expressions

f = x1x2x5+x1x2x4x5+x1x2x4x5+x1x2x3x4+x1x2x3x5+x2x3x4x5+x1x2x3x4x5

g= x2x3x4+x2x3x4x5+x1x3x4x5+x1x2x4x5+x1x3x4x5+x1x2x3x5+x1x2x3x4x5

Prove or disprove thatf = g.

4.30 Consider the circuit in Figure P4.2, which implements functionsf andg. What is the cost of
this circuit, assuming that the input variables are available in both true and complemented
forms? Redesign the circuit to implement the same functions, but at as low a cost as possible.
What is the cost of your circuit?

4.31 Repeat problem 4.30 for the circuit in Figure P4.3. Use only NAND gates in your circuit.
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Figure P4.2 Circuit for problem 4.30.
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Combinational-Circuit Building

Blocks

Chapter Objectives

In this chapter you will learn about:

• Commonly used combinational subcircuits

• Multiplexers, which can be used for selection of signals and for implementation
of general logic functions

• Circuits used for encoding, decoding, and code-conversion purposes

• Key VHDL constructs used to define combinational circuits
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Previous chapters have introduced the basic techniques for design of logic circuits. In practice, a few types
of logic circuits are often used as building blocks in larger designs. This chapter discusses a number of these
blocks and gives examples of their use. The chapter also includes a major section on VHDL, which describes
several key features of the language.

6.1 Multiplexers

Multiplexers were introduced briefly in Chapters 2 and 3. A multiplexer circuit has a
number of data inputs, one or more select inputs, and one output. It passes the signal value
on one of the data inputs to the output. The data input is selected by the values of the select
inputs. Figure 6.1 shows a 2-to-1 multiplexer. Part (a) gives the symbol commonly used.
The select input, s, chooses as the output of the multiplexer either input w0 or w1. The
multiplexer’s functionality can be described in the form of a truth table as shown in part (b)

of the figure. Part (c) gives a sum-of-products implementation of the 2-to-1 multiplexer,
and part (d) illustrates how it can be constructed with transmission gates.

Figure 6.2a depicts a larger multiplexer with four data inputs, w0, . . . , w3, and two
select inputs, s1 and s0. As shown in the truth table in part (b) of the figure, the two-bit
number represented by s1s0 selects one of the data inputs as the output of the multiplexer.

(a) Graphical symbol

f

s

w
0

w
1

0

1

(b) Truth table

0
1

f

fs

w
0

w
1

(c) Sum-of-products circuit

s

w
0

w
1

f

s

w
0

w
1

(d) Circuit with transmission gates

Figure 6.1 A 2-to-1 multiplexer.
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(a) Graphical symbol
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Figure 6.2 A 4-to-1 multiplexer.

A sum-of-products implementation of the 4-to-1 multiplexer appears in Figure 6.2c. It
realizes the multiplexer function

f = s1s0w0 + s1s0w1 + s1s0w2 + s1s0w3

It is possible to build larger multiplexers using the same approach. Usually, the num-
ber of data inputs, n, is an integer power of two. A multiplexer that has n data inputs,
w0, . . . , wn−1, requires � log2n � select inputs. Larger multiplexers can also be constructed
from smaller multiplexers. For example, the 4-to-1 multiplexer can be built using three
2-to-1 multiplexers as illustrated in Figure 6.3. If the 4-to-1 multiplexer is implemented
using transmission gates, then the structure in this figure is always used. Figure 6.4 shows
how a 16-to-1 multiplexer is constructed with five 4-to-1 multiplexers.
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Figure 6.3 Using 2-to-1 multiplexers to build a 4-to-1
multiplexer.
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Figure 6.4 A 16-to-1 multiplexer.
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Example 6.1Figure 6.5 shows a circuit that has two inputs, x1 and x2, and two outputs, y1 and y2. As
indicated by the blue lines, the function of the circuit is to allow either of its inputs to be
connected to either of its outputs, under the control of another input, s. A circuit that has
n inputs and k outputs, whose sole function is to provide a capability to connect any input
to any output, is usually referred to as an n×k crossbar switch. Crossbars of various sizes
can be created, with different numbers of inputs and outputs. When there are two inputs
and two outputs, it is called a 2×2 crossbar.

Figure 6.5b shows how the 2×2 crossbar can be implemented using 2-to-1 multiplexers.
The multiplexer select inputs are controlled by the signal s. If s = 0, the crossbar connects
x1 to y1 and x2 to y2, while if s = 1, the crossbar connects x1 to y2 and x2 to y1. Crossbar
switches are useful in many practical applications in which it is necessary to be able to
connect one set of wires to another set of wires, where the connection pattern changes from
time to time.

Example 6.2We introduced field-programmable gate array (FPGA) chips in section 3.6.5. Figure 3.39
depicts a small FPGAthat is programmed to implement a particular circuit. The logic blocks
in the FPGA have two inputs, and there are four tracks in each routing channel. Each of the
programmable switches that connects a logic block input or output to an interconnection
wire is shown as an X. A small part of Figure 3.39 is reproduced in Figure 6.6a. For clarity,

x
1 0

1

x
2 0

1

s

y
1

y
2

x
1

x
2

y
1

y
2

(a) A 2x2 crossbar switch

(b) Implementation using multiplexers

s

Figure 6.5 A practical application of multiplexers.
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(a) Part of the FPGA in Figure 3.39
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(c) Implementation using multiplexers
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Figure 6.6 Implementing programmable switches in an FPGA.
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the figure shows only a single logic block and the interconnection wires and switches
associated with its input terminals.

One way in which the programmable switches can be implemented is illustrated in
Figure 6.6b. Each X in part (a) of the figure is realized using an NMOS transistor controlled
by a storage cell. This type of programmable switch was also shown in Figure 3.68. We
described storage cells briefly in section 3.6.5 and will discuss them in more detail in section
10.1. Each cell stores a single logic value, either 0 or 1, and provides this value as the output
of the cell. Each storage cell is built by using several transistors. Thus the eight cells shown
in the figure use a significant amount of chip area.

The number of storage cells needed can be reduced by using multiplexers, as shown
in Figure 6.6c. Each logic block input is fed by a 4-to-1 multiplexer, with the select inputs
controlled by storage cells. This approach requires only four storage cells, instead of eight.
In commercial FPGAs the multiplexer-based approach is usually adopted.

6.1.1 Synthesis of Logic Functions Using Multiplexers

Multiplexers are useful in many practical applications, such as those described above. They
can also be used in a more general way to synthesize logic functions. Consider the example
in Figure 6.7a. The truth table defines the function f = w1 ⊕ w2. This function can be
implemented by a 4-to-1 multiplexer in which the values of f in each row of the truth table
are connected as constants to the multiplexer data inputs. The multiplexer select inputs are
driven by w1 and w2. Thus for each valuation of w1w2, the output f is equal to the function
value in the corresponding row of the truth table.

The above implementation is straightforward, but it is not very efficient. A better
implementation can be derived by manipulating the truth table as indicated in Figure 6.7b,
which allows f to be implemented by a single 2-to-1 multiplexer. One of the input signals,
w1 in this example, is chosen as the select input of the 2-to-1 multiplexer. The truth table
is redrawn to indicate the value of f for each value of w1. When w1 = 0, f has the same
value as input w2, and when w1 = 1, f has the value of w2. The circuit that implements
this truth table is given in Figure 6.7c. This procedure can be applied to synthesize a circuit
that implements any logic function.

Example 6.3Figure 6.8a gives the truth table for the three-input majority function, and it shows how the
truth table can be modified to implement the function using a 4-to-1 multiplexer. Any two
of the three inputs may be chosen as the multiplexer select inputs. We have chosen w1 and
w2 for this purpose, resulting in the circuit in Figure 6.8b.
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(a) Implementation using a 4-to-1 multiplexer
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(c) Circuit

Figure 6.7 Synthesis of a logic function using mutiplexers.

Example 6.4 Figure 6.9a indicates how the function f = w1⊕w2⊕w3 can be implemented using 2-to-1
multiplexers. When w1 = 0, f is equal to the XOR of w2 and w3, and when w1 = 1, f is the
XNOR of w2 and w3. The left multiplexer in the circuit produces w2 ⊕w3, using the result
from Figure 6.7, and the right multiplexer uses the value of w1 to select either w2⊕w3 or its
complement. Note that we could have derived this circuit directly by writing the function
as f = (w2 ⊕ w3)⊕ w1.

Figure 6.10 gives an implementation of the three-input XOR function using a 4-to-1
multiplexer. Choosing w1 and w2 for the select inputs results in the circuit shown.
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Figure 6.8 Implementation of the three-input majority function
using a 4-to-1 multiplexer.
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Figure 6.9 Three-input XOR implemented with 2-to-1 multiplexers.
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Figure 6.10 Three-input XOR implemented with a 4-to-1 multiplexer.

6.1.2 Multiplexer Synthesis Using Shannon’s Expansion

Figures 6.8 through 6.10 illustrate how truth tables can be interpreted to implement logic
functions using multiplexers. In each case the inputs to the multiplexers are the constants
0 and 1, or some variable or its complement. Besides using such simple inputs, it is
possible to connect more complex circuits as inputs to a multiplexer, allowing functions to
be synthesized using a combination of multiplexers and other logic gates. Suppose that we
want to implement the three-input majority function in Figure 6.8 using a 2-to-1 multiplexer
in this way. Figure 6.11 shows an intuitive way of realizing this function. The truth table
can be modified as shown on the right. If w1 = 0, then f = w2w3, and if w1 = 1, then
f = w2 + w3. Using w1 as the select input for a 2-to-1 multiplexer leads to the circuit in
Figure 6.11b.

This implementation can be derived using algebraic manipulation as follows. The
function in Figure 6.11a is expressed in sum-of-products form as

f = w1w2w3 + w1w2w3 + w1w2w3 + w1w2w3

It can be manipulated into

f = w1(w2w3)+ w1(w2w3 + w2w3 + w2w3)

= w1(w2w3)+ w1(w2 + w3)

which corresponds to the circuit in Figure 6.11b.
Multiplexer implementations of logic functions require that a given function be decom-

posed in terms of the variables that are used as the select inputs. This can be accomplished
by means of a theorem proposed by Claude Shannon [1].
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(a) Truth table
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Figure 6.11 The three-input majority function implemented using a
2-to-1 multiplexer.

Shannon’s Expansion Theorem
Any Boolean function f (w1, . . . , wn) can be written in the form

f (w1, w2, . . . , wn) = w1 · f (0, w2, . . . , wn)+ w1 · f (1, w2, . . . , wn)

This expansion can be done in terms of any of the n variables. We will leave the proof of
the theorem as an exercise for the reader (see problem 6.9).

To illustrate its use, we can apply the theorem to the three-input majority function,
which can be written as

f (w1, w2, w3) = w1w2 + w1w3 + w2w3

Expanding this function in terms of w1 gives

f = w1(w2w3)+ w1(w2 + w3)

which is the expression that we derived above.
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For the three-input XOR function, we have

f = w1 ⊕ w2 ⊕ w3

= w1 · (w2 ⊕ w3)+ w1 · (w2 ⊕ w3)

which gives the circuit in Figure 6.9b.
In Shannon’s expansion the term f (0, w2, . . . , wn) is called the cofactor of f with respect

to w1; it is denoted in shorthand notation as fw1 . Similarly, the term f (1, w2, . . . , wn) is
called the cofactor of f with respect to w1, written fw1 . Hence we can write

f = w1fw1 + w1fw1

In general, if the expansion is done with respect to variable wi, then fwi denotes
f (w1, . . . , wi−1, 1, wi+1, . . . , wn) and

f (w1, . . . , wn) = wifwi + wifwi

The complexity of the logic expression may vary, depending on which variable, wi, is used,
as illustrated in Example 6.5.

Example 6.5 For the function f = w1w3 + w2w3, decomposition using w1 gives

f = w1fw1 + w1fw1

= w1(w3 + w2)+ w1(w2w3)

Using w2 instead of w1 produces

f = w2fw2 + w2fw2

= w2(w1w3)+ w2(w1 + w3)

Finally, using w3 gives

f = w3fw3 + w3fw3

= w3(w2)+ w3(w1)

The results generated using w1 and w2 have the same cost, but the expression produced
using w3 has a lower cost. In practice, the CAD tools that perform decompositions of this
type try a number of alternatives and choose the one that produces the best result.

Shannon’s expansion can be done in terms of more than one variable. For example,
expanding a function in terms of w1 and w2 gives

f (w1, . . . , wn) = w1w2 · f (0, 0, w3, . . . , wn)+ w1w2 · f (0, 1, w3, . . . , wn)

+ w1w2 · f (1, 0, w3, …̧, wn)+ w1w2 · f (1, 1, w3, . . . , wn)

This expansion gives a form that can be implemented using a 4-to-1 multiplexer. If Shan-
non’s expansion is done in terms of all n variables, then the result is the canonical sum-of-
products form, which was defined in section 2.6.1.
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Figure 6.12 The circuits synthesized in Example 6.6.

Example 6.6Assume that we wish to implement the function

f = w1w3 + w1w2 + w1w3

using a 2-to-1 multiplexer and any other necessary gates. Shannon’s expansion using w1

gives

f = w1fw1 + w1fw1

= w1(w3)+ w1(w2 + w3)

The corresponding circuit is shown in Figure 6.12a. Assume now that we wish to use a
4-to-1 multiplexer instead. Further decomposition using w2 gives

f = w1w2fw1w2 + w1w2fw1w2 + w1w2fw1w2 + w1w2fw1w2

= w1w2(w3)+ w1w2(w3)+ w1w2(w3)+ w1w2(1)

The circuit is shown in Figure 6.12b.

Example 6.7Consider the three-input majority function

f = w1w2 + w1w3 + w2w3
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Figure 6.13 The circuit synthesized in Example 6.7.

We wish to implement this function using only 2-to-1 multiplexers. Shannon’s expansion
using w1 yields

f = w1(w2w3)+ w1(w2 + w3 + w2w3)

= w1(w2w3)+ w1(w2 + w3)

Let g = w2w3 and h = w2 + w3. Expansion of both g and h using w2 gives

g = w2(0)+ w2(w3)

h = w2(w3)+ w2(1)

The corresponding circuit is shown in Figure 6.13. It is equivalent to the 4-to-1 multiplexer
circuit derived using a truth table in Figure 6.8.

Example 6.8 In section 3.6.5 we said that most FPGAs use lookup tables for their logic blocks. Assume
that an FPGA exists in which each logic block is a three-input lookup table (3-LUT).
Because it stores a truth table, a 3-LUT can realize any logic function of three variables.
Using Shannon’s expansion, any four-variable function can be realized with at most three
3-LUTs. Consider the function

f = w2w3 + w1w2w3 + w2w3w4 + w1w2w4

Expansion in terms of w1 produces

f = w1fw1 + w1fw1

= w1(w2w3 + w2w3 + w2w3w4)+ w1(w2w3 + w2w3w4 + w2w4)

= w1(w2w3 + w2w3)+ w1(w2w3 + w2w3w4 + w2w4)

A circuit with three 3-LUTs that implements this expression is shown in Figure 6.14a.
Decomposition of the function using w2, instead of w1, gives

f = w2fw2 + w2fw2

= w2(w3 + w1w4)+ w2(w1w3 + w3w4)
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Figure 6.14 Circuits synthesized in Example 6.8.

Observe that f w2
= fw2 ; hence only two 3-LUTs are needed, as illustrated in Figure 6.14b.

The LUT on the right implements the two-variable function w2fw2 + w2f w2
.

Since it is possible to implement any logic function using multiplexers, general-purpose
chips exist that contain multiplexers as their basic logic resources. Both Actel Corporation
[2] and QuickLogic Corporation [3] offer FPGAs in which the logic block comprises an ar-
rangement of multiplexers. Texas Instruments offers gate array chips that have multiplexer-
based logic blocks [4].

6.2 Decoders

Decoder circuits are used to decode encoded information. A binary decoder, depicted in
Figure 6.15, is a logic circuit with n inputs and 2n outputs. Only one output is asserted
at a time, and each output corresponds to one valuation of the inputs. The decoder also
has an enable input, En, that is used to disable the outputs; if En = 0, then none of the
decoder outputs is asserted. If En= 1, the valuation of wn−1 · · ·w1w0 determines which of
the outputs is asserted. An n-bit binary code in which exactly one of the bits is set to 1 at a
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Figure 6.15 An n-to-2n binary decoder.

time is referred to as one-hot encoded, meaning that the single bit that is set to 1 is deemed
to be “hot.” The outputs of a binary decoder are one-hot encoded.

A 2-to-4 decoder is given in Figure 6.16. The two data inputs are w1 and w0. They
represent a two-bit number that causes the decoder to assert one of the outputs y0, . . . , y3.
Although a decoder can be designed to have either active-high or active-low outputs, in

(b) Graphical symbol(a) Truth table

0
0
1
1

1
0
1

y
0

w
1

0

w
0

(c) Logic circuit

w
1

w
0

x x

1
1

0

1
1

En

0
0
0

1

0

y
1

1
0
0

0

0

y
2

0
1
0

0

0

y
3

0
0
1

0

0

y
0

y
1

y
2

y
3

En

w
0

En

y
0

w
1

y
1

y
2

y
3

Figure 6.16 A 2-to-4 decoder.
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Figure 6.17 A 3-to-8 decoder using two 2-to-4 decoders.

Figure 6.16 active-high outputs are assumed. Setting the inputs w1w0 to 00, 01, 10, or 11
causes the output y0, y1, y2, or y3 to be set to 1, respectively. A graphical symbol for the
decoder is given in part (b) of the figure, and a logic circuit is shown in part (c).

Larger decoders can be built using the sum-of-products structure in Figure 6.16c, or
else they can be constructed from smaller decoders. Figure 6.17 shows how a 3-to-8 decoder
is built with two 2-to-4 decoders. The w2 input drives the enable inputs of the two decoders.
The top decoder is enabled if w2 = 0, and the bottom decoder is enabled if w2 = 1. This
concept can be applied for decoders of any size. Figure 6.18 shows how five 2-to-4 decoders
can be used to construct a 4-to-16 decoder. Because of its treelike structure, this type of
circuit is often referred to as a decoder tree.

Example 6.9Decoders are useful for many practical purposes. In Figure 6.2c we showed the sum-of-
products implementation of the 4-to-1 multiplexer, which requiresAND gates to distinguish
the four different valuations of the select inputs s1 and s0. Since a decoder evaluates the
values on its inputs, it can be used to build a multiplexer as illustrated in Figure 6.19. The
enable input of the decoder is not needed in this case, and it is set to 1. The four outputs of
the decoder represent the four valuations of the select inputs.

Example 6.10In Figure 3.59 we showed how a 2-to-1 multiplexer can be constructed using two tri-state
buffers. This concept can be applied to any size of multiplexer, with the addition of a
decoder. An example is shown in Figure 6.20. The decoder enables one of the tri-state
buffers for each valuation of the select lines, and that tri-state buffer drives the output, f ,
with the selected data input. We have now seen that multiplexers can be implemented in
various ways. The choice of whether to employ the sum-of-products form, transmission
gates, or tri-state buffers depends on the resources available in the chip being used. For
instance, most FPGAs that use lookup tables for their logic blocks do not contain tri-state
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Figure 6.18 A 4-to-16 decoder built using a decoder tree.
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Figure 6.20 A 4-to-1 multiplexer built using a decoder and tri-state
buffers.

buffers. Hence multiplexers must be implemented in the sum-of-products form using the
lookup tables (see Example 6.30).

6.2.1 Demultiplexers

We showed in section 6.1 that a multiplexer has one output, n data inputs, and � log2n �
select inputs. The purpose of the multiplexer circuit is to multiplex the n data inputs onto
the single data output under control of the select inputs. A circuit that performs the opposite
function, namely, placing the value of a single data input onto multiple data outputs, is
called a demultiplexer. The demultiplexer can be implemented using a decoder circuit. For
example, the 2-to-4 decoder in Figure 6.16 can be used as a 1-to-4 demultiplexer. In this
case the En input serves as the data input for the demultiplexer, and the y0 to y3 outputs
are the data outputs. The valuation of w1w0 determines which of the outputs is set to the
value of En. To see how the circuit works, consider the truth table in Figure 6.16a. When
En = 0, all the outputs are set to 0, including the one selected by the valuation of w1w0.
When En = 1, the valuation of w1w0 sets the appropriate output to 1.

In general, an n-to-2n decoder circuit can be used as a 1-to-n demultiplexer. However, in
practice decoder circuits are used much more often as decoders rather than as demultiplexers.
In many applications the decoder’s En input is not actually needed; hence it can be omitted.
In this case the decoder always asserts one of its data outputs, y0, . . . , y2n−1, according to
the valuation of the data inputs, wn−1 · · ·w0. Example 6.11 uses a decoder that does not
have the En input.
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Example 6.11 One of the most important applications of decoders is in memory blocks, which are used to
store information. Such memory blocks are included in digital systems, such as computers,
where there is a need to store large amounts of information electronically. One type of
memory block is called a read-only memory (ROM). A ROM consists of a collection of
storage cells, where each cell permanently stores a single logic value, either 0 or 1. Figure
6.21 shows an example of a ROM block. The storage cells are arranged in 2m rows with n
cells per row. Thus each row stores n bits of information. The location of each row in the
ROM is identified by its address. In the figure the row at the top of the ROM has address
0, and the row at the bottom has address 2m − 1. The information stored in the rows can
be accessed by asserting the select lines, Sel0 to Sel2m−1. As shown in the figure, a decoder
with m inputs and 2m outputs is used to generate the signals on the select lines. Since
the inputs to the decoder choose the particular address (row) selected, they are called the
address lines. The information stored in the row appears on the data outputs of the ROM,
dn−1, . . . , d0, which are called the data lines. Figure 6.21 shows that each data line has
an associated tri-state buffer that is enabled by the ROM input named Read. To access, or
read, data from the ROM, the address of the desired row is placed on the address lines and
Read is set to 1.
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Figure 6.21 A 2m × n read-only memory (ROM) block.
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Many different types of memory blocks exist. In a ROM the stored information can
be read out of the storage cells, but it cannot be changed (see problem 6.32). Another
type of ROM allows information to be both read out of the storage cells and stored, or
written, into them. Reading its contents is the normal operation, whereas writing requires
a special procedure. Such a memory block is called a programmable ROM (PROM). The
storage cells in a PROM are usually implemented using EEPROM transistors. We discussed
EEPROM transistors in section 3.10 to show how they are used in PLDs. Other types of
memory blocks are discussed in section 10.1.

6.3 Encoders

An encoder performs the opposite function of a decoder. It encodes given information into
a more compact form.

6.3.1 Binary Encoders

A binary encoder encodes information from 2n inputs into an n-bit code, as indicated in
Figure 6.22. Exactly one of the input signals should have a value of 1, and the outputs
present the binary number that identifies which input is equal to 1. The truth table for a
4-to-2 encoder is provided in Figure 6.23a. Observe that the output y0 is 1 when either
input w1 or w3 is 1, and output y1 is 1 when input w2 or w3 is 1. Hence these outputs can be
generated by the circuit in Figure 6.23b. Note that we assume that the inputs are one-hot
encoded. All input patterns that have multiple inputs set to 1 are not shown in the truth
table, and they are treated as don’t-care conditions.

Encoders are used to reduce the number of bits needed to represent given information.
A practical use of encoders is for transmitting information in a digital system. Encoding
the information allows the transmission link to be built using fewer wires. Encoding is also
useful if information is to be stored for later use because fewer bits need to be stored.

2n

inputs

w
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w
2n 1–

y
0

y
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n
outputs

Figure 6.22 A 2n-to-n binary encoder.
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Figure 6.23 A 4-to-2 binary encoder.

6.3.2 Priority Encoders

Another useful class of encoders is based on the priority of input signals. In a priority
encoder each input has a priority level associated with it. The encoder outputs indicate the
active input that has the highest priority. When an input with a high priority is asserted, the
other inputs with lower priority are ignored. The truth table for a 4-to-2 priority encoder is
shown in Figure 6.24. It assumes that w0 has the lowest priority and w3 the highest. The
outputs y1 and y0 represent the binary number that identifies the highest priority input set
to 1. Since it is possible that none of the inputs is equal to 1, an output, z, is provided to
indicate this condition. It is set to 1 when at least one of the inputs is equal to 1. It is set to
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Figure 6.24 Truth table for a 4-to-2 priority encoder.
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0 when all inputs are equal to 0. The outputs y1 and y0 are not meaningful in this case, and
hence the first row of the truth table can be treated as a don’t-care condition for y1 and y0.

The behavior of the priority encoder is most easily understood by first considering
the last row in the truth table. It specifies that if input w3 is 1, then the outputs are set to
y1y0 = 11. Because w3 has the highest priority level, the values of inputs w2, w1, and w0

do not matter. To reflect the fact that their values are irrelevant, w2, w1, and w0 are denoted
by the symbol x in the truth table. The second-last row in the truth table stipulates that if
w2 = 1, then the outputs are set to y1y0 = 10, but only if w3 = 0. Similarly, input w1

causes the outputs to be set to y1y0 = 01 only if both w3 and w2 are 0. Input w0 produces
the outputs y1y0 = 00 only if w0 is the only input that is asserted.

Alogic circuit that implements the truth table can be synthesized by using the techniques
developed in Chapter 4. However, a more convenient way to derive the circuit is to define
a set of intermediate signals, i0, . . . , i3, based on the observations above. Each signal, ik ,
is equal to 1 only if the input with the same index, wk , represents the highest-priority input
that is set to 1. The logic expressions for i0, . . . , i3 are

i0 = w3w2w1w0

i1 = w3w2w1

i2 = w3w2

i3 = w3

Using the intermediate signals, the rest of the circuit for the priority encoder has the same
structure as the binary encoder in Figure 6.23, namely

y0 = i1 + i3

y1 = i2 + i3

The output z is given by

z = i0 + i1 + i2 + i3

6.4 Code Converters

The purpose of the decoder and encoder circuits is to convert from one type of input
encoding to a different output encoding. For example, a 3-to-8 binary decoder converts
from a binary number on the input to a one-hot encoding at the output. An 8-to-3 binary
encoder performs the opposite conversion. There are many other possible types of code
converters. One common example is a BCD-to-7-segment decoder, which converts one
binary-coded decimal (BCD) digit into information suitable for driving a digit-oriented
display. As illustrated in Figure 6.25a, the circuit converts the BCD digit into seven signals
that are used to drive the segments in the display. Each segment is a small light-emitting
diode (LED), which glows when driven by an electrical signal. The segments are labeled
from a to g in the figure. The truth table for the BCD-to-7-segment decoder is given in
Figure 6.25c. For each valuation of the inputs w3, . . . , w0, the seven outputs are set to
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Figure 6.25 A BCD-to-7-segment display code converter.

display the appropriate BCD digit. Note that the last 6 rows of a complete 16-row truth
table are not shown. They represent don’t-care conditions because they are not legal BCD
codes and will never occur in a circuit that deals with BCD data. A circuit that implements
the truth table can be derived using the synthesis techniques discussed in Chapter 4. Finally,
we should note that although the word decoder is traditionally used for this circuit, a more
appropriate term is code converter. The term decoder is more appropriate for circuits that
produce one-hot encoded outputs.

6.5 Arithmetic Comparison Circuits

Chapter 5 presented arithmetic circuits that perform addition, subtraction, and multiplication
of binary numbers. Another useful type of arithmetic circuit compares the relative sizes
of two binary numbers. Such a circuit is called a comparator. This section considers the
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design of a comparator that has two n-bit inputs, A and B, which represent unsigned binary
numbers. The comparator produces three outputs, called AeqB, AgtB, and AltB. The AeqB
output is set to 1 if A and B are equal. The AgtB output is 1 if A is greater than B, and the
AltB output is 1 if A is less than B.

The desired comparator can be designed by creating a truth table that specifies the three
outputs as functions of A and B. However, even for moderate values of n, the truth table is
large. A better approach is to derive the comparator circuit by considering the bits of A and
B in pairs. We can illustrate this by a small example, where n = 4.

Let A = a3a2a1a0 and B = b3b2b1b0. Define a set of intermediate signals called
i3, i2, i1, and i0. Each signal, ik , is 1 if the bits of A and B with the same index are equal.
That is, ik = ak ⊕ bk . The comparator’s AeqB output is then given by

AeqB = i3i2i1i0

An expression for the AgtB output can be derived by considering the bits of A and B in the
order from the most-significant bit to the least-significant bit. The first bit-position, k, at
which ak and bk differ determines whether A is less than or greater than B. If ak = 0 and
bk = 1, then A < B. But if ak = 1 and bk = 0, then A > B. The AgtB output is defined by

AgtB = a3b3 + i3a2b2 + i3i2a1b1 + i3i2i1a0b0

The ik signals ensure that only the first digits, considered from the left to the right, of A and
B that differ determine the value of AgtB.

The AltB output can be derived by using the other two outputs as

AltB = AeqB+ AgtB

A logic circuit that implements the four-bit comparator circuit is shown in Figure 6.26. This
approach can be used to design a comparator for any value of n.

Comparator circuits, like most logic circuits, can be designed in different ways. Another
approach for designing a comparator circuit is presented in Example 5.10 in Chapter 5.

6.6 VHDL for Combinational Circuits

Having presented a number of useful circuits that can be used as building blocks in larger
circuits, we will now consider how such circuits can be described in VHDL. Rather than re-
lying on the simple VHDL statements used in previous examples, such as logic expressions,
we will specify the circuits in terms of their behavior. We will also introduce a number of
new VHDL constructs.

6.6.1 Assignment Statements

VHDL provides several types of statements that can be used to assign logic values to signals.
In the examples of VHDL code given so far, only simple assignment statements have been
used, either for logic or arithmetic expressions. This section introduces other types of
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Figure 6.26 A four-bit comparator circuit.

assignment statements, which are called selected signal assignments, conditional signal
assignments, generate statements, if-then-else statements, and case statements.

6.6.2 Selected Signal Assignment

A selected signal assignment allows a signal to be assigned one of several values, based on
a selection criterion. Figure 6.27 shows how it can be used to describe a 2-to-1 multiplexer.
The entity, named mux2to1, has the inputs w0, w1, and s, and the output f . The selected
signal assignment begins with the keyword WITH, which specifies that s is to be used for
the selection criterion. The two WHEN clauses state that f is assigned the value of w0 when
s = 0; otherwise, f is assigned the value of w1. The WHEN clause that selects w1 uses the
word OTHERS, instead of the value 1. This is required because the VHDL syntax specifies
that a WHEN clause must be included for every possible value of the selection signal s.
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY mux2to1 IS
PORT ( w0, w1, s : IN STD LOGIC ;

f : OUT STD LOGIC ) ;
END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN

WITH s SELECT
f <
 w0 WHEN ’0’,

w1 WHEN OTHERS ;
END Behavior ;

Figure 6.27 VHDL code for a 2-to-1 multiplexer.

Since it has the STD_LOGIC type, discussed in section 4.12, s can take the values 0, 1,
Z, −, and others. The keyword OTHERS provides a convenient way of accounting for all
logic values that are not explicitly listed in a WHEN clause.

Example 6.12A 4-to-1 multiplexer is described by the entity named mux4to1, shown in Figure 6.28. The
two select inputs, which are called s1 and s0 in Figure 6.2, are represented by the two-bit
STD_LOGIC_VECTOR signal s. The selected signal assignment sets f to the value of one
of the inputs w0, . . . , w3, depending on the valuation of s. Compiling the code results in
the circuit shown in Figure 6.2c. At the end of Figure 6.28, the mux4to1 entity is defined
as a component in the package named mux4to1_package. We showed in section 5.5.2 that
the component declaration allows the entity to be used as a subcircuit in other VHDL code.

Example 6.13Figure 6.4 showed how a 16-to-1 multiplexer is built using five 4-to-1 multiplexers. Figure
6.29 presents VHDL code for this circuit, using the mux4to1 component. The lines of code
are numbered so that we can easily refer to them. The mux4to1_package is included in the
code, because it provides the component declaration for mux4to1.

The data inputs to the mux16to1 entity are the 16-bit signal named w, and the select
inputs are the four-bit signal named s. In the VHDL code signal names are needed for the
outputs of the four 4-to-1 multiplexers on the left of Figure 6.4. Line 11 defines a four-bit
signal named m for this purpose, and lines 13 to 16 instantiate the four multiplexers. For in-
stance, line 13 corresponds to the multiplexer at the top left of Figure 6.4. Its first four ports,
which correspond to w0, . . . , w3 in Figure 6.28, are driven by the signals w(0), . . . , w(3).
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY mux4to1 IS
PORT ( w0, w1, w2, w3 : IN STD LOGIC ;

s : IN STD LOGIC VECTOR(1 DOWNTO 0) ;
f : OUT STD LOGIC ) ;

END mux4to1 ;

ARCHITECTURE Behavior OF mux4to1 IS
BEGIN

WITH s SELECT
f <
 w0 WHEN ”00”,

w1 WHEN ”01”,
w2 WHEN ”10”,
w3 WHEN OTHERS ;

END Behavior ;

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
PACKAGE mux4to1 package IS

COMPONENT mux4to1
PORT ( w0, w1, w2, w3 : IN STD LOGIC ;

s : IN STD LOGIC VECTOR(1 DOWNTO 0) ;
f : OUT STD LOGIC ) ;

END COMPONENT ;
END mux4to1 package ;

Figure 6.28 VHDL code for a 4-to-1 multiplexer.

The syntax s(1 DOWNTO 0) is used to attach the signals s(1) and s(0) to the two-bit s port
of the mux4to1 component. The m(0) signal is connected to the multiplexer’s output port.

Line 17 instantiates the multiplexer on the right of Figure 6.4. The signals m0, . . . , m3

are connected to its data inputs, and bits s(3) and s(2), which are specified by the syntax
s(3 DOWNTO 2), are attached to the select inputs. The output port generates the mux16to1
output f . Compiling the code results in the multiplexer function

f = s3s2s1s0w0 + s3s2s1s0w1 + s3s2s1s0w2 + · · · + s3s2s1s0w14 + s3s2s1s0w15

Example 6.14 The selected signal assignments can also be used to describe other types of circuits. Figure
6.30 shows how a selected signal assignment can be used to describe the truth table for a
2-to-4 binary decoder. The entity is called dec2to4. The data inputs are the two-bit signal
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1 LIBRARY ieee ;
2 USE ieee.std logic 1164.all ;
3 LIBRARY work ;
4 USE work.mux4to1 package.all ;

5 ENTITY mux16to1 IS
6 PORT ( w : IN STD LOGIC VECTOR(0 TO 15) ;
7 s : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
8 f : OUT STD LOGIC ) ;
9 END mux16to1 ;

10 ARCHITECTURE Structure OF mux16to1 IS
11 SIGNAL m : STD LOGIC VECTOR(0 TO 3) ;
12 BEGIN
13 Mux1: mux4to1 PORT MAP

( w(0), w(1), w(2), w(3), s(1 DOWNTO 0), m(0) ) ;
14 Mux2: mux4to1 PORT MAP

( w(4), w(5), w(6), w(7), s(1 DOWNTO 0), m(1) ) ;
15 Mux3: mux4to1 PORT MAP

( w(8), w(9), w(10), w(11), s(1 DOWNTO 0), m(2) ) ;
16 Mux4: mux4to1 PORT MAP

( w(12), w(13), w(14), w(15), s(1 DOWNTO 0), m(3) ) ;
17 Mux5: mux4to1 PORT MAP

( m(0), m(1), m(2), m(3), s(3 DOWNTO 2), f ) ;
18 END Structure ;

Figure 6.29 Hierarchical code for a 16-to-1 multiplexer.

named w, and the enable input is En. The four outputs are represented by the four-bit sig-
nal y.

In the truth table for the decoder in Figure 6.16a, the inputs are listed in the order
En w1w0. To represent these three signals, the VHDL code defines the three-bit signal
named Enw. The statement Enw <= En & w uses the VHDL concatenate operator, which
was discussed in section 5.5.4, to combine the En and w signals into the Enw signal. Hence
Enw(2) = En, Enw(1) = w1, and Enw(0) = w0. The Enw signal is used as the selection
signal in the selected signal assignment statement. It describes the truth table in Figure
6.16a. In the first four WHEN clauses, En = 1, and the decoder outputs have the same
patterns as in the first four rows of the truth table. The last WHEN clause uses the OTH-
ERS keyword and sets the decoder outputs to 0000, because it represents the cases where
En = 0.
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY dec2to4 IS
PORT ( w : IN STD LOGIC VECTOR(1 DOWNTO 0) ;

En : IN STD LOGIC ;
y : OUT STD LOGIC VECTOR(0 TO 3) ) ;

END dec2to4 ;

ARCHITECTURE Behavior OF dec2to4 IS
SIGNAL Enw : STD LOGIC VECTOR(2 DOWNTO 0) ;

BEGIN
Enw <
 En & w ;
WITH Enw SELECT

y <
 ”1000” WHEN ”100”,
”0100” WHEN ”101”,
”0010” WHEN ”110”,
”0001” WHEN ”111”,
”0000” WHEN OTHERS ;

END Behavior ;

Figure 6.30 VHDL code for a 2-to-4 binary decoder.

6.6.3 Conditional Signal Assignment

Similar to the selected signal assignment, a conditional signal assignment allows a signal
to be set to one of several values. Figure 6.31 shows a modified version of the 2-to-1
multiplexer entity from Figure 6.27. It uses a conditional signal assignment to specify that
f is assigned the value of w0 when s = 0, or else f is assigned the value of w1. Compiling

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY mux2to1 IS
PORT ( w0, w1, s : IN STD LOGIC ;

f : OUT STD LOGIC ) ;
END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN

f <
 w0 WHEN s 
 ’0’ ELSE w1 ;
END Behavior ;

Figure 6.31 Specification of a 2-to-1 multiplexer using a
conditional signal assignment.
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the code generates the same circuit as the code in Figure 6.27. In this small example the
conditional signal assignment has only one WHEN clause. Amore complex example, which
better illustrates the features of the conditional signal assignment, is given in Example 6.15.

Example 6.15Figure 6.24 gives the truth table for a 4-to-2 priority encoder. VHDL code that describes
this truth table is shown in Figure 6.32. The inputs to the encoder are represented by the
four-bit signal named w. The encoder has the outputs y, which is a two-bit signal, and z.

The conditional signal assignment specifies that y is assigned the value 11 when input
w(3) = 1. If this condition is true, then the other WHEN clauses that follow the ELSE
keyword do not affect the value of f . Hence the values of w(2), w(1), and w(0) do not
matter, which implements the desired priority scheme. The second WHEN clause states
that when w(2) = 1, then y is assigned the value 10. This can occur only if w(3) = 0.
Each successive WHEN clause can affect y only if none of the conditions associated with
the preceding WHEN clauses are true. Figure 6.32 includes a second conditional signal
assignment for the output z. It states that when all four inputs are 0, z is assigned the value
0; else z is assigned the value 1.

The priority level associated with each WHEN clause in the conditional signal assign-
ment is a key difference from the selected signal assignment, which has no such priority
scheme. It is possible to describe the priority encoder using a selected signal assignment,
but the code is more awkward. One possibility is shown by the architecture in Figure 6.33.
The first WHEN clause sets y to 00 when w0 is the only input that is 1. The next two clauses
state that y should be 01 when w3 = w2 = 0 and w1 = 1. The next four clauses specify that
y should be 10 if w3 = 0 and w2 = 1. Finally, the last WHEN clause states that y should be
1 for all other input valuations, which includes all valuations for which w3 is 1. Note that

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY priority IS
PORT ( w : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

y : OUT STD LOGIC VECTOR(1 DOWNTO 0) ;
z : OUT STD LOGIC ) ;

END priority ;

ARCHITECTURE Behavior OF priority IS
BEGIN

y <
 ”11” WHEN w(3) 
 ’1’ ELSE
”10” WHEN w(2) 
 ’1’ ELSE
”01” WHEN w(1) 
 ’1’ ELSE
”00” ;

z <
 ’0’ WHEN w 
 ”0000” ELSE ’1’ ;
END Behavior ;

Figure 6.32 VHDL code for a priority encoder.
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY priority IS
PORT ( w : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

y : OUT STD LOGIC VECTOR(1 DOWNTO 0) ;
z : OUT STD LOGIC ) ;

END priority ;

ARCHITECTURE Behavior OF priority IS
BEGIN

WITH w SELECT
y <
 ”00” WHEN ”0001”,

”01” WHEN ”0010”,
”01” WHEN ”0011”,
”10” WHEN ”0100”,
”10” WHEN ”0101”,
”10” WHEN ”0110”,
”10” WHEN ”0111”,
”11” WHEN OTHERS ;

WITH w SELECT
z <
 ’0’ WHEN ”0000”,

’1’ WHEN OTHERS ;
END Behavior ;

Figure 6.33 Less efficient code for a priority encoder.

the OTHERS clause includes the input valuation 0000. This pattern results in z = 0, and
the value of y does not matter in this case.

Example 6.16 We derived the circuit for a comparator in Figure 6.26. Figure 6.34 shows how this circuit
can be described with VHDL code. Each of the three conditional signal assignments deter-
mines the value of one of the comparator outputs. The package named std_logic_unsigned
is included in the code because it specifies that STD_LOGIC_VECTOR signals, namely,
A and B, can be used as unsigned binary numbers with VHDL relational operators. The
relational operators provide a convenient way of specifying the desired functionality.

The circuit generated from the code in Figure 6.34 is similar, but not identical, to the
circuit in Figure 6.26. The VHDL compiler instantiates a predefined module to implement
each of the comparison operations. In Quartus II the modules that are instantiated are from
the LPM library, which was introduced in section 5.5.
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std logic unsigned.all ;

ENTITY compare IS
PORT ( A, B : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

AeqB, AgtB, AltB : OUT STD LOGIC ) ;
END compare ;

ARCHITECTURE Behavior OF compare IS
BEGIN

AeqB <
 ’1’ WHEN A 
 B ELSE ’0’ ;
AgtB <
 ’1’ WHEN A > B ELSE ’0’ ;
AltB <
 ’1’ WHEN A < B ELSE ’0’ ;

END Behavior ;

Figure 6.34 VHDL code for a four-bit comparator.

Instead of using the std_logic_unsigned library, another way to specify that the gener-
ated circuit should use unsigned numbers is to include the library named std_logic_arith.
In this case the signals A and B should be defined with the type UNSIGNED, rather than
STD_LOGIC_VECTOR. If we want the circuit to work with signed numbers, signals A and
B should be defined with the type SIGNED. This code is given in Figure 6.35.

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std logic arith.all ;

ENTITY compare IS
PORT ( A, B : IN SIGNED(3 DOWNTO 0) ;

AeqB, AgtB, AltB : OUT STD LOGIC ) ;
END compare ;

ARCHITECTURE Behavior OF compare IS
BEGIN

AeqB <
 ’1’ WHEN A 
 B ELSE ’0’ ;
AgtB <
 ’1’ WHEN A > B ELSE ’0’ ;
AltB <
 ’1’ WHEN A < B ELSE ’0’ ;

END Behavior ;

Figure 6.35 The code from Figure 6.34 for signed numbers.
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6.6.4 Generate Statements

Figure 6.29 gives VHDL code for a 16-to-1 multiplexer using five instances of a 4-to-1
multiplexer subcircuit. The regular structure of the code suggests that it could be written in
a more compact form using a loop. VHDL provides a feature called the FOR GENERATE
statement for describing regularly structured hierarchical code.

Figure 6.36 shows the code from Figure 6.29 rewritten using a FOR GENERATE
statement. The generate statement must have a label, so we have used the label G1 in
the code. The loop instantiates four copies of the mux4to1 component, using the loop
index i in the range from 0 to 3. The variable i is not explicitly declared in the code; it is
automatically defined as a local variable whose scope is limited to the FOR GENERATE
statement. The first loop iteration corresponds to the instantiation statement labeled Mux1
in Figure 6.29. The * operator represents multiplication; hence for the first loop iteration
the VHDL compiler translates the signal names w(4 ∗ i), w(4 ∗ i + 1), w(4 ∗ i + 2), and
w(4 ∗ i + 3) into signal names w(0), w(1), w(2), and w(3). The loop iterations for i = 1,
i = 2, and i = 3 correspond to the statements labeled Mux2, Mux3, and Mux4 in Figure
6.29. The statement labeled Mux5 in Figure 6.29 does not fit within the loop, so it is included
as a separate statement in Figure 6.36. The circuit generated from the code in Figure 6.36
is identical to the circuit produced by using the code in Figure 6.29.

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE work.mux4to1 package.all ;

ENTITY mux16to1 IS
PORT ( w : IN STD LOGIC VECTOR(0 TO 15) ;

s : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
f : OUT STD LOGIC ) ;

END mux16to1 ;

ARCHITECTURE Structure OF mux16to1 IS
SIGNAL m : STD LOGIC VECTOR(0 TO 3) ;

BEGIN
G1: FOR i IN 0 TO 3 GENERATE

Muxes: mux4to1 PORT MAP (
w(4*i), w(4*i+1), w(4*i+2), w(4*i+3), s(1 DOWNTO 0), m(i) ) ;

END GENERATE ;
Mux5: mux4to1 PORT MAP ( m(0), m(1), m(2), m(3), s(3 DOWNTO 2), f ) ;

END Structure ;

Figure 6.36 Code for a 16-to-1 multiplexer using a generate statement.
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Example 6.17In addition to the FOR GENERATE statement, VHDL provides another type of generate
statement called IF GENERATE. Figure 6.37 illustrates the use of both types of generate
statements. The code shown is a hierarchical description of the 4-to-16 decoder given in
Figure 6.18, using five instances of the dec2to4 component defined in Figure 6.30. The
decoder inputs are the four-bit signal w, the enable is En, and the outputs are the 16-bit
signal y.

Following the component declaration for the dec2to4 subcircuit, the architecture defines
the signal m, which represents the outputs of the 2-to-4 decoder on the left of Figure
6.18. The five copies of the dec2to4 component are instantiated by the FOR GENERATE
statement. In each iteration of the loop, the statement labeled Dec_ri instantiates a dec2to4
component that corresponds to one of the 2-to-4 decoders on the right side of Figure 6.18.
The first loop iteration generates the dec2to4 component with data inputs w1 and w0, enable
input m0, and outputs y0, y1, y2, y3. The other loop iterations also use data inputs w1w0, but
use different bits of m and y.

The IF GENERATE statement, labeled G2, instantiates a dec2to4 component in the last
loop iteration, for which the condition i = 3 is true. This component represents the 2-to-4
decoder on the left of Figure 6.18. It has the two-bit data inputs w3 and w2, the enable En, and

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY dec4to16 IS
PORT ( w : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

En : IN STD LOGIC ;
y : OUT STD LOGIC VECTOR(0 TO 15) ) ;

END dec4to16 ;

ARCHITECTURE Structure OF dec4to16 IS
COMPONENT dec2to4

PORT ( w : IN STD LOGIC VECTOR(1 DOWNTO 0) ;
En : IN STD LOGIC ;
y : OUT STD LOGIC VECTOR(0 TO 3) ) ;

END COMPONENT ;
SIGNAL m : STD LOGIC VECTOR(0 TO 3) ;

BEGIN
G1: FOR i IN 0 TO 3 GENERATE

Dec ri: dec2to4 PORT MAP ( w(1 DOWNTO 0), m(i), y(4*i TO 4*i+3) );
G2: IF i=3 GENERATE

Dec left: dec2to4 PORT MAP ( w(i DOWNTO i-1), En, m ) ;
END GENERATE ;

END GENERATE ;
END Structure ;

Figure 6.37 Hierarchical code for a 4-to-16 binary decoder.



May 19, 2004 11:40 vra60857_ch06 Sheet number 36 Page number 350 black

350 C H A P T E R 6 • Combinational-Circuit Building Blocks

the outputs m0, m1, m2, and m3. Note that instead of using the IF GENERATE statement,
we could have instantiated this component outside the FOR GENERATE statement. We
have written the code as shown simply to give an example of the IF GENERATE statement.

The generate statements in Figures 6.36 and 6.37 are used to instantiate components.
Another use of generate statements is to generate a set of logic equations. An example of
this use will be given in Figure 7.73.

6.6.5 Concurrent and Sequential Assignment Statements

We have introduced several types of assignment statements: simple assignment statements,
which involve logic or arithmetic expressions, selected assignment statements, and condi-
tional assignment statements. All of these statements share the property that the order in
which they appear in VHDL code does not affect the meaning of the code. Because of this
property, these statements are called the concurrent assignment statements.

VHDL also provides a second category of statements, called sequential assignment
statements, for which the ordering of the statements may affect the meaning of the code.
We will discuss two types of sequential assignment statements, called if-then-else statements
and case statements. VHDL requires that the sequential assignment statements be placed
inside another type of statement, called a process statement.

6.6.6 Process Statement

Figures 6.27 and 6.31 show two ways of describing a 2-to-1 multiplexer, using the selected
and conditional signal assignments. The same circuit can also be described using an if-then-
else statement, but this statement must be placed inside a process statement. Figure 6.38
shows such code. The process statement, or simply process, begins with the PROCESS
keyword, followed by a parenthesized list of signals, called the sensitivity list. For a
combinational circuit like the multiplexer, the sensitivity list includes all input signals that
are used inside the process. The process statement is translated by the VHDL compiler into
logic equations. In the figure the process consists of the single if-then-else statement that
describes the multiplexer function. Thus the sensitivity list comprises the data inputs, w0

and w1, and the select input s.
In general, there can be a number of statements inside a process. These statements are

considered as follows. Using VHDL jargon, we say that when there is a change in the value
of any signal in the process’s sensitivity list, then the process becomes active. Once active,
the statements inside the process are evaluated in sequential order. Any assignments made
to signals inside the process are not visible outside the process until all of the statements in
the process have been evaluated. If there are multiple assignments to the same signal, only
the last one has any visible effect. This is illustrated in Example 6.18.
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY mux2to1 IS
PORT ( w0, w1, s : IN STD LOGIC ;

f : OUT STD LOGIC ) ;
END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN

PROCESS ( w0, w1, s )
BEGIN

IF s 
 ’0’ THEN
f <
 w0 ;

ELSE
f <
 w1 ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 6.38 A 2-to-1 multiplexer specified using the if-then-else
statement.

Example 6.18The code in Figure 6.39 is equivalent to the code in Figure 6.38. The first statement in the
process assigns the value of w0 to f . This provides a default value for f but the assignment
does not actually take place until the end of the process. In VHDL jargon we say that
the assignment is scheduled to occur after all of the statements in the process have been
evaluated. If another assignment to f takes place while the process is active, the default
assignment will be overridden. The second statement in the process assigns the value of w1

to f if the value of s is equal to 1. If this condition is true, then the default assignment is
overridden. Thus if s = 0, then f = w0, and if s = 1, then f = w1, which defines the 2-to-1
multiplexer. Compiling this code results in the same circuit as for Figures 6.27, 6.31, and
6.38, namely, f = sw0 + sw1.

The process statement in Figure 6.39 illustrates that the ordering of the statements in
a process can affect the meaning of the code. Consider reversing the order of the two
statements so that the if-then-else statement is evaluated first. If s = 1, f is assigned
the value of w1. This assignment is scheduled and does not take place until the end of
the process. However, the statement f <= w0 is evaluated last. It overrides the first
assignment, and f is assigned the value of w0 regardless of the value of s. Hence instead
of describing a multiplexer, when the statements inside the process are reversed, the code
represents the trivial circuit f = w0.
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY mux2to1 IS
PORT ( w0, w1, s : IN STD LOGIC ;

f : OUT STD LOGIC ) ;
END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN

PROCESS ( w0, w1, s )
BEGIN

f <
 w0 ;
IF s 
 ’1’ THEN

f <
 w1 ;
END IF ;

END PROCESS ;
END Behavior ;

Figure 6.39 Alternative code for the 2-to-1 multiplexer using an
if-then-else statement.

Example 6.19 Figure 6.40 gives an example that contains both a concurrent assignment statement and a
process statement. It describes a priority encoder and is equivalent to the code in Figure
6.32. The process describes the desired priority scheme using an if-then-else statement. It
specifies that if the input w3 is 1, then the output is set to y = 11. This assignment does not
depend on the values of inputs w2, w1, or w0; hence their values do not matter. The other
clauses in the if-then-else statement are evaluated only if w3 = 0. The first ELSIF clause
states that if w2 is 1, then y = 10. If w2 = 0, then the next ELSIF clause results in y = 01
if w1 = 1. If w3 = w2 = w1 = 0, then the ELSE clause results in y = 00. This assignment
is done whether or not w0 is 1; Figure 6.24 indicates that y can be set to any pattern when
w = 0000 because z will be set to 0 in this case.

The priority encoder’s output z must be set to 1 whenever at least one of the data
inputs is 1. This output is defined by the conditional assignment statement at the end of
Figure 6.40. The VHDL syntax does not allow a conditional assignment statement (or
a selected assignment statement) to appear inside a process. An alternative would be to
specify the value of z by using an if-then-else statement inside the process. The reason that
we have written the code as given in the figure is to illustrate that concurrent assignment
statements can be used in conjunction with process statements. The process statement
serves the purpose of separating the sequential statements from the concurrent statements.
Note that the ordering of the process statement and the conditional assignment statement
does not matter. VHDL stipulates that while the statements inside a process are sequential
statements, the process statement itself is a concurrent statement.
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY priority IS
PORT ( w : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

y : OUT STD LOGIC VECTOR(1 DOWNTO 0) ;
z : OUT STD LOGIC ) ;

END priority ;

ARCHITECTURE Behavior OF priority IS
BEGIN

PROCESS ( w )
BEGIN

IF w(3) 
 ’1’ THEN
y <
 ”11” ;

ELSIF w(2) 
’1’ THEN
y <
 ”10” ;

ELSIF w(1) 
’1’ THEN
y <
 ”01” ;

ELSE
y <
 ”00” ;

END IF ;
END PROCESS ;
z <
 ’0’ WHEN w 
 ”0000” ELSE ’1’ ;

END Behavior ;

Figure 6.40 A priority encoder specified using the if-then-else statement.

Example 6.20Figure 6.41 shows an alternative style of code for the priority encoder, using if-then-else
statements. The first statement in the process provides the default value of 00 for y1y0.
The second statement overrides this if w1 is 1, and sets y1y0 to 01. Similarly, the third and
fourth statements override the previous ones if w2 or w3 are 1, and set y1y0 to 10 and 11,
respectively. These four statements are equivalent to the single if-then-else statement in
Figure 6.40 that describes the priority scheme. The value of z is specified using a default
assignment statement, followed by an if-then-else statement that overrides the default if
w = 0000. Although the examples in Figures 6.40 and 6.41 are equivalent, the meaning of
the code in Figure 6.40 is probably easier to understand.

Example 6.21Figure 6.34 specifies a four-bit comparator that produces the three outputs AeqB, AgtB, and
AltB. Figure 6.42 shows how such specification can be written using if-then-else statements.
For simplicity, one-bit numbers are used for the inputs A and B, and only the code for the
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY priority IS
PORT ( w : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

y : OUT STD LOGIC VECTOR(1 DOWNTO 0) ;
z : OUT STD LOGIC ) ;

END priority ;

ARCHITECTURE Behavior OF priority IS
BEGIN

PROCESS ( w )
BEGIN

y <
 ”00” ;
IF w(1) 
 ’1’ THEN y <
 ”01” ; END IF ;
IF w(2) 
 ’1’ THEN y <
 ”10” ; END IF ;
IF w(3) 
 ’1’ THEN y <
 ”11” ; END IF ;

z <
 ’1’ ;
IF w 
 ”0000” THEN z <
 ’0’ ; END IF ;

END PROCESS ;
END Behavior ;

Figure 6.41 Alternative code for the priority encoder.

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY compare1 IS
PORT ( A, B : IN STD LOGIC ;

AeqB : OUT STD LOGIC ) ;
END compare1 ;

ARCHITECTURE Behavior OF compare1 IS
BEGIN

PROCESS ( A, B )
BEGIN

AeqB <
 ’0’ ;
IF A 
 B THEN

AeqB <
 ’1’ ;
END IF ;

END PROCESS ;
END Behavior ;

Figure 6.42 Code for a one-bit equality comparator.
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY implied IS
PORT ( A, B : IN STD LOGIC ;

AeqB : OUT STD LOGIC ) ;
END implied ;

ARCHITECTURE Behavior OF implied IS
BEGIN

PROCESS ( A, B )
BEGIN

IF A 
 B THEN
AeqB <
 ’1’ ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 6.43 An example of code that results in implied memory.

AeqB output is shown. The process assigns the default value of 0 to AeqB and then the
if-then-else statement changes AeqB to 1 if A and B are equal. It is instructive to consider
the effect on the semantics of the code if the default assignment statement is removed, as
illustrated in Figure 6.43.

With only the if-then-else statement, the code does not specify what value AeqB should
have if the condition A = B is not true. The VHDL semantics stipulate that in cases where
the code does not specify the value of a signal, the signal should retain its current value.
For the code in Figure 6.43, once A and B are equal, resulting in AeqB = 1, then AeqB will
remain set to 1 indefinitely, even if A and B are no longer equal. In the VHDL jargon, the
AeqB output is said to have implied memory because the circuit synthesized from the code
will “remember,” or store the value AeqB = 1. Figure 6.44 shows the circuit synthesized
from the code. The XOR gate produces a 1 when A and B are equal, and the OR gate ensures
that AeqB remains set to 1 indefinitely.

The implied memory that results from the code in Figure 6.43 is not useful, because
it generates a comparator circuit that does not function correctly. However, we will show

A

B AeqB

Figure 6.44 The circuit generated from the code in Figure 6.43.
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in Chapter 7 that the semantics of implied memory are useful for other types of circuits,
which have the capability to store logic signal values in memory elements.

6.6.7 Case Statement

A case statement is similar to a selected signal assignment in that the case statement has a
selection signal and includes WHEN clauses for various valuations of this selection signal.
Figure 6.45 shows how the case statement can be used as yet another way of describing
the 2-to-1 multiplexer circuit. The case statement begins with the CASE keyword, which
specifies that s is to be used as the selection signal. The first WHEN clause specifies,
following the => symbol, the statements that should be evaluated when s = 0. In this
example the only statement evaluated when s = 0 is f <= w0. The case statement must
include a WHEN clause for all possible valuations of the selection signal. Hence the second
WHEN clause, which contains f <= w1, uses the OTHERS keyword.

Example 6.22 Figure 6.30 gives the code for a 2-to-4 decoder. A different way of describing this circuit,
using sequential assignment statements, is shown in Figure 6.46. The process first uses an
if-then-else statement to check the value of the decoder enable signal En. If En = 1, the

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY mux2to1 IS
PORT ( w0, w1, s : IN STD LOGIC ;

f : OUT STD LOGIC ) ;
END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN

PROCESS ( w0, w1, s )
BEGIN

CASE s IS
WHEN ’0’ 
>

f <
 w0 ;
WHEN OTHERS 
>

f <
 w1 ;
END CASE ;

END PROCESS ;
END Behavior ;

Figure 6.45 A case statement that represents a 2-to-1 multiplexer.
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY dec2to4 IS
PORT ( w : IN STD LOGIC VECTOR(1 DOWNTO 0) ;

En : IN STD LOGIC ;
y : OUT STD LOGIC VECTOR(0 TO 3) ) ;

END dec2to4 ;

ARCHITECTURE Behavior OF dec2to4 IS
BEGIN

PROCESS ( w, En )
BEGIN

IF En 
 ’1’ THEN
CASE w IS

WHEN ”00” 
>

y <
 ”1000” ;
WHEN ”01” 
>

y <
 ”0100” ;
WHEN ”10” 
>

y <
 ”0010” ;
WHEN OTHERS 
>

y <
 ”0001” ;
END CASE ;

ELSE
y <
 ”0000” ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 6.46 A process statement that describes a 2-to-4 binary decoder.

case statement sets the output y to the appropriate value based on the input w. The case
statement represents the first four rows of the truth table in Figure 6.16a. If En = 0, the
ELSE clause sets y to 0000, as specified in the bottom row of the truth table.

Example 6.23Another example of a case statement is given in Figure 6.47. The entity is named seg7, and
it represents the BCD-to-7-segment decoder in Figure 6.25. The BCD input is represented
by the four-bit signal named bcd, and the seven outputs are the seven-bit signal named leds.
The case statement is formatted so that it resembles the truth table in Figure 6.25c. Note
that there is a comment to the right of the case statement, which labels the seven outputs
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY seg7 IS
PORT ( bcd : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

leds : OUT STD LOGIC VECTOR(1 TO 7) ) ;
END seg7 ;

ARCHITECTURE Behavior OF seg7 IS
BEGIN

PROCESS ( bcd )
BEGIN

CASE bcd IS - - abcdef g
WHEN ”0000” 
>


>


>


>


>


>


>


>


>


>


>

leds <
 ”1111110” ;
WHEN ”0001” leds <
 ”0110000” ;
WHEN ”0010” leds <
 ”1101101” ;
WHEN ”0011” leds <
 ”1111001” ;
WHEN ”0100” leds <
 ”0110011” ;
WHEN ”0101” leds <
 ”1011011” ;
WHEN ”0110” leds <
 ”1011111” ;
WHEN ”0111” leds <
 ”1110000” ;
WHEN ”1000” leds <
 ”1111111” ;
WHEN ”1001” leds <
 ”1110011” ;
WHEN OTHERS leds <
 ”- - - - - - - ” ;

END CASE ;
END PROCESS ;

END Behavior ;

Figure 6.47 Code that represents a BCD-to-7-segment decoder.

with the letters from a to g. These labels indicate to the reader the correlation between the
seven-bit leds signal in the VHDL code and the seven segments in Figure 6.25b. The final
WHEN clause in the case statement sets all seven bits of leds to −. Recall that − is used
in VHDL to denote a don’t-care condition. This clause represents the don’t-care conditions
discussed for Figure 6.25, which are the cases where the bcd input does not represent a
valid BCD digit.

Example 6.24 An arithmetic logic unit (ALU) is a logic circuit that performs various Boolean and arithmetic
operations on n-bit operands. In section 3.5 we discussed a family of standard chips called
the 7400-series chips. We said that some of these chips contain basic logic gates, and others
provide commonly used logic circuits. One example of an ALU is the standard chip called
the 74381. Table 6.1 specifies the functionality of this chip. It has 2 four-bit data inputs,
named A and B; a three-bit select input s; and a four-bit output F . As the table shows,
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Table 6.1 The functionality
of the 74381
ALU.

Inputs Outputs
Operation s2 s1 s0 F

Clear 0 0 0 0 0 0 0

B−A 0 0 1 B− A

A−B 0 1 0 A− B

ADD 0 1 1 A+ B

XOR 1 0 0 A XOR B

OR 1 0 1 A OR B

AND 1 1 0 A AND B

Preset 1 1 1 1 1 1 1

F is defined by various arithmetic or Boolean operations on the inputs A and B. In this
table + means arithmetic addition, and−means arithmetic subtraction. To avoid confusion,
the table uses the words XOR, OR, and AND for the Boolean operations. Each Boolean
operation is done in a bit-wise fashion. For example, F = A AND B produces the four-bit
result f0 = a0b0, f1 = a1b1, f2 = a2b2, and f3 = a3b3.

Figure 6.48 shows how the functionality of the 74381 ALU can be described using
VHDL code. The std_logic_unsigned package, introduced in section 5.5.4, is included
so that the STD_LOGIC_VECTOR signals A and B can be used in unsigned arithmetic
operations. The case statement shown corresponds directly to Table 6.1. To check the
functionality of the code, we synthesized a circuit for implementation in a CPLD. An
example of a timing simulation is illustrated in Figure 6.49. For each valuation of s, the
circuit generates the appropriate Boolean or arithmetic operation.

6.6.8 VHDL Operators

In this section we discuss the VHDL operators that are useful for synthesizing logic circuits.
Table 6.2 lists these operators in groups that reflect the type of operation performed.

To illustrate the results produced by the various operators, we will use three-bit vectors
A(2 DOWNTO 0), B(2 DOWNTO 0), and C(2 DOWNTO 0).

Logical Operators
The logical operators can be used with bit and boolean types of operands. The operands

can be either single-bit scalars or multibit vectors. For example, the statement

C <= NOT A;
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std logic unsigned.all ;

ENTITY alu IS
PORT ( s : IN STD LOGIC VECTOR(2 DOWNTO 0) ;

A, B : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
F : OUT STD LOGIC VECTOR(3 DOWNTO 0) ) ;

END alu ;

ARCHITECTURE Behavior OF alu IS
BEGIN

PROCESS ( s, A, B )
BEGIN

CASE s IS
WHEN ”000” 
>

F <
 ”0000” ;
WHEN ”001” 
>

F <
 B − A ;
WHEN ”010” 
>

F <
 A − B ;
WHEN ”011” 
>

F <
 A + B ;
WHEN ”100” 
>

F <
 A XOR B ;
WHEN ”101” 
>

F <
 A OR B ;
WHEN ”110” 
>

F <
 A AND B ;
WHEN OTHERS 
>

F <
 ”1111” ;
END CASE ;

END PROCESS ;
END Behavior ;

Figure 6.48 Code that represents the functionality of the 74381 ALU chip.

produces the result c2 = a2, c1 = a1, and c0 = a0, where ai and ci are the bits of the vectors
A and C.

The statement

C <=A AND B;

generates c2 = a2 · b2, c1 = a1 · b1, and c0 = a0 · b0. The other operators lead to similar
evaluations.
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Figure 6.49 Timing simulation for the code in Figure 6.48.

Table 6.2 VHDL operators (used for synthesis).

Operator category Operator symbol Operation performed

Logical AND AND
OR OR

NAND Not AND
NOR Not OR
XOR XOR

XNOR Not XOR
NOT NOT

Relational = Equality
/= Inequality
> Greater than
< Less than

>= Greater than or equal to
<= Less than or equal to

Arithmetic + Addition
− Subtraction
∗ Multiplication
/ Division

Concatenation & Concatenation

Shift and Rotate SLL Shift left logical
SRL Shift right logical
SLA Shift left arithmetic
SRA Shift right arithmetic
ROL Rotate left
ROR Rotate right

Relational Operators
The relational operators are used to compare expressions. The result of the comparison

is TRUE or FALSE. The expressions that are compared must be of the same type. For
example, if A = 011 and B = 010 then A > B evaluates to TRUE, and B /= ”010”
evaluates to FALSE.
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Arithmetic Operators
We have already encountered the arithmetic operators in Chapter 5. They perform

standard arithmetic operations. Thus

C <=A+ B;

puts the three-bit sum of A plus B into C, while

C <=A− B;

puts the difference of A and B into C. The operation

C <= −A;

places the 2’s complement of A into C.
The addition, subtraction, and multiplication operations are supported by most CAD

synthesis tools. However, the division operation is often not supported. When the VHDL
compiler encounters an arithmetic operator, it usually synthesizes it by using an appropriate
module from a library.

Concatenate Operator
This operator concatenates two or more vectors to create a larger vector. For example,

D <=A & B;

defines the six-bit vector D = a2a1a0b2b1b0. Similarly, the concatenation

E <= ”111” & A & ”00”;

produces the eight-bit vector E = 111a2a1a000.

Shift and Rotate Operators
A vector operand can be shifted to the right or left by a number of bits specified as a

constant. When bits are shifted, the vacant bit positions are filled with 0s. For example,

B <=A SLL 1;

results in b2 = a1, b1 = a0, and b0 = 0. Similarly,

B <=A SRL 2;

yields b2 = b1 = 0 and b0 = a2.
The arithmetic shift left, SLA, has the same effect as SLL. But, the arithmetic shift

right, SRA, performs the sign extension by replicating the sign bit into the positions left
vacant after shifting. Hence

B <=A SRA 1;

gives b2 = a2, b1 = a2, and b0 = a1.
An operand can also be rotated, in which case the bits shifted out from one end are

placed into the vacated positions at the other end. For example,

B <=A ROR 2;

produces b2 = a1, b1 = a0, and b0 = a2.
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Operator Precedence
Operators in different categories have different precedence. Operators in the same

category have the same precedence, and are evaluated from left to right in a given expression.
It is a good practice to use parentheses to indicate the desired order of operations in the
expression. To illustrate this point, consider the statement

S <=A+ B + C + D;

which defines the addition of four vector operands. The VHDL compiler will synthesize
a circuit as if the expression was written in the form ((A+ B) + C) + D, which gives a
cascade of three adders so that the final sum will be available after a propagation delay
through three adders. By writing the statement as

S <= (A+ B) + (C + D);

the synthesized circuit will still have three adders, but since the sums A+ B and C +D are
generated in parallel, the final sum will be available after a propagation delay through only
two adders.

Table 6.2 groups the operators informally according to their functionality. It shows only
those operators that are used to synthesize logic circuits. The VHDL Standard specifies
additional operators, which are useful for simulation and documentation purposes. All
operators are grouped into different classes, with a defined precedence ordering between
classes. We discuss this issue in Appendix A, section A.3.

6.7 Concluding Remarks

This chapter has introduced a number of circuit building blocks. Examples using these
blocks to construct larger circuits will be presented in Chapters 7 and 10. To describe the
building block circuits efficiently, several VHDL constructs have been introduced. In many
cases a given circuit can be described in various ways, using different constructs. A circuit
that can be described using a selected signal assignment can also be described using a case
statement. Circuits that fit well with conditional signal assignments are also well-suited to
if-then-else statements. In general, there are no clear rules that dictate when one type of
assignment statement should be preferred over another. With experience the user develops
a sense for which types of statements work well in a particular design situation. Personal
preference also influences how the code is written.

VHDL is not a programming language, and VHDL code should not be written as if it
were a computer program. The concurrent and sequential assignment statements discussed
in this chapter can be used to create large, complex circuits. A good way to design such
circuits is to construct them using well-defined modules, in the manner that we illustrated
for the multiplexers, decoders, encoders, and so on. Additional examples using the VHDL
statements introduced in this chapter are given in Chapters 7 and 8. In Chapter 10 we
provide a number of examples of using VHDL code to describe larger digital systems. For
more information on VHDL, the reader can consult more specialized books [5–10].

In the next chapter we introduce logic circuits that include the ability to store logic
signal values in memory elements.
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6.8 Examples of Solved Problems

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

Example 6.25 Problem: Implement the function f (w1, w2, w3) =∑
m(0, 1, 3, 4, 6, 7) by using a 3-to-8

binary decoder and an OR gate.

Solution: The decoder generates a separate output for each minterm of the required function.
These outputs are then combined in the OR gate, giving the circuit in Figure 6.50.

Example 6.26 Problem: Derive a circuit that implements an 8-to-3 binary encoder.

Solution: The truth table for the encoder is shown in Figure 6.51. Only those rows for
which a single input variable is equal to 1 are shown; the other rows can be treated as don’t
care cases. From the truth table it is seen that the desired circuit is defined by the equations

y2 = w4 + w5 + w6 + w7

y1 = w2 + w3 + w6 + w7

y0 = w1 + w3 + w5 + w7

Example 6.27 Problem: Implement the function

f (w1, w2, w3, w4) = w1w2w4w5 + w1w2 + w1w3 + w1w4 + w3w4w5

by using a 4-to-1 multiplexer and as few other gates as possible. Assume that only the
uncomplemented inputs w1, w2, w3, and w4 are available.
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Figure 6.50 Circuit for Example 6.25.
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Figure 6.51 Truth table for an 8-to-3 binary encoder.

Solution: Since variables w1 and w4 appear in more product terms in the expression for
f than the other three variables, let us perform Shannon’s expansion with respect to these
two variables. The expansion gives

f = w1w4fw1w4 + w1w4fw1w4 + w1w4fw1w4 + w1w4fw1w4

= w1w4(w2w5)+ w1w4(w3w5)+ w1w4(w2 + w3)+ w1w2(1)

We can use a NOR gate to implement w2w5 = w2 + w5. We also need an AND gate and
an OR gate. The complete circuit is presented in Figure 6.52.
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Figure 6.52 Circuit for Example 6.27.
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Figure 6.53 Binary to Gray code coversion.

Example 6.28 Problem: In Chapter 4 we pointed out that the rows and columns of a Karnaugh map
are labeled using Gray code. This is a code in which consecutive valuations differ in one
variable only. Figure 6.53 depicts the conversion between three-bit binary and Gray codes.
Design a circuit that can convert a binary code into a Gray according the figure.

Solution: From the figure it follows that

g2 = b2

g1 = b1b2 + b1b2

= b1 ⊕ b2

g0 = b0b1 + b0b1

= b0 ⊕ b1

Example 6.29 Problem: In section 6.1.2 we showed that any logic function can be decomposed using
Shannon’s expansion theorem. For a four-variable function, f (w1, . . . , w4), the expansion
with respect to w1 is

f (w1, . . . , w4) = w1fw1 + w1fw1

A circuit that implements this expression is given in Figure 6.54a.
(a) If the decomposition yields fw1 = 0, then the multiplexer in the figure can be replaced
by a single logic gate. Show this circuit.
(b) Repeat part (a) for the case where fw1 = 1.

Solution: The desired circuits are shown in parts (b) and (c) of Figure 6.54.

Example 6.30 Problem: In several commercial FPGAs the logic blocks are 4-LUTs. What is the minimum
number of 4-LUTs needed to construct a 4-to-1 multiplexer with select inputs s1 and s0 and
data inputs w3, w2, w1, and w0?
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Figure 6.54 Circuits for Example 6.29.

Solution: A straightforward attempt is to use directly the expression that defines the 4-to-1
multiplexer

f = s1s0w0 + s1s0w1 + s1s0w2 + s1s0w3

Let g = s1s0w0 + s1s0w1 and h = s1s0w2 + s1s0w3, so that f = g + h. This decomposition
leads to the circuit in Figure 6.55a, which requires three LUTs.

When designing logic circuits, one can sometimes come up with a clever idea which
leads to a superior implementation. Figure 6.55b shows how it is possible to implement
the multiplexer with just two LUTs, based on the following observation. The truth table in
Figure 6.2b indicates that when s1 = 0 the output must be either w0 or w1, as determined
by the value of s0. This can be generated by the first LUT. The second LUT must make the
choice between w2 and w3 when s1 = 1. But, the choice can be made only by knowing the
value of s0. Since it is impossible to have five inputs in the LUT, more information has to
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Figure 6.55 Circuits for Example 6.30.

be passed from the first to the second LUT. Observe that when s1 = 1 the output f will be
equal to either w2 or w3, in which case it is not necessary to know the values of w0 and w1.
Hence, in this case we can pass on the value of s0 through the first LUT, rather than w0 or
w1. This can be done by making the function of this LUT

k = s1s0w0 + s1s0w1 + s1s0

Then, the second LUT performs the function

f = s1k + s1kw3 + s1kw4

Example 6.31 Problem: In digital systems it is often necessary to have circuits that can shift the bits of
a vector by one or more bit positions to the left or right. Design a circuit that can shift a
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Figure 6.56 A shifter circuit.

four-bit vector W = w3w2w1w0 one bit position to the right when a control signal Shift is
equal to 1. Let the outputs of the circuit be a four-bit vector Y = y3y2y1y0 and a signal k,
such that if Shift = 1 then y3 = 0, y2 = w3, y1 = w2, y0 = w1, and k = w0. If Shift = 0
then Y = W and k = 0.

Solution: The required circuit can be implemented with five 2-to-1 multiplexers as shown
in Figure 6.56. The Shift signal is used as the select input to each multiplexer.

Example 6.32Problem: The shifter circuit in Example 6.31 shifts the bits of an input vector by one bit
position to the right. It fills the vacated bit on the left side with 0. A more versatile shifter
circuit may be able to shift by more bit positions at a time. If the bits that are shifted out are
placed into the vacated positions on the left, then the circuit effectively rotates the bits of
the input vector by a specified number of bit positions. Such a circuit is often called a barrel
shifter. Design a four-bit barrel shifter that rotates the bits by 0, 1, 2, or 3 bit positions as
determined by the valuation of two control signals s1 and s0.

Solution: The required action is given in Figure 6.57a. The barrel shifter can be imple-
mented with four 4-to-1 multiplexers as shown in Figure 6.57b. The control signals s1 and
s0 are used as the select inputs to the multiplexers.

Example 6.33Problem: Write VHDL code that represents the circuit in Figure 6.19. Use the dec2to4
entity in Figure 6.30 as a subcircuit in your code.

Solution: The code is shown in Figure 6.58. Note that the dec2to4 entity can be included
in the same file as we have done in the figure, but it can also be in a separate file in the
project directory.
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Figure 6.57 A barrel shifter circuit.

Example 6.34 Problem: Write VHDL code that represents the shifter circuit in Figure 6.56.

Solution: There are two possible approaches: structural and behavioral. A structural
description is given in Figure 6.59. The IF construct is used to define the desired shifting of
individual bits. A typical VHDL compiler will implement this code with 2-to-1 multiplexers
as depicted in Figure 6.56.

A behavioral specification is given in Figure 6.60. It makes use of the shift operator
SRL. Since the shift and rotate operators are supported in the ieee.numeric_std.all library,
this library must be included in the code. Note that the vectors w and y are defined to be of
UNSIGNED type.

Example 6.35 Problem: Write VHDL code that defines the barrel shifter in Figure 6.57.

Solution: The easiest way to specify the barrel shifter is by using the VHDL rotate operator.
The complete code is presented in Figure 6.61.
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY mux4to1 IS
PORT ( s : IN STD LOGIC VECTOR( 1 DOWNTO 0 ) ;

w : IN STD LOGIC VECTOR( 3 DOWNTO 0 ) ;
f : OUT STD LOGIC ) ;

END mux4to1 ;

ARCHITECTURE Structure OF mux4to1 IS
COMPONENT dec2to4

PORT ( w : IN STD LOGIC VECTOR(1 DOWNTO 0) ;
En : IN STD LOGIC ;
y : OUT STD LOGIC VECTOR(0 TO 3) );

END COMPONENT;
SIGNAL High : STD LOGIC ;
SIGNAL y : STD LOGIC VECTOR( 3 DOWNTO 0 ) ;

BEGIN
decoder: dec2to4 PORT MAP ( s, ’1’, y ) ;
f <
 (w(0) AND y(0)) OR (w(1) AND y(1)) OR

(w(2) AND y(2)) OR w(3) AND y(3) ) ;
END Structure ;

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY dec2to4 IS
PORT ( w : IN STD LOGIC VECTOR(1 DOWNTO 0) ;

En : IN STD LOGIC ;
y : OUT STD LOGIC VECTOR(0 TO 3) ) ;

END dec2to4 ;

ARCHITECTURE Behavior OF dec2to4 IS
SIGNAL Enw : STD LOGIC VECTOR(2 DOWNTO 0) ;

BEGIN
Enw <
 En & w ;
WITH Enw SELECT

y <
 ”1000” WHEN ”100”,
”0100” WHEN ”101”,
”0010” WHEN ”110”,
”0001” WHEN ”111”,
”0000” WHEN OTHERS ;

END Behavior ;

Figure 6.58 VHDL code for Example 6.38.
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY shifter IS
PORT ( w : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

IN STD LOGIC
y : OUT STD LOGIC VECTOR(3 DOWNTO 0) ;

;Shift :

k : OUT STD LOGIC ) ;
END shifter ;

ARCHITECTURE Behavior OF shifter IS
BEGIN

PROCESS (Shift, w)
BEGIN

IF Shift 
 ’1’ THEN
y(3) <
 ’0’ ;
y(2 DOWNTO 0) <
 w(3 DOWNTO 1) ;
k <
 w(0) ;

ELSE
y <
 w ;
k <
 ’0’ ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 6.59 Structural VHDL code that specifies the shifter circuit in
Figure 6.56.

Problems

Answers to problems marked by an asterisk are given at the back of the book.

6.1 Show how the function f (w1, w2, w3) =∑
m(0, 2, 3, 4, 5, 7) can be implemented using a

3-to-8 binary decoder and an OR gate.

6.2 Show how the function f (w1, w2, w3) = ∑
m(1, 2, 3, 5, 6) can be implemented using a

3-to-8 binary decoder and an OR gate.

*6.3 Consider the function f = w1w3+w2w3+w1w2. Use the truth table to derive a circuit for
f that uses a 2-to-1 multiplexer.

6.4 Repeat problem 6.3 for the function f = w2w3 + w1w2.

*6.5 For the function f (w1, w2, w3) = ∑
m(0, 2, 3, 6), use Shannon’s expansion to derive an

implementation using a 2-to-1 multiplexer and any other necessary gates.

6.6 Repeat problem 6.5 for the function f (w1, w2, w3) =∑
m(0, 4, 6, 7).
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.numeric std.all ;

ENTITY shifter IS
PORT ( w : IN UNSIGNED(3 DOWNTO 0) ;

Shift : IN STD LOGIC ;
y : OUT UNSIGNED(3 DOWNTO 0) ;
k : OUT STD LOGIC ) ;

END shifter ;

ARCHITECTURE Behavior OF shifter IS
BEGIN

PROCESS (Shift, w)
BEGIN

IF Shift = ”1” THEN
y <� w SRL 1 ;
k <� w(0) ;

ELSE
y <� w ;
k <� ”0” ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 6.60 Behavioral VHDL code that specifies the shifter circuit in
Figure 6.56.

6.7 Consider the function f = w2+w1w3+w1w3. Show how repeated application of Shannon’s
expansion can be used to derive the minterms of f .

6.8 Repeat problem 6.7 for f = w2 + w1w3.

6.9 Prove Shannon’s expansion theorem presented in section 6.1.2.

*6.10 Section 6.1.2 shows Shannon’s expansion in sum-of-products form. Using the principle of
duality, derive the equivalent expression in product-of-sums form.

6.11 Consider the function f = w1w2+w2w3+w1w2w3. Give a circuit that implements f using
the minimal number of two-input LUTs. Show the truth table implemented inside each
LUT.

*6.12 For the function in problem 6.11, the cost of the minimal sum-of-products expression is 14,
which includes four gates and 10 inputs to the gates. Use Shannon’s expansion to derive a
multilevel circuit that has a lower cost and give the cost of your circuit.

6.13 Consider the function f (w1, w2, w3, w4) =∑
m(0, 1, 3, 6, 8, 9, 14, 15). Derive an imple-

mentation using the minimum possible number of three-input LUTs.
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.numeric std.all ;

ENTITY barrel IS
PORT ( w : IN UNSIGNED(3 DOWNTO 0) ;

s : IN UNSIGNED(1 DOWNTO 0) ) ;
y : OUT UNSIGNED(3 DOWNTO 0) ) ;

END barrel ;

ARCHITECTURE Behavior OF barrel IS
BEGIN

PROCESS (s, w)
BEGIN

CASE s IS
WHEN ”00” 
>

y <
 w ;
WHEN ”01” 
>

y <
 w ROR 1 ;
WHEN ”10” 
>

y <
 w ROR 2 ;
WHEN OTHERS 
>

y <
 w ROR 3 ;
END CASE ;

END PROCESS ;
END Behavior ;

Figure 6.61 VHDL code that specifies the barrel shifter circuit in
Figure 6.57.

*6.14 Give two examples of logic functions with five inputs, w1, . . . , w5, that can be realized
using 2 four-input LUTs.

6.15 For the function, f , in Example 6.27 perform Shannon’s expansion with respect to variables
w1 and w2, rather than w1 and w4. How does the resulting circuit compare with the circuit
in Figure 6.52?

6.16 Actel Corporation manufactures an FPGA family called Act 1, which has the multiplexer-
based logic block illustrated in Figure P6.1. Show how the function f = w2w3 + w1w3 +
w2w3 can be implemented using only one Act 1 logic block.

6.17 Show how the function f = w1w3+w1w3+w2w3+w1w2 can be realized using Act 1 logic
blocks. Note that there are no NOT gates in the chip; hence complements of signals have
to be generated using the multiplexers in the logic block.
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Figure P6.1 The Actel Act 1 logic block.

*6.18 Consider the VHDL code in Figure P6.2. What type of circuit does the code represent?
Comment on whether or not the style of code used is a good choice for the circuit that it
represents.

6.19 Write VHDL code that represents the function in problem 6.1, using one selected signal
assignment.

6.20 Write VHDL code that represents the function in problem 6.2, using one selected signal
assignment.

6.21 Using a selected signal assignment, write VHDL code for a 4-to-2 binary encoder.

6.22 Using a conditional signal assignment, write VHDL code for an 8-to-3 binary encoder.

6.23 Derive the circuit for an 8-to-3 priority encoder.

6.24 Using a conditional signal assignment, write VHDL code for an 8-to-3 priority encoder.

6.25 Repeat problem 6.24, using an if-then-else statement.

6.26 Create a VHDL entity named if2to4 that represents a 2-to-4 binary decoder using an if-
then-else statement. Create a second entity named h3to8 that represents the 3-to-8 binary
decoder in Figure 6.17, using two instances of the if2to4 entity.

6.27 Create a VHDL entity named h6to64 that represents a 6-to-64 binary decoder. Use the
treelike structure in Figure 6.18, in which the 6-to-64 decoder is built using five instances
of the h3to8 decoder created in problem 6.26.

6.28 Write VHDL code for a BCD-to-7-segment code converter, using a selected signal assign-
ment.

*6.29 Derive minimal sum-of-products expressions for the outputs a, b, and c of the 7-segment
display in Figure 6.25.
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY problem IS
PORT ( w : IN STD LOGIC VECTOR(1 DOWNTO 0) ;

En : IN STD LOGIC ;
y0, y1, y2, y3 : OUT STD LOGIC ) ;

END problem ;

ARCHITECTURE Behavior OF problem IS
BEGIN

PROCESS (w, En)
BEGIN

y0 <
 ’0’ ; y1 <
 ’0’ ; y2 <
 ’0’ ; y3 <
 ’0’ ;
IF En 
 ’1’ THEN

IF w 
 ”00” THEN y0 <
 ’1’ ;
ELSIF w 
 ”01” THEN y1 <
 ’1’ ;
ELSIF w 
 ”10” THEN y2 <
 ’1’ ;
ELSE y3 <
 ’1’ ;
END IF ;

END IF ;
END PROCESS ;

END Behavior ;

Figure P6.2 Code for problem 6.18.

6.30 Derive minimal sum-of-products expressions for the outputs d , e, f , and g of the 7-segment
display in Figure 6.25.

6.31 Design a shifter circuit, similar to the one in Figure 6.56, which can shift a four-bit input
vector, W = w3w2w1w0, one bit-position to the right when the control signal Right is equal
to 1, and one bit-position to the left when the control signal Left is equal to 1. When Right
= Left = 0, the output of the circuit should be the same as the input vector. Assume that
the condition Right = Left = 1 will never occur.

6.32 Figure 6.21 shows a block diagram of a ROM. A circuit that implements a small ROM, with
four rows and four columns, is depicted in Figure P6.3. Each X in the figure represents a
switch that determines whether the ROM produces a 1 or 0 when that location is read.
(a) Show how a switch (X) can be realized using a single NMOS transistor.
(b) Draw the complete 4×4 ROM circuit, using your switches from part (a). The ROM
should be programmed to store the bits 0101 in row 0 (the top row), 1010 in row 1, 1100 in
row 2, and 0011 in row 3 (the bottom row).
(c) Show how each (X) can be implemented as a programmable switch (as opposed to
providing either a 1 or 0 permanently), using an EEPROM cell as shown in Figure 3.64.
Briefly describe how the storage cell is used.
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Figure P6.3 A 4× 4 ROM circuit.

6.33 Show the complete circuit for a ROM using the storage cells designed in Part (a) of problem
6.33 that realizes the logic functions

d3 = a0 ⊕ a1

d2 = a0 ⊕ a1

d1 = a0a1

d0 = a0 + a1
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c h a p t e r

7
Flip-Flops, Registers, Counters,

and a Simple Processor

Chapter Objectives

In this chapter you will learn about:

• Logic circuits that can store information

• Flip-flops, which store a single bit

• Registers, which store multiple bits

• Shift registers, which shift the contents of the register

• Counters of various types

• VHDL constructs used to implement storage elements

• Design of small subsystems

• Timing considerations
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In previous chapters we considered combinational circuits where the value of each output depends solely on
the values of signals applied to the inputs. There exists another class of logic circuits in which the values of the
outputs depend not only on the present values of the inputs but also on the past behavior of the circuit. Such
circuits include storage elements that store the values of logic signals. The contents of the storage elements
are said to represent the state of the circuit. When the circuit’s inputs change values, the new input values
either leave the circuit in the same state or cause it to change into a new state. Over time the circuit changes
through a sequence of states as a result of changes in the inputs. Circuits that behave in this way are referred
to as sequential circuits.

In this chapter we will introduce circuits that can be used as storage elements. But first, we
will motivate the need for such circuits by means of a simple example. Suppose that we wish
to control an alarm system, as shown in Figure 7.1. The alarm mechanism responds to the
control inputOn/Off . It is turned on whenOn/Off = 1, and it is off whenOn/Off = 0. The
desired operation is that the alarm turns on when the sensor generates a positive voltage
signal, Set, in response to some undesirable event. Once the alarm is triggered, it must
remain active even if the sensor output goes back to zero. The alarm is turned off manually
by means of a Reset input. The circuit requires a memory element to remember that the
alarm has to be active until the Reset signal arrives.

Figure 7.2 gives a rudimentary memory element, consisting of a loop that has two
inverters. If we assume that A = 0, then B = 1. The circuit will maintain these values
indefinitely. We say that the circuit is in the state defined by these values. If we assume
that A = 1, then B = 0, and the circuit will remain in this second state indefinitely. Thus
the circuit has two possible states. This circuit is not useful, because it lacks some practical
means for changing its state.

A more useful circuit is shown in Figure 7.3. It includes a mechanism for changing
the state of the circuit in Figure 7.2, using two transmission gates of the type discussed in
section 3.9. One transmission gate, TG1, is used to connect theData input terminal to point

Memory

element
Alarm

Sensor

Reset

Set

On Off⁄

Figure 7.1 Control of an alarm system.

A B

Figure 7.2 A simple memory element.
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A B
OutputData

Load

TG1

TG2

Figure 7.3 A controlled memory element.

A in the circuit. The second, TG2, is used as a switch in the feedback loop that maintains the
state of the circuit. The transmission gates are controlled by the Load signal. If Load = 1,
then TG1 is on and the point A will have the same value as the Data input. Since the value
presently stored at Output may not be the same value as Data, the feedback loop is broken
by having TG2 turned off when Load = 1. When Load changes to zero, then TG1 turns
off and TG2 turns on. The feedback path is closed and the memory element will retain its
state as long as Load = 0. This memory element cannot be applied directly to the system
in Figure 7.1, but it is useful for many other applications, as we will see later.

7.1 Basic Latch

Instead of using the transmission gates, we can construct a similar circuit using ordinary
logic gates. Figure 7.4 presents a memory element built with NOR gates. Its inputs, Set
and Reset, provide the means for changing the state, Q, of the circuit. A more usual way
of drawing this circuit is given in Figure 7.5a, where the two NOR gates are said to be
connected in cross-coupled style. The circuit is referred to as a basic latch. Its behavior is
described by the table in Figure 7.5b. When both inputs, R and S, are equal to 0 the latch
maintains its existing state. This state may be either Qa = 0 and Qb = 1, or Qa = 1 and
Qb = 0, which is indicated in the table by stating that the Qa and Qb outputs have values

Reset

Set Q

Figure 7.4 A memory element with NOR gates.
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Figure 7.5 A basic latch built with NOR gates.

0/1 and 1/0, respectively. Observe that Qa and Qb are complements of each other in this
case. When R = 0 and S = 1, the latch is set into a state where Qa = 1 and Qb = 0. When
R = 1 and S = 0, the latch is reset into a state where Qa = 0 and Qb = 1. The fourth
possibility is to have R = S = 1. In this case both Qa and Qb will be 0. The table in Figure
7.5b resembles a truth table. However, since it does not represent a combinational circuit
in which the values of the outputs are determined solely by the current values of the inputs,
it is often called a characteristic table rather than a truth table.

Figure 7.5c gives a timing diagram for the latch, assuming that the propagation delay
through the NOR gates is negligible. Of course, in a real circuit the changes in the waveforms
would be delayed according to the propagation delays of the gates. We assume that initially
Qa = 0 and Qb = 1. The state of the latch remains unchanged until time t2, when S
becomes equal to 1, causing Qb to change to 0, which in turn causes Qa to change to 1.
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The causality relationship is indicated by the arrows in the diagram. When S goes to 0 at
t3, there is no change in the state because both S and R are then equal to 0. At t4 we have
R = 1, which causes Qa to go to 0, which in turn causes Qb to go to 1. At t5 both S and R
are equal to 1, which forces both Qa and Qb to be equal to 0. As soon as S returns to 0, at
t6, Qb becomes equal to 1 again. At t8 we have S = 1 and R = 0, which causes Qb = 0
and Qa = 1. An interesting situation occurs at t10. From t9 to t10 we have Qa = Qb = 0
because R = S = 1. Now if both R and S change to 0 at t10, both Qa and Qb will go to 1.
But having both Qa and Qb equal to 1 will immediately force Qa = Qb = 0. There will
be an oscillation between Qa = Qb = 0 and Qa = Qb = 1. If the delays through the two
NOR gates are exactly the same, the oscillation will continue indefinitely. In a real circuit
there will invariably be some difference in the delays through these gates, and the latch will
eventually settle into one of its two stable states, but we don’t know which state it will be.
This uncertainty is indicated in the waveforms by dashed lines.

The oscillations discussed above illustrate that even though the basic latch is a simple
circuit, careful analysis has to be done to fully appreciate its behavior. In general, any
circuit that contains one or more feedback paths, such that the state of the circuit depends
on the propagation delays through logic gates, has to be designed carefully. We discuss
timing issues in detail in Chapter 9.

The latch in Figure 7.5a can perform the functions needed for the memory element in
Figure 7.1, by connecting the Set signal to the S input and Reset to the R input. The Qa

output provides the desired On/Off signal. To initialize the operation of the alarm system,
the latch is reset. Thus the alarm is off. When the sensor generates the logic value 1, the
latch is set and Qa becomes equal to 1. This turns on the alarm mechanism. If the sensor
output returns to 0, the latch retains its state where Qa = 1; hence the alarm remains turned
on. The only way to turn off the alarm is by resetting the latch, which is accomplished by
making the Reset input equal to 1.

7.2 Gated SR Latch

In section 7.1 we saw that the basic SR latch can serve as a useful memory element. It
remembers its state when both the S and R inputs are 0. It changes its state in response
to changes in the signals on these inputs. The state changes occur at the time when the
changes in the signals occur. If we cannot control the time of such changes, then we don’t
know when the latch may change its state.

In the alarm system of Figure 7.1, it may be desirable to be able to enable or disable
the entire system by means of a control input, Enable. Thus when enabled, the system
would function as described above. In the disabled mode, changing the Set input from 0 to
1 would not cause the alarm to turn on. The latch in Figure 7.5a cannot provide the desired
operation. But the latch circuit can be modified to respond to the input signals S and R only
when Enable = 1. Otherwise, it would maintain its state.

The modified circuit is depicted in Figure 7.6a. It includes two AND gates that provide
the desired control. When the control signal Clk is equal to 0, the S ′ and R′ inputs to the
latch will be 0, regardless of the values of signals S and R. Hence the latch will maintain its



January 24, 2008 14:23 vra_29532_ch07 Sheet number 6 Page number 386 black

386 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

(a) Circuit

Q

Q

R′

S′

R

S

R

Clk

Q

Q

S

1

0

1

0

1

0

1

0

1

0

Time

(c) Timing diagram

Clk

?

?

S R

x x

0 0

0 1

1 0

Q(t) (no change)

0

1

Clk

0

1

1

1

1 11

Q t 1+( )

Q(t) (no change)

x

S Q

Q

Clk

R

(d) Graphical symbol

(b) Characteristic table

Figure 7.6 Gated SR latch.

existing state as long as Clk = 0. When Clk changes to 1, the S ′ and R′ signals will be the
same as the S and R signals, respectively. Therefore, in this mode the latch will behave as
we described in section 7.1. Note that we have used the name Clk for the control signal that
allows the latch to be set or reset, rather than call it the Enable signal. The reason is that
such circuits are often used in digital systems where it is desirable to allow the changes in
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the states of memory elements to occur only at well-defined time intervals, as if they were
controlled by a clock. The control signal that defines these time intervals is usually called
the clock signal. The name Clk is meant to reflect this nature of the signal.

Circuits of this type, which use a control signal, are called gated latches. Because our
circuit exhibits set and reset capability, it is called a gated SR latch. Figure 7.6b describes
its behavior. It defines the state of the Q output at time t+1, namely, Q(t+1), as a function
of the inputs S, R, and Clk. When Clk = 0, the latch will remain in the state it is in at time
t, that is, Q(t), regardless of the values of inputs S and R. This is indicated by specifying
S = x and R = x, where x means that the signal value can be either 0 or 1. (Recall that we
already used this notation in Chapter 4.) When Clk = 1, the circuit behaves as the basic
latch in Figure 7.5. It is set by S = 1 and reset by R = 1. The last row of the table, where
S = R = 1, shows that the state Q(t + 1) is undefined because we don’t know whether it
will be 0 or 1. This corresponds to the situation described in section 7.1 in conjunction with
the timing diagram in Figure 7.5 at time t10. At this time both S and R inputs go from 1
to 0, which causes the oscillatory behavior that we discussed. If S = R = 1, this situation
will occur as soon as Clk goes from 1 to 0. To ensure a meaningful operation of the gated
SR latch, it is essential to avoid the possibility of having both the S and R inputs equal to 1
when Clk changes from 1 to 0.

A timing diagram for the gated SR latch is given in Figure 7.6c. It shows Clk as a
periodic signal that is equal to 1 at regular time intervals to suggest that this is how the
clock signal usually appears in a real system. The diagram presents the effect of several
combinations of signal values. Observe that we have labeled one output as Q and the other
as its complement Q, rather than Qa and Qb as in Figure 7.5. Since the undefined mode,
where S = R = 1, must be avoided in practice, the normal operation of the latch will have
the outputs as complements of each other. Moreover, we will often say that the latch is set
when Q = 1, and it is reset when Q = 0. A graphical symbol for the gated SR latch is
given in Figure 7.6d .

7.2.1 Gated SR Latch with NAND Gates

So far we have implemented the basic latch with cross-coupled NOR gates. We can also
construct the latch with NAND gates. Using this approach, we can implement the gated
SR latch as depicted in Figure 7.7. The behavior of this circuit is described by the table
in Figure 7.6b. Note that in this circuit, the clock is gated by NAND gates, rather than by

S

R

Clk

Q

Q

Figure 7.7 Gated SR latch with NAND gates.
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AND gates. Note also that the S and R inputs are reversed in comparison with the circuit in
Figure 7.6a. The circuit with NAND gates requires fewer transistors than the circuit with
AND gates. We will use the circuit in Figure 7.7, in preference to the circuit in Figure 7.6a.

7.3 Gated D Latch

In section 7.2 we presented the gated SR latch and showed how it can be used as the memory
element in the alarm system of Figure 7.1. This latch is useful for many other applications.
In this section we describe another gated latch that is even more useful in practice. It has a
single data input, called D, and it stores the value on this input, under the control of a clock
signal. It is called a gated D latch.

To motivate the need for a gated D latch, consider the adder/subtractor unit discussed
in Chapter 5 (Figure 5.13). When we described how that circuit is used to add numbers, we
did not discuss what is likely to happen with the sum bits that are produced by the adder.
Adder/subtractor units are often used as part of a computer. The result of an addition or
subtraction operation is often used as an operand in a subsequent operation. Therefore, it
is necessary to be able to remember the values of the sum bits generated by the adder until
they are needed again. We might think of using the basic latches to remember these bits,
one bit per latch. In this context, instead of saying that a latch remembers the value of a
bit, it is more illuminating to say that the latch stores the value of the bit or simply “stores
the bit.” We should think of the latch as a storage element.

But can we obtain the desired operation using the basic latches? We can certainly reset
all latches before the addition operation begins. Then we would expect that by connecting
a sum bit to the S input of a latch, the latch would be set to 1 if the sum bit has the value 1;
otherwise, the latch would remain in the 0 state. This would work fine if all sum bits are 0 at
the start of the addition operation and, after some propagation delay through the adder, some
of these bits become equal to 1 to give the desired sum. Unfortunately, the propagation
delays that exist in the adder circuit cause a big problem in this arrangement. Suppose that
we use a ripple-carry adder. When the X and Y inputs are applied to the adder, the sum
outputs may alternate between 0 and 1 a number of times as the carries ripple through the
circuit. This situation was illustrated in the timing diagram in Figure 5.21. The problem is
that if we connect a sum bit to the S input of a latch, then if the sum bit is temporarily a 1
and then settles to 0 in the final result, the latch will remain set to 1 erroneously.

The problem caused by the alternating values of the sum bits in the adder could be
solved by using the gated SR latches, instead of the basic latches. Then we could arrange
that the clock signal is 0 during the time needed by the adder to produce a correct sum.
After allowing for the maximum propagation delay in the adder circuit, the clock should
go to 1 to store the values of the sum bits in the gated latches. As soon as the values have
been stored, the clock can return to 0, which ensures that the stored values will be retained
until the next time the clock goes to 1. To achieve the desired operation, we would also
have to reset all latches to 0 prior to loading the sum-bit values into these latches. This is
an awkward way of dealing with the problem, and it is preferable to use the gated D latches
instead.



January 24, 2008 14:23 vra_29532_ch07 Sheet number 9 Page number 389 black

7.3 Gated D Latch 389

Figure 7.8a shows the circuit for a gated D latch. It is based on the gated SR latch, but
instead of using the S and R inputs separately, it has just one data input,D. For convenience
we have labeled the points in the circuit that are equivalent to the S and R inputs. If D = 1,
then S = 1 and R = 0, which forces the latch into the state Q = 1. If D = 0, then S = 0
and R = 1, which causes Q = 0. Of course, the changes in state occur only when Clk = 1.

It is important to observe that in this circuit it is impossible to have the troublesome
situation where S = R = 1. In the gated D latch, the output Q merely tracks the value of
the input D while Clk= 1. As soon as Clk goes to 0, the state of the latch is frozen until the
next time the clock signal goes to 1. Therefore, the gated D latch stores the value of the D

Q
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Clk

D
(Data)

D Q

QClk

Clk D

0
1
1

x
0
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0
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Q t 1+( )

Q t( )

(a) Circuit

(b) Characteristic table (c) Graphical symbol

t1 t2 t3 t4

Time

Clk

D

Q

(d) Timing diagram

Q

Figure 7.8 Gated D latch.
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input seen at the time the clock changes from 1 to 0. Figure 7.8 also gives the characteristic
table, the graphical symbol, and the timing diagram for the gated D latch.

The timing diagram illustrates what happens if the D signal changes while Clk = 1.
During the third clock pulse, starting at t3, the output Q changes to 1 because D = 1. But
midway through the pulse D goes to 0, which causes Q to go to 0. This value of Q is stored
when Clk changes to 0. Now no further change in the state of the latch occurs until the next
clock pulse, at t4. The key point to observe is that as long as the clock has the value 1, the Q
output follows theD input. But when the clock has the value 0, the Q output cannot change.
In Chapter 3 we saw that the logic values are implemented as low and high voltage levels.
Since the output of the gated D latch is controlled by the level of the clock input, the latch
is said to be level sensitive. The circuits in Figures 7.6 through 7.8 are level sensitive. We
will show in section 7.4 that it is possible to design storage elements for which the output
changes only at the point in time when the clock changes from one value to the other. Such
circuits are said to be edge triggered.

At this point we should reconsider the circuit in Figure 7.3. Careful examination of
that circuit shows that it behaves in exactly the same way as the circuit in Figure 7.8a. The
Data and Load inputs correspond to the D and Clk inputs, respectively. The Output, which
has the same signal value as point A, corresponds to the Q output. Point B corresponds to
Q. Therefore, the circuit in Figure 7.3 is also a gated D latch. An advantage of this circuit
is that it can be implemented using fewer transistors than the circuit in Figure 7.8a.

7.3.1 Effects of Propagation Delays

In the previous discussion we ignored the effects of propagation delays. In practical circuits
it is essential to take these delays into account. Consider the gated D latch in Figure 7.8a.
It stores the value of the D input that is present at the time the clock signal changes from
1 to 0. It operates properly if the D signal is stable (that is, not changing) at the time Clk
goes from 1 to 0. But it may lead to unpredictable results if the D signal also changes at
this time. Therefore, the designer of a logic circuit that generates the D signal must ensure
that this signal is stable when the critical change in the clock signal takes place.

Figure 7.9 illustrates the critical timing region. The minimum time that the D signal
must be stable prior to the negative edge of the Clk signal is called the setup time, tsu, of the

t
su

t
h

Clk

D

Q

Figure 7.9 Setup and hold times.
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latch. The minimum time that the D signal must remain stable after the negative edge of
the Clk signal is called the hold time, th, of the latch. The values of tsu and th depend on the
technology used. Manufacturers of integrated circuit chips provide this information on the
data sheets that describe their chips. Typical values for a modern CMOS technology may
be tsu = 0.3 ns and th = 0.2 ns. We will give examples of how setup and hold times affect
the speed of operation of circuits in section 7.13. The behavior of storage elements when
setup or hold times are violated is discussed in section 10.3.3.

7.4 Master-Slave and Edge-Triggered D Flip-Flops

In the level-sensitive latches, the state of the latch keeps changing according to the values of
input signals during the period when the clock signal is active (equal to 1 in our examples).
As we will see in sections 7.8 and 7.9, there is also a need for storage elements that can
change their states no more than once during one clock cycle. We will discuss two types
of circuits that exhibit such behavior.

7.4.1 Master-Slave D Flip-Flop

Consider the circuit given in Figure 7.10a, which consists of two gated D latches. The first,
calledmaster, changes its state while Clock= 1. The second, called slave, changes its state
while Clock= 0. The operation of the circuit is such that when the clock is high, the master
tracks the value of the D input signal and the slave does not change. Thus the value of Qm

follows any changes in D, and the value of Qs remains constant. When the clock signal
changes to 0, the master stage stops following the changes in theD input. At the same time,
the slave stage responds to the value of the signal Qm and changes state accordingly. Since
Qm does not change while Clock = 0, the slave stage can undergo at most one change of
state during a clock cycle. From the external observer’s point of view, namely, the circuit
connected to the output of the slave stage, the master-slave circuit changes its state at the
negative-going edge of the clock. The negative edge is the edge where the clock signal
changes from 1 to 0. Regardless of the number of changes in the D input to the master
stage during one clock cycle, the observer of the Qs signal will see only the change that
corresponds to the D input at the negative edge of the clock.

The circuit in Figure 7.10 is called amaster-slave D flip-flop. The term flip-flop denotes
a storage element that changes its output state at the edge of a controlling clock signal. The
timing diagram for this flip-flop is shown in Figure 7.10b. A graphical symbol is given in
Figure 7.10c. In the symbol we use the > mark to denote that the flip-flop responds to the
“active edge” of the clock. We place a bubble on the clock input to indicate that the active
edge for this particular circuit is the negative edge.

7.4.2 Edge-Triggered D Flip-Flop

The output of the master-slave D flip-flop in Figure 7.10a responds on the negative edge
of the clock signal. The circuit can be changed to respond to the positive clock edge by
connecting the slave stage directly to the clock and the master stage to the complement of
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Figure 7.10 Master-slave D flip-flop.

the clock. A different circuit that accomplishes the same task is presented in Figure 7.11a.
It requires only six NAND gates and, hence, fewer transistors. The operation of the circuit
is as follows. When Clock = 0, the outputs of gates 2 and 3 are high. Thus P1 = P2 = 1,
which maintains the output latch, comprising gates 5 and 6, in its present state. At the same
time, the signal P3 is equal toD, and P4 is equal to its complementD. WhenClock changes
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Figure 7.11 A positive-edge-triggered D flip-flop.

to 1, the following changes take place. The values of P3 and P4 are transmitted through
gates 2 and 3 to cause P1 = D and P2 = D, which sets Q = D and Q = D. To operate
reliably, P3 and P4 must be stable when Clock changes from 0 to 1. Hence the setup time
of the flip-flop is equal to the delay from the D input through gates 4 and 1 to P3. The hold
time is given by the delay through gate 3 because once P2 is stable, the changes in D no
longer matter.

For proper operation it is necessary to show that, after Clock changes to 1, any further
changes in D will not affect the output latch as long as Clock= 1. We have to consider two
cases. Suppose first that D = 0 at the positive edge of the clock. Then P2 = 0, which will
keep the output of gate 4 equal to 1 as long as Clock = 1, regardless of the value of the D
input. The second case is if D = 1 at the positive edge of the clock. Then P1 = 0, which
forces the outputs of gates 1 and 3 to be equal to 1, regardless of the D input. Therefore,
the flip-flop ignores changes in the D input while Clock = 1.
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Figure 7.11b gives a graphical symbol for this flip-flop. The clock input indicates that
the positive edge of the clock is the active edge. A similar circuit, constructed with NOR
gates, can be used as a negative-edge-triggered flip-flop.

Level-Sensitive versus Edge-Triggered Storage Elements
Figure 7.12 shows three different types of storage elements that are driven by the same

data and clock inputs. The first element is a gated D latch, which is level sensitive. The
second one is a positive-edge-triggered D flip-flop, and the third one is a negative-edge-
triggered D flip-flop. To accentuate the differences between these storage elements, the
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Figure 7.12 Comparison of level-sensitive and edge-triggered D storage elements.
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D input changes its values more than once during each half of the clock cycle. Observe
that the gated D latch follows the D input as long as the clock is high. The positive-edge-
triggered flip-flop responds only to the value of D when the clock changes from 0 to 1. The
negative-edge-triggered flip-flop responds only to the value of D when the clock changes
from 1 to 0.

7.4.3 D Flip-Flops with Clear and Preset

Flip-flops are often used for implementation of circuits that can have many possible states,
where the response of the circuit depends not only on the present values of the circuit’s
inputs but also on the particular state that the circuit is in at that time. We will discuss
a general form of such circuits in Chapter 8. A simple example is a counter circuit that
counts the number of occurrences of some event, perhaps passage of time. We will discuss
counters in detail in section 7.9. A counter comprises a number of flip-flops, whose outputs
are interpreted as a number. The counter circuit has to be able to increment or decrement the
number. It is also important to be able to force the counter into a known initial state (count).
Obviously, it must be possible to clear the count to zero, which means that all flip-flops
must have Q = 0. It is equally useful to be able to preset each flip-flop to Q = 1, to insert
some specific count as the initial value in the counter. These features can be incorporated
into the circuits of Figures 7.10 and 7.11 as follows.

Figure 7.13a shows an implementation of the circuit in Figure 7.10a using NAND
gates. The master stage is just the gated D latch of Figure 7.8a. Instead of using another
latch of the same type for the slave stage, we can use the slightly simpler gated SR latch of
Figure 7.7. This eliminates one NOT gate from the circuit.

A simple way of providing the clear and preset capability is to add an extra input to
each NAND gate in the cross-coupled latches, as indicated in blue. Placing a 0 on theClear
input will force the flip-flop into the state Q = 0. If Clear = 1, then this input will have no
effect on the NAND gates. Similarly, Preset = 0 forces the flip-flop into the state Q = 1,
while Preset = 1 has no effect. To denote that the Clear and Preset inputs are active when
their value is 0, we placed an overbar on the names in the figure. We should note that the
circuit that uses this flip-flop should not try to force both Clear and Preset to 0 at the same
time. A graphical symbol for this flip-flop is shown in Figure 7.13b.

A similar modification can be done on the edge-triggered flip-flop of Figure 7.11a, as
indicated in Figure 7.14a. Again, both Clear and Preset inputs are active low. They do not
disturb the flip-flop when they are equal to 1.

In the circuits in Figures 7.13a and 7.14a, the effect of a low signal on either the Clear
or Preset input is immediate. For example, if Clear= 0 then the flip-flop goes into the state
Q = 0 immediately, regardless of the value of the clock signal. In such a circuit, where the
Clear signal is used to clear a flip-flop without regard to the clock signal, we say that the
flip-flop has an asynchronous clear. In practice, it is often preferable to clear the flip-flops
on the active edge of the clock. Such synchronous clear can be accomplished as shown in
Figure 7.14c. The flip-flop operates normally when the Clear input is equal to 1. But if
Clear goes to 0, then on the next positive edge of the clock the flip-flop will be cleared to
0. We will examine the clearing of flip-flops in more detail in section 7.10.
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Figure 7.13 Master-slave D flip-flop with Clear and Preset.

7.4.4 Flip-Flop Timing Parameters

In section 7.3.1 we discussed timing issues related to latch circuits. In practice such issues
are equally important for circuits with flip-flops. Figure 7.15a shows a positive-edge trig-
gered flip-flop with asynchronous clear, and part b of the figure illustrates some important
timing parameters for this flip-flop. Data is loaded into the D input of the flip-flop on a
positive clock edge, and this logic value must be stable during the setup time, tsu, before
the clock edge occurs. The data must remain stable during the hold time, th, after the edge.
If the setup or hold requirements are not adhered to in a circuit that uses this flip-flop,
then it may enter an unstable condition known as metastability; we discuss this concept in
section 10.3.

As indicated in Figure 7.15, a clock-to-Q propagation delay, tcQ, is incurred
before the value of Q changes after a positive clock edge. In general, the delay may not be
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Figure 7.14 Positive-edge-triggered D flip-flop with Clear and Preset.

exactly the same for the cases when Q changes from 1 to 0 or 0 to 1, but we assume for
simplicity that these delays are equal. For the flip-flops in a commercial chip, two values are
usually specified for tcQ, representing the maximum and minimum delays that may occur
in practice. Specifying a range of values when estimating the delays in a chip is a common
practice due to many sources of variation in delay that are caused by the chip manufacturing
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Figure 7.15 Flip-flop timing parameters.

process. In section 7.15 we provide some examples that illustrate the effects of flip-flop
timing parameters on the operation of circuits.

7.5 T Flip-Flop

The D flip-flop is a versatile storage element that can be used for many purposes. By
including some simple logic circuitry to drive its input, the D flip-flop may appear to be a
different type of storage element. An interesting modification is presented in Figure 7.16a.
This circuit uses a positive-edge-triggered D flip-flop. The feedback connections make the
input signal D equal to either the value of Q or Q under the control of the signal that is
labeled T . On each positive edge of the clock, the flip-flop may change its state Q(t). If
T = 0, then D = Q and the state will remain the same, that is, Q(t + 1) = Q(t). But if
T = 1, then D = Q and the new state will be Q(t + 1) = Q(t). Therefore, the overall
operation of the circuit is that it retains its present state if T = 0, and it reverses its present
state if T = 1.

The operation of the circuit is specified in the form of a characteristic table in Figure
7.16b. Any circuit that implements this table is called a T flip-flop. The name T flip-flop
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Figure 7.16 T flip-flop.

derives from the behavior of the circuit, which “toggles” its state when T = 1. The toggle
feature makes the T flip-flop a useful element for building counter circuits, as we will see
in section 7.9.

7.5.1 Configurable Flip-Flops

For some circuits one type of flip-flop may lead to a more efficient implementation than a
different type of flip-flop. In general purpose chips like PLDs, the flip-flops that are provided
are sometimes configurable, which means that a flip-flop circuit can be configured to be
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either D, T, or some other type. For example, in some PLDs the flip-flops can be configured
as either D or T types (see problems 7.6 and 7.8).

7.6 JK Flip-Flop

Another interesting circuit can be derived from Figure 7.16a. Instead of using a single
control input, T , we can use two inputs, J and K , as indicated in Figure 7.17a. For this
circuit the input D is defined as

D = JQ+ KQ

A corresponding characteristic table is given in Figure 7.17b. The circuit is called a JK
flip-flop. It combines the behaviors of SR and T flip-flops in a useful way. It behaves as
the SR flip-flop, where J = S and K = R, for all input values except J = K = 1. For the
latter case, which has to be avoided in the SR flip-flop, the JK flip-flop toggles its state like
the T flip-flop.

The JK flip-flop is a versatile circuit. It can be used for straight storage purposes, just
like the D and SR flip-flops. But it can also serve as a T flip-flop by connecting the J and
K inputs together.
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Figure 7.17 JK flip-flop.
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7.7 Summary of Terminology

We have used the terminology that is quite common. But the reader should be aware that
different interpretations of the terms latch and flip-flop can be found in the literature. Our
terminology can be summarized as follows:

Basic latch is a feedback connection of two NOR gates or two NAND gates, which
can store one bit of information. It can be set to 1 using the S input and reset to 0
using the R input.

Gated latch is a basic latch that includes input gating and a control input signal. The
latch retains its existing state when the control input is equal to 0. Its state may be
changed when the control signal is equal to 1. In our discussion we referred to the
control input as the clock. We considered two types of gated latches:

• Gated SR latch uses the S and R inputs to set the latch to 1 or reset it to 0,
respectively.

• Gated D latch uses the D input to force the latch into a state that has the same
logic value as the D input.

A flip-flop is a storage element based on the gated latch principle, which can have its
output state changed only on the edge of the controlling clock signal. We considered
two types:

• Edge-triggered flip-flop is affected only by the input values present when the
active edge of the clock occurs.

• Master-slave flip-flop is built with two gated latches. The master stage is active
during half of the clock cycle, and the slave stage is active during the other half.
The output value of the flip-flop changes on the edge of the clock that activates
the transfer into the slave stage.

7.8 Registers

A flip-flop stores one bit of information. When a set of n flip-flops is used to store n bits of
information, such as an n-bit number, we refer to these flip-flops as a register. A common
clock is used for each flip-flop in a register, and each flip-flop operates as described in the
previous sections. The term register is merely a convenience for referring to n-bit structures
consisting of flip-flops.

7.8.1 Shift Register

In section 5.6 we explained that a given number is multiplied by 2 if its bits are shifted
one bit position to the left and a 0 is inserted as the new least-significant bit. Similarly, the
number is divided by 2 if the bits are shifted one bit-position to the right. A register that
provides the ability to shift its contents is called a shift register.
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Q1 Q2 Q3 Q4

Figure 7.18 A simple shift register.

Figure 7.18a shows a four-bit shift register that is used to shift its contents one bit-
position to the right. The data bits are loaded into the shift register in a serial fashion using
the In input. The contents of each flip-flop are transferred to the next flip-flop at each
positive edge of the clock. An illustration of the transfer is given in Figure 7.18b, which
shows what happens when the signal values at In during eight consecutive clock cycles are
1, 0, 1, 1, 1, 0, 0, and 0, assuming that the initial state of all flip-flops is 0.

To implement a shift register, it is necessary to use either edge-triggered or master-slave
flip-flops. The level-sensitive gated latches are not suitable, because a change in the value
of In would propagate through more than one latch during the time when the clock is equal
to 1.

7.8.2 Parallel-Access Shift Register

In computer systems it is often necessary to transfer n-bit data items. This may be done by
transmitting all bits at once using n separate wires, in which case we say that the transfer
is performed in parallel. But it is also possible to transfer all bits using a single wire, by
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Figure 7.19 Parallel-access shift register.

performing the transfer one bit at a time, in n consecutive clock cycles. We refer to this
scheme as serial transfer. To transfer an n-bit data item serially, we can use a shift register
that can be loaded with all n bits in parallel (in one clock cycle). Then during the next n
clock cycles, the contents of the register can be shifted out for serial transfer. The reverse
operation is also needed. If bits are received serially, then after n clock cycles the contents
of the register can be accessed in parallel as an n-bit item.

Figure 7.19 shows a four-bit shift register that allows the parallel access. Instead of
using the normal shift register connection, the D input of each flip-flop is connected to
two different sources. One source is the preceding flip-flop, which is needed for the shift-
register operation. The other source is the external input that corresponds to the bit that is
to be loaded into the flip-flop as a part of the parallel-load operation. The control signal
Shift/Load is used to select the mode of operation. If Shift/Load = 0, then the circuit
operates as a shift register. If Shift/Load = 1, then the parallel input data are loaded into
the register. In both cases the action takes place on the positive edge of the clock.

In Figure 7.19 we have chosen to label the flip-flops outputs as Q3, . . . , Q0 because
shift registers are often used to hold binary numbers. The contents of the register can be
accessed in parallel by observing the outputs of all flip-flops. The flip-flops can also be
accessed serially, by observing the values of Q0 during consecutive clock cycles while the
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contents are being shifted. A circuit in which data can be loaded in series and then accessed
in parallel is called a series-to-parallel converter. Similarly, the opposite type of circuit is a
parallel-to-series converter. The circuit in Figure 7.19 can perform both of these functions.

7.9 Counters

In Chapter 5 we dealt with circuits that perform arithmetic operations. We showed how
adder/subtractor circuits can be designed, either using a simple cascaded (ripple-carry)
structure that is inexpensive but slow or using a more complex carry-lookahead structure
that is both more expensive and faster. In this section we examine special types of addition
and subtraction operations, which are used for the purpose of counting. In particular, we
want to design circuits that can increment or decrement a count by 1. Counter circuits are
used in digital systems for many purposes. They may count the number of occurrences of
certain events, generate timing intervals for control of various tasks in a system, keep track
of time elapsed between specific events, and so on.

Counters can be implemented using the adder/subtractor circuits discussed in Chap-
ter 5 and the registers discussed in section 7.8. However, since we only need to change the
contents of a counter by 1, it is not necessary to use such elaborate circuits. Instead, we
can use much simpler circuits that have a significantly lower cost. We will show how the
counter circuits can be designed using T and D flip-flops.

7.9.1 Asynchronous Counters

The simplest counter circuits can be built using T flip-flops because the toggle feature is
naturally suited for the implementation of the counting operation.

Up-Counter with T Flip-Flops
Figure 7.20a gives a three-bit counter capable of counting from 0 to 7. The clock inputs

of the three flip-flops are connected in cascade. The T input of each flip-flop is connected
to a constant 1, which means that the state of the flip-flop will be reversed (toggled) at each
positive edge of its clock. We are assuming that the purpose of this circuit is to count the
number of pulses that occur on the primary input called Clock. Thus the clock input of
the first flip-flop is connected to the Clock line. The other two flip-flops have their clock
inputs driven by the Q output of the preceding flip-flop. Therefore, they toggle their state
whenever the preceding flip-flop changes its state from Q = 1 to Q = 0, which results in a
positive edge of the Q signal.

Figure 7.20b shows a timing diagram for the counter. The value of Q0 toggles once each
clock cycle. The change takes place shortly after the positive edge of the Clock signal. The
delay is caused by the propagation delay through the flip-flop. Since the second flip-flop
is clocked by Q0, the value of Q1 changes shortly after the negative edge of the Q0 signal.
Similarly, the value of Q2 changes shortly after the negative edge of the Q1 signal. If we
look at the values Q2Q1Q0 as the count, then the timing diagram indicates that the counting
sequence is 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, and so on. This circuit is a modulo-8 counter. Because
it counts in the upward direction, we call it an up-counter.



January 24, 2008 14:23 vra_29532_ch07 Sheet number 25 Page number 405 black

7.9 Counters 405

T Q

QClock

T Q

Q

T Q

Q

1

Q0 Q1 Q2

Clock

Q0

Q1

Q2

Count 0 1 2 3 4 5 6 7 0

(b) Timing diagram

(a) Circuit

Figure 7.20 A three-bit up-counter.

The counter in Figure 7.20a has three stages, each comprising a single flip-flop. Only
the first stage responds directly to the Clock signal; we say that this stage is synchronized
to the clock. The other two stages respond after an additional delay. For example, when
Count= 3, the next clock pulse will cause the Count to go to 4. As indicated by the arrows
in the timing diagram in Figure 7.20b, this change requires the toggling of the states of
all three flip-flops. The change in Q0 is observed only after a propagation delay from the
positive edge of Clock. The Q1 and Q2 flip-flops have not yet changed; hence for a brief
time the count is Q2Q1Q0 = 010. The change in Q1 appears after a second propagation
delay, at which point the count is 000. Finally, the change in Q2 occurs after a third delay,
at which point the stable state of the circuit is reached and the count is 100. This behavior is
similar to the rippling of carries in the ripple-carry adder circuit of Figure 5.6. The circuit
in Figure 7.20a is an asynchronous counter, or a ripple counter.

Down-Counter with T Flip-Flops
A slight modification of the circuit in Figure 7.20a is presented in Figure 7.21a. The

only difference is that in Figure 7.21a the clock inputs of the second and third flip-flops are
driven by the Q outputs of the preceding stages, rather than by the Q outputs. The timing
diagram, given in Figure 7.21b, shows that this circuit counts in the sequence 0, 7, 6, 5, 4,
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Figure 7.21 A three-bit down-counter.

3, 2, 1, 0, 7, and so on. Because it counts in the downward direction, we say that it is a
down-counter.

It is possible to combine the functionality of the circuits in Figures 7.20a and 7.21a to
form a counter that can count either up or down. Such a counter is called an up/down-
counter. We leave the derivation of this counter as an exercise for the reader (prob-
lem 7.16).

7.9.2 Synchronous Counters

The asynchronous counters in Figures 7.20a and 7.21a are simple, but not very fast. If a
counter with a larger number of bits is constructed in this manner, then the delays caused
by the cascaded clocking scheme may become too long to meet the desired performance
requirements. We can build a faster counter by clocking all flip-flops at the same time,
using the approach described below.

Synchronous Counter with T Flip-Flops
Table 7.1 shows the contents of a three-bit up-counter for eight consecutive clock

cycles, assuming that the count is initially 0. Observing the pattern of bits in each row of
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Table 7.1 Derivation of the synchronous
up-counter.

0
0
1
1

0
1
0
1

0
1
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0
0
1

0
1
0

4
5
6

1 17

0
0
0
0
1
1
1
1

Clock cycle

0 08 0

Q2 Q1 Q0
Q1 changes

Q2 changes

the table, it is apparent that bit Q0 changes on each clock cycle. Bit Q1 changes only when
Q0 = 1. Bit Q2 changes only when both Q1 and Q0 are equal to 1. In general, for an n-bit
up-counter, a given flip-flop changes its state only when all the preceding flip-flops are in
the state Q = 1. Therefore, if we use T flip-flops to realize the counter, then the T inputs
are defined as

T0 = 1

T1 = Q0

T2 = Q0Q1

T3 = Q0Q1Q2

·
·
·

Tn = Q0Q1 · · ·Qn−1

An example of a four-bit counter based on these expressions is given in Figure 7.22a.
Instead of using AND gates of increased size for each stage, which may lead to fan-in
problems, we use a factored arrangement, as shown in the figure. This arrangement does
not slow down the response of the counter, because all flip-flops change their states after a
propagation delay from the positive edge of the clock. Note that a change in the value of
Q0 may have to propagate through several AND gates to reach the flip-flops in the higher
stages of the counter, which requires a certain amount of time. This time must not exceed
the clock period. Actually, it must be less than the clock period minus the setup time for
the flip-flops.

Figure 7.22b gives a timing diagram. It shows that the circuit behaves as a modulo-16
up-counter. Because all changes take place with the same delay after the active edge of the
Clock signal, the circuit is called a synchronous counter.
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Figure 7.22 A four-bit synchronous up-counter.

Enable and Clear Capability
The counters in Figures 7.20 through 7.22 change their contents in response to each

clock pulse. Often it is desirable to be able to inhibit counting, so that the count remains
in its present state. This may be accomplished by including an Enable control signal, as
indicated in Figure 7.23. The circuit is the counter of Figure 7.22, where the Enable signal
controls directly the T input of the first flip-flop. Connecting the Enable also to the AND-
gate chain means that if Enable = 0, then all T inputs will be equal to 0. If Enable = 1,
then the counter operates as explained previously.

In many applications it is necessary to start with the count equal to zero. This is easily
achieved if the flip-flops can be cleared, as explained in section 7.4.3. The clear inputs on
all flip-flops can be tied together and driven by a Clear control input.

Synchronous Counter with D Flip-Flops
While the toggle feature makes T flip-flops a natural choice for the implementation

of counters, it is also possible to build counters using other types of flip-flops. The JK
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Figure 7.23 Inclusion of Enable and Clear capability.

flip-flops can be used in exactly the same way as the T flip-flops because if the J and K
inputs are tied together, a JK flip-flop becomes a T flip-flop. We will now consider using D
flip-flops for this purpose.

It is not obvious how D flip-flops can be used to implement a counter. We will present
a formal method for deriving such circuits in Chapter 8. Here we will present a circuit
structure that meets the requirements but will leave the derivation for Chapter 8. Figure
7.24 gives a four-bit up-counter that counts in the sequence 0, 1, 2, . . . , 14, 15, 0, 1,
and so on. The count is indicated by the flip-flop outputs Q3Q2Q1Q0. If we assume that
Enable = 1, then the D inputs of the flip-flops are defined by the expressions

D0 = Q0 = 1⊕ Q0

D1 = Q1 ⊕ Q0

D2 = Q2 ⊕ Q1Q0

D3 = Q3 ⊕ Q2Q1Q0

For a larger counter the ith stage is defined by

Di = Qi ⊕ Qi−1Qi−2 · · ·Q1Q0

We will show how to derive these equations in Chapter 8.
We have included the Enable control signal so that the counter counts the clock pulses

only if Enable = 1. In effect, the above equations are modified to implement the circuit in
the figure as follows

D0 = Q0 ⊕ Enable

D1 = Q1 ⊕ Q0 · Enable
D2 = Q2 ⊕ Q1 · Q0 · Enable
D3 = Q3 ⊕ Q2 · Q1 · Q0 · Enable

The operation of the counter is based on our observation for Table 7.1 that the state of the
flip-flop in stage i changes only if all preceding flip-flops are in the state Q = 1. This
makes the output of the AND gate that feeds stage i equal to 1, which causes the output of
the XOR gate connected to Di to be equal to Qi. Otherwise, the output of the XOR gate
provides Di = Qi, and the flip-flop remains in the same state. This resembles the carry
propagation in a carry-lookahead adder circuit (see section 5.4); hence the AND-gate chain
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Figure 7.24 A four-bit counter with D flip-flops.

can be thought of as the carry chain. Even though the circuit is only a four-bit counter, we
have included an extra AND gate that produces the “output carry.” This signal makes it
easy to concatenate two such four-bit counters to create an eight-bit counter.

Finally, the reader should note that the counter in Figure 7.24 is essentially the same
as the circuit in Figure 7.23. We showed in Figure 7.16a that a T flip-flop can be formed
from a D flip-flop by providing the extra gating that gives

D = QT + QT

= Q⊕ T



January 24, 2008 14:23 vra_29532_ch07 Sheet number 31 Page number 411 black

7.10 Reset Synchronization 411

Thus in each stage in Figure 7.24, the D flip-flop and the associated XOR gate implement
the functionality of a T flip-flop.

7.9.3 Counters with Parallel Load

Often it is necessary to start counting with the initial count being equal to 0. This state can
be achieved by using the capability to clear the flip-flops as indicated in Figure 7.23. But
sometimes it is desirable to start with a different count. To allow this mode of operation,
a counter circuit must have some inputs through which the initial count can be loaded.
Using the Clear and Preset inputs for this purpose is a possibility, but a better approach is
discussed below.

The circuit of Figure 7.24 can be modified to provide the parallel-load capability as
shown in Figure 7.25. A two-input multiplexer is inserted before eachD input. One input to
the multiplexer is used to provide the normal counting operation. The other input is a data
bit that can be loaded directly into the flip-flop. A control input, Load, is used to choose the
mode of operation. The circuit counts when Load = 0. A new initial value, D3D2D1D0, is
loaded into the counter when Load = 1.

7.10 Reset Synchronization

We have already mentioned that it is important to be able to clear, or reset, the contents
of a counter prior to commencing a counting operation. This can be done using the clear
capability of the individual flip-flops. But we may also be interested in resetting the count to
0 during the normal counting process. An n-bit up-counter functions naturally as a modulo-
2n counter. Suppose that we wish to have a counter that counts modulo some base that is
not a power of 2. For example, we may want to design a modulo-6 counter, for which the
counting sequence is 0, 1, 2, 3, 4, 5, 0, 1, and so on.

The most straightforward approach is to recognize when the count reaches 5 and then
reset the counter. An AND gate can be used to detect the occurrence of the count of 5.
Actually, it is sufficient to ascertain that Q2 = Q0 = 1, which is true only for 5 in our
desired counting sequence. A circuit based on this approach is given in Figure 7.26a. It
uses a three-bit synchronous counter of the type depicted in Figure 7.25. The parallel-load
feature of the counter is used to reset its contents when the count reaches 5. The resetting
action takes place at the positive clock edge after the count has reached 5. It involves
loading D2D1D0 = 000 into the flip-flops. As seen in the timing diagram in Figure 7.26b,
the desired counting sequence is achieved, with each value of the count being established
for one full clock cycle. Because the counter is reset on the active edge of the clock, we
say that this type of counter has a synchronous reset.

Consider now the possibility of using the clear feature of individual flip-flops, rather
than the parallel-load approach. The circuit in Figure 7.27a illustrates one possibility. It
uses the counter structure of Figure 7.22a. Since the clear inputs are active when low, a
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Figure 7.25 A counter with parallel-load capability.
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Figure 7.26 A modulo-6 counter with synchronous reset.

NAND gate is used to detect the occurrence of the count of 5 and cause the clearing of all
three flip-flops. Conceptually, this seems to work fine, but closer examination reveals a
potential problem. The timing diagram for this circuit is given in Figure 7.27b. It shows a
difficulty that arises when the count is equal to 5. As soon as the count reaches this value,
the NAND gate triggers the resetting action. The flip-flops are cleared to 0 a short time after
the NAND gate has detected the count of 5. This time depends on the gate delays in the
circuit, but not on the clock. Therefore, signal values Q2Q1Q0 = 101 are maintained for a
time that is much less than a clock cycle. Depending on a particular application of such a
counter, this may be adequate, but it may also be completely unacceptable. For example, if
the counter is used in a digital system where all operations in the system are synchronized
by the same clock, then this narrow pulse denoting Count = 5 would not be seen by the
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Figure 7.27 A modulo-6 counter with asynchronous reset.

rest of the system. To solve this problem, we could try to use a modulo-7 counter instead,
assuming that the system would ignore the short pulse that denotes the count of 6. This is
not a good way of designing circuits, because undesirable pulses often cause unforeseen
difficulties in practice. The approach employed in Figure 7.27a is said to use asynchronous
reset.

The timing diagrams in Figures 7.26b and 7.27b suggest that synchronous reset is a
better choice than asynchronous reset. The same observation is true if the natural counting
sequence has to be broken by loading some value other than zero. The new value of the
count can be established cleanly using the parallel-load feature. The alternative of using
the clear and preset capability of individual flip-flops to set their states to reflect the desired
count has the same problems as discussed in conjunction with the asynchronous reset.
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7.11 Other Types of Counters

In this section we discuss three other types of counters that can be found in practical
applications. The first uses the decimal counting sequence, and the other two generate
sequences of codes that do not represent binary numbers.

7.11.1 BCD Counter

Binary-coded-decimal (BCD) counters can be designed using the approach explained in
section 7.10. A two-digit BCD counter is presented in Figure 7.28. It consists of two
modulo-10 counters, one for each BCD digit, which we implemented using the parallel-
load four-bit counter of Figure 7.25. Note that in a modulo-10 counter it is necessary to
reset the four flip-flops after the count of 9 has been obtained. Thus the Load input to each
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Figure 7.28 A two-digit BCD counter.
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stage is equal to 1 when Q3 = Q0 = 1, which causes 0s to be loaded into the flip-flops at
the next positive edge of the clock signal. Whenever the count in stage 0, BCD0, reaches 9
it is necessary to enable the second stage so that it will be incremented when the next clock
pulse arrives. This is accomplished by keeping the Enable signal for BCD1 low at all times
except when BCD0 = 9.

In practice, it has to be possible to clear the contents of the counter by activating some
control signal. Two OR gates are included in the circuit for this purpose. The control input
Clear can be used to load 0s into the counter. Observe that in this case Clear is active when
high. VHDL code for a two-digit BCD counter is given in Figure 7.77.

In any digital system there is usually one or more clock signals used to drive all
synchronous circuitry. In the preceding counter, as well as in all counters presented in the
previous figures, we have assumed that the objective is to count the number of clock pulses.
Of course, these counters can be used to count the number of pulses in any signal that may
be used in place of the clock signal.

7.11.2 Ring Counter

In the preceding counters the count is indicated by the state of the flip-flops in the counter.
In all cases the count is a binary number. Using such counters, if an action is to be taken
as a result of a particular count, then it is necessary to detect the occurrence of this count.
This may be done using AND gates, as illustrated in Figures 7.26 through 7.28.

It is possible to devise a counterlike circuit in which each flip-flop reaches the state
Qi = 1 for exactly one count, while for all other counts Qi = 0. Then Qi indicates directly
an occurrence of the corresponding count. Actually, since this does not represent binary
numbers, it is better to say that the outputs of the flips-flops represent a code. Such a circuit
can be constructed from a simple shift register, as indicated in Figure 7.29a. The Q output
of the last stage in the shift register is fed back as the input to the first stage, which creates
a ringlike structure. If a single 1 is injected into the ring, this 1 will be shifted through
the ring at successive clock cycles. For example, in a four-bit structure, the possible codes
Q0Q1Q2Q3 will be 1000, 0100, 0010, and 0001. As we said in section 6.2, such encoding,
where there is a single 1 and the rest of the code variables are 0, is called a one-hot code.

The circuit in Figure 7.29a is referred to as a ring counter. Its operation has to be
initialized by injecting a 1 into the first stage. This is achieved by using the Start control
signal, which presets the left-most flip-flop to 1 and clears the others to 0. We assume that
all changes in the value of the Start signal occur shortly after an active clock edge so that
the flip-flop timing parameters are not violated.

The circuit in Figure 7.29a can be used to build a ring counter with any number of
bits, n. For the specific case of n = 4, part (b) of the figure shows how a ring counter
can be constructed using a two-bit up-counter and a decoder. When Start is set to 1, the
counter is reset to 00. After Start changes back to 0, the counter increments its value in the
normal way. The 2-to-4 decoder, described in section 6.2, changes the counter output into
a one-hot code. For the count values 00, 01, 10, 11, 00, and so on, the decoder produces
Q0Q1Q2Q3 = 1000, 0100, 0010, 0001, 1000, and so on. This circuit structure can be used
for larger ring counters, as long as the number of bits is a power of two. We will give
an example of a larger circuit that uses the ring counter in Figure 7.29b as a subcircuit in
section 7.14.
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Figure 7.29 Ring counter.

7.11.3 Johnson Counter

An interesting variation of the ring counter is obtained if, instead of the Q output, we take
the Q output of the last stage and feed it back to the first stage, as shown in Figure 7.30. This
circuit is known as a Johnson counter. An n-bit counter of this type generates a counting
sequence of length 2n. For example, a four-bit counter produces the sequence 0000, 1000,
1100, 1110, 1111, 0111, 0011, 0001, 0000, and so on. Note that in this sequence, only a
single bit has a different value for two consecutive codes.
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Figure 7.30 Johnson counter.

To initialize the operation of the Johnson counter, it is necessary to reset all flip-flops,
as shown in the figure. Observe that neither the Johnson nor the ring counter will generate
the desired counting sequence if not initialized properly.

7.11.4 Remarks on Counter Design

The sequential circuits presented in this chapter, namely, registers and counters, have a
regular structure that allows the circuits to be designed using an intuitive approach. In
Chapter 8 we will present a more formal approach to design of sequential circuits and show
how the circuits presented in this chapter can be derived using this approach.

7.12 Using Storage Elements with CAD Tools

This section shows how circuits with storage elements can be designed using either schematic
capture or VHDL code.

7.12.1 Including Storage Elements in Schematics

One way to create a circuit is to draw a schematic that builds latches and flip-flops from
logic gates. Because these storage elements are used in many applications, most CAD
systems provide them as prebuilt modules. Figure 7.31 shows a schematic created with
a schematic capture tool, which includes three types of flip-flops that are imported from
a library provided as part of the CAD system. The top element is a gated D latch, the
middle element is a positive-edge-triggered D flip-flop, and the bottom one is a positive-
edge-triggered T flip-flop. The D and T flip-flops have asynchronous, active-low clear and
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Figure 7.31 Three types of storage elements in a schematic.

Data

Clock

Latch

Figure 7.32 Gated D latch generated by CAD tools.

preset inputs. If these inputs are not connected in a schematic, then the CAD tool makes
them inactive by assigning the default value of 1 to them.

When the gated D latch is synthesized for implementation in a chip, the CAD tool may
not generate the cross-coupled NOR or NAND gates shown in section 7.2. In some chips,
such as a CPLD, theAND-OR circuit depicted in Figure 7.32 may be preferable. This circuit
is functionally equivalent to the cross-coupled version in section 7.2. The sum-of-products
circuit is used because it is more suitable for implementation in a CPLD macrocell. One
aspect of this circuit should be mentioned. From the functional point of view, it appears
that the circuit can be simplified by removing the AND gate with the inputsData and Latch.
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Without this gate, the top AND gate sets the value stored in the latch when the clock is 1,
and the bottom AND gate maintains the stored value when the clock is 0. But without this
gate, the circuit has a timing problem known as a static hazard. A detailed explanation of
hazards will be given in section 9.6.

The circuit in Figure 7.31 can be implemented in a CPLD as shown in Figure 7.33.
The D and T flip-flops are realized using the flip-flops on the chip that are configurable as

D Q

D Q

D Q

T Q

Data

Latch

Flip-flop

Toggle

Clock

0

1

1

1

0

0

0

0

1

1

PAL-like block

Interconnection wires

(Other macrocells not shown)

Figure 7.33 Implementation of the schematic in Figure 7.31 in a CPLD.
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Figure 7.34 Timing simulation for the storage elements in Figure 7.31.

either D or T types. The figure depicts in blue the gates and wires needed to implement the
circuit in Figure 7.31.

The results of a timing simulation for the implementation in Figure 7.33 are given in
Figure 7.34. The Latch signal, which is the output of the gated D latch, implemented as
indicated in Figure 7.32, follows the Data input whenever the Clock signal is 1. Because
of propagation delays in the chip, the Latch signal is delayed in time with respect to the
Data signal. Since the Flipflop signal is the output of the D flip-flop, it changes only after
a positive clock edge. Similarly, the output of the T flip-flop, called Toggle in the figure,
toggles when Data = 1 and a positive clock edge occurs. The timing diagram illustrates
the delay from when the positive clock edge occurs at the input pin of the chip until a
change in the flip-flop output appears at the output pin of the chip. This time is called the
clock-to-output time, tco.

7.12.2 Using VHDL Constructs for Storage Elements

In section 6.6 we described a number of VHDL assignment statements. The IF and CASE
statements were introduced as two types of sequential assignment statements. In this section
we show how these statements can be used to describe storage elements.

Figure 6.43, which is repeated in Figure 7.35, gives an example of VHDL code that
has implied memory. Because the code does not specify what value the AeqB signal should
have when the condition for the IF statement is not satisfied, the semantics specify that in
this case AeqB should retain its current value. The implied memory is the key concept used
for describing sequential circuit elements, which we will illustrate using several examples.

Example 7.1CODE FOR A GATED D LATCH The code in Figure 7.36 defines an entity named latch,
which has the inputsD and Clk and the output Q. The process uses an if-then-else statement
to define the value of the Q output. When Clk = 1, Q takes the value of D. For the case
when Clk is not 1, the code does not specify what value Q should have. Hence Q will retain
its current value in this case, and the code describes a gated D latch. The process sensitivity
list includes both Clk and D because these signals can cause a change in the value of the Q
output.
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY implied IS
PORT ( A, B : IN STD LOGIC ;

AeqB : OUT STD LOGIC ) ;
END implied ;

ARCHITECTURE Behavior OF implied IS
BEGIN

PROCESS ( A, B )
BEGIN

IF A � B THEN
AeqB <� ’1’ ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.35 The code from Figure 6.43, illustrating implied
memory.

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY latch IS
PORT ( D, Clk : IN STD LOGIC ;

Q : OUT STD LOGIC) ;
END latch ;

ARCHITECTURE Behavior OF latch IS
BEGIN

PROCESS ( D, Clk )
BEGIN

IF Clk � ’1’ THEN
Q <� D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.36 Code for a gated D latch.
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY flipflop IS
PORT ( D, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC) ;
END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

PROCESS ( Clock )
BEGIN

IF Clock’EVENT AND Clock � ’1’ THEN
Q <� D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.37 Code for a D flip-flop.

Example 7.2CODE FOR A D FLIP-FLOP Figure 7.37 defines an entity namedflipflop, which is a positive-
edge-triggered D flip-flop. The code is identical to Figure 7.36 with two exceptions. First,
the process sensitivity list contains only the clock signal because it is the only signal that can
cause a change in the Q output. Second, the if-then-else statement uses a different condition
from the one used in the latch. The syntax Clock’EVENT uses a VHDL construct called
an attribute. An attribute refers to a property of an object, such as a signal. In this case the
’EVENT attribute refers to any change in the Clock signal. Combining the Clock’EVENT
condition with the condition Clock = 1 means that “the value of the Clock signal has just
changed, and the value is now equal to 1.” Hence the condition refers to a positive clock
edge. Because the Q output changes only as a result of a positive clock edge, the code
describes a positive-edge-triggered D flip-flop.

Example 7.3ALTERNATIVE CODE FOR A D FLIP-FLOP The process in Figure 7.38 uses a different
syntax from that in Figure 7.37 to describe a D flip-flop. It uses the statement WAIT UNTIL
Clock’EVENT AND Clock = ’1’. This statement has the same effect as the IF statement
in Figure 7.37. A process that uses a WAIT UNTIL statement is a special case because
the sensitivity list is omitted. The WAIT UNTIL construct implies that the sensitivity list
includes only the clock signal. In our use of VHDL, which is for synthesis of circuits, a
process can use a WAIT UNTIL statement only if this is the first statement in the process.
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LIBRARY ieee;
USE ieee.std logic 1164.all;

ENTITY flipflop IS
PORT ( D, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC ) ;
END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL Clock’EVENT AND Clock � ’1’ ;
Q <� D ;

END PROCESS ;
END Behavior ;

Figure 7.38 Equivalent code to Figure 7.37, using a WAIT UNTIL
statement.

Actually, the attribute ’EVENT is redundant in the WAIT UNTIL statement. We can
write simply

WAIT UNTIL Clock = ’1’;

which also implies that the action occurs when theClock signal becomes equal to 1, namely,
at the edge when the signal changes from 0 to 1. However, some CAD synthesis tools require
the inclusion of the ’EVENT attribute, which is the reason why we use this style in the book.

In general, whenever it is desired to include in VHDL code flip-flops that are clocked
by the positive clock edge, the condition Clock’EVENT AND Clock ’1’ is used. When
this condition appears in an IF statement, any signals that are assigned values inside the
IF statement are implemented as the outputs of flip-flops. When the condition is used
in a WAIT UNTIL statement, any signal that is assigned a value in the entire process is
implemented as the output of a flip-flop.

The differences in using the IF and WAIT UNTIL statements are discussed in more
detail in Appendix A, section A.10.3.

Example 7.4 ASYNCHRONOUS CLEAR Figure 7.39 gives a process that is similar to the one in Figure
7.37. It describes a D flip-flop with an asynchronous active-low reset (clear) input. When
Resetn, the reset input, is equal to 0, the flip-flop’s Q output is set to 0.

Example 7.5 SYNCHRONOUS CLEAR Figure 7.40 shows how a D flip-flop with a synchronous reset
input can be described. In this case the reset signal is acted upon only when a positive
clock edge arrives. The code generates the circuit in Figure 7.14c, which has an AND gate
connected to the flip-flop’s D input.



January 24, 2008 14:23 vra_29532_ch07 Sheet number 45 Page number 425 black

7.12 Using Storage Elements with CAD Tools 425

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY flipflop IS
PORT ( D, Resetn, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC) ;
END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

PROCESS ( Resetn, Clock )
BEGIN

IF Resetn � ’0’ THEN
Q <� ’0’ ;

ELSIF Clock’EVENT AND Clock � ’1’ THEN
Q <� D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.39 D flip-flop with asynchronous reset.

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY flipflop IS
PORT ( D, Resetn, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC) ;
END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL Clock’EVENT AND Clock � ’1’ ;
IF Resetn � ’0’ THEN

Q <� ’0’ ;
ELSE

Q <� D ;
END IF ;

END PROCESS ;
END Behavior ;

Figure 7.40 D flip-flop with synchronous reset.
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Figure A.33a in Appendix A shows how the same circuit is specified by using an IF
statement instead of WAIT UNTIL.

7.13 Using Registers and Counters with CADTools

In this section we show how registers and counters can be included in circuits designed
with the aid of CAD tools. Examples are given using both schematic capture and VHDL
code.

7.13.1 Including Registers and Counters in Schematics

In section 5.5.1 we explained that a CAD system usually includes libraries of prebuilt
subcircuits. We introduced the library of parameterized modules (LPM) and used the
adder/subtractor module, lpm_add_sub, as an example. The LPM includes modules that
constitute flip-flops, registers, counters, and many other useful circuits. Figure 7.41 shows
a symbol that represents the lpm_ ff module. This module is a register with one or more
positive-edge-triggered flip-flops that can be of either D or T type. The module has param-
eters that allow the number of flip-flops and flip-flop type to be chosen. In this case we
chose to have four D flip-flops. The tutorial in Appendix C explains how the configuration
of LPM modules is done.

The D inputs to the four flip-flops, called data on the graphical symbol, are connected
to the four-bit input signalData[3..0]. The module’s asynchronous active-high reset (clear)
input, aclr, is shown in the schematic. The flip-flop outputs, q, are attached to the output
symbol labeled Q[3..0].

In section 7.3 we said that a useful application of D flip-flops is to hold the results of an
arithmetic computation, such as the output from an adder circuit. An example is given in
Figure 7.42, which uses two LPM modules, lpm_add_sub and lpm_ ff. The lpm_add_sub
module was described in section 5.5.1. Its parameters, which are not shown in Figure 7.42,

Figure 7.41 The lpm_ff parameterized flip-flop module.
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Figure 7.42 An adder with registered feedback.

are set to configure the module as a four-bit adder circuit. The adder’s four-bit data input
dataa is driven by the Data[3..0] input signal. The sum bits, result, are connected to the
data inputs of the lpm_ ff, which is configured as a four-bit D register with asynchronous
clear. The register generates the output of the circuit, Q[3..0], which appears on the left
side of the schematic. This signal is fed back to the datab input of the adder. The sum bits
from the adder are also provided as an output of the circuit, Sum[3..0], for ease of reference
in the discussion that follows. If the register is first cleared to 0000, then the circuit can be
used to add the binary numbers on the Data[3..0] input to a sum that is being accumulated
in the register, if a new number is applied to the input during each clock cycle. A circuit
that performs this function is referred to as an accumulator circuit.

We synthesized a circuit from the schematic and implemented the four-bit adder using
the carry-lookahead structure. A timing simulation for the circuit appears in Figure 7.43.
After resetting the circuit, the Data input is set to 0001. The adder produces the sum
0000 + 0001 = 0001, which is then clocked into the register at the 60 ns point in time.
After the tco delay, Q[3..0] becomes 0001, and this causes the adder to produce the new sum
0001+0001 = 0010. The time needed to generate the new sum is determined by the speed
of the adder circuit, which produces the sum after 12.5 ns in this case. The new sum does
not appear at the Q output until after the next positive clock edge, at 100 ns. The adder then
produces 0011 as the next sum. When Sum changes from 0010 to 0011, some oscillations
appear in the timing diagram, caused by the propagation of carry signals through the adder
circuit. These oscillations are not seen at the Q output, because Sum is stable by the time the
next positive clock edge occurs. Moving forward to the 180 ns point in time, Sum= 0100,
and this value is clocked into the register. The adder produces the new sum 0101. Then at
200 ns Data is changed to 0010, which causes the sum to change to 0100+ 0010 = 0110.
At the next positive clock edge, Q is set to 0110; the value Sum = 0101 that was present
temporarily in the circuit is not observed at the Q output. The circuit continues to add 0010
to the Q output at each successive positive clock edge.
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Figure 7.43 Timing simulation of the circuit from Figure 7.42.

Having simulated the behavior of the circuit, we should consider whether or not we
can conclude with some certainty that the circuit works properly. Ideally, it is prudent to
test all possible combinations of a circuit’s inputs before declaring that it works as desired.
However, in practice such testing is often not feasible because of the number of input
combinations that exist. For the circuit in Figure 7.42, we could verify that a correct sum
is produced by the adder, and we could also check that each of the four flip-flops in the
register properly stores either 0 or 1. We will discuss issues associated with the testing of
circuits in Chapter 11.

For the circuit in Figure 7.42 to work properly, the following timing constraints must
be met. When the register is clocked by a positive clock edge, a change of signal value
at the register’s output must propagate through the feedback path to the datab input of the
adder. The adder then produces a new sum, which must propagate to the data input of the
register. For the chip used to implement the circuit, the total delay incurred is 14 ns. The
delay can be broken down as follows: It takes 2 ns from when the register is clocked until
a change in its output reaches the datab input of the adder. The adder produces a new sum
in 8 ns, and it takes 4 ns for the sum to propagate to the register’s data input. In Figure 7.43
the clock period is 40 ns. Hence after the new sum arrives at the data input of the register,
there remain 40 − 14 = 26 ns until the next positive clock edge occurs. The data input
must be stable for the amount of the setup time, tsu = 3 ns, before the clock edge. Hence
we have 26− 3 = 23 ns to spare. The clock period can be decreased by as much as 23 ns,
and the circuit will still work. But if the clock period is less than 40 − 23 = 17 ns, then
the circuit will not function properly. Of course, if a different chip were used to implement
the circuit, then different timing results would be produced. CAD systems provide tools
that can automatically determine the minimum allowable clock period for which a circuit
will work correctly. The tutorial in Appendix C shows how this is done using the tools that
accompany the book.

7.13.2 Registers and Counters in VHDL Code

The predefined subcircuits in the LPM library can be instantiated in VHDL code. Figure
7.44 instantiates the lpm_shiftreg module, which is an n-bit shift register. The module’s
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;
LIBRARY lpm ;
USE lpm.lpm components.all ;

ENTITY shift IS
PORT ( Clock : IN STD LOGIC ;

Reset : IN STD LOGIC ;
Shiftin, Load : IN STD LOGIC ;
R : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
Q : OUT STD LOGIC VECTOR(3 DOWNTO 0) ) ;

END shift ;

ARCHITECTURE Structure OF shift IS
BEGIN

instance: lpm shiftreg
GENERIC MAP (LPM WIDTH �> 4, LPM DIRECTION �> ”RIGHT”)
PORT MAP (data �> R, clock �> Clock, aclr �> Reset,

load �> Load, shiftin �> Shiftin, q �> Q ) ;
END Structure ;

Figure 7.44 Instantiation of the lpm_shiftreg module.

parameters are set using the GENERIC MAP construct, as shown. The GENERIC MAP
construct is similar to the PORT MAP construct that is used to assign signal names to the
ports of a subcircuit. GENERIC MAP is used to assign values to the parameters of the
subcircuit. The number of flip-flops in the shift register is set to 4 using the parameter
LPM_WIDTH => 4. The module can be configured to shift either left or right. The
parameter LPM_DIRECTION => RIGHT sets the shift direction to be from the left to
the right. The code uses the module’s asynchronous active-high clear input, aclr, and the
active-high parallel-load input, load, which allows the shift register to be loaded with the
parallel data on the module’s data input. When shifting takes place, the value on the shiftin
input is shifted into the left-most flip-flop and the bit shifted out appears on the right-most
bit of the q parallel output. The code uses the named association, described in section 5.5.2,
to connect the input and output signals of the shift entity to the ports of the module. For
example, the R input signal is connected to the module’s data port. When translated into a
circuit, the lpm_shiftreg has the structure shown in Figure 7.19.

Predefined modules also exist for various types of counters, which are commonly
needed in logic circuits. An example is the lpm_counter module, which is a variable-width
counter with parallel-load inputs.
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY reg8 IS
PORT ( D : IN STD LOGIC VECTOR(7 DOWNTO 0) ;

Resetn, Clock : IN STD LOGIC ;
Q : OUT STD LOGIC VECTOR(7 DOWNTO 0) ) ;

END reg8 ;

ARCHITECTURE Behavior OF reg8 IS
BEGIN

PROCESS ( Resetn, Clock )
BEGIN

IF Resetn � ’0’ THEN
Q <� ”00000000” ;

ELSIF Clock’EVENT AND Clock � ’1’ THEN
Q <� D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.45 Code for an eight-bit register with asynchronous clear.

7.13.3 UsingVHDLSequential Statements forRegisters and
Counters

Rather than instantiating predefined subcircuits for registers, shift registers, counters, and
the like, the circuits can be described in VHDL using sequential statements. Figure 7.39
gives code for a D flip-flop. A straightforward way to describe an n-bit register is to write
hierarchical code that includes n instances of the D flip-flop subcircuit. A simpler approach
is shown in Figure 7.45. It uses the same code as in Figure 7.39 except that the D input
and Q output are defined as multibit signals. The code represents an eight-bit register with
asynchronous clear.

Example 7.6 AN N-BIT REGISTER Since registers of different sizes are often needed in logic circuits,
it is advantageous to define a register entity for which the number of flip-flops can be
easily changed. Figure 7.46 shows how the code in Figure 7.45 can be extended to include
a parameter that sets the number of flip-flops. The parameter is an integer, N , which is
defined using the VHDL construct called GENERIC. The value of N is set to 16 using the
:= assignment operator. By changing this parameter, the code can represent a register of
any size. If the register is declared as a component, then it can be used as a subcircuit in
other code. That code can either use the default value of the GENERIC parameter or else
specify a different parameter using the GENERIC MAP construct. An example showing
how GENERIC MAP is used is shown in Figure 7.44.
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY regn IS
GENERIC ( N : INTEGER :� 16 ) ;
PORT ( D : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;

Resetn, Clock : IN STD LOGIC ;
Q : OUT STD LOGIC VECTOR(N−1 DOWNTO 0) ) ;

END regn ;

ARCHITECTURE Behavior OF regn IS
BEGIN

PROCESS ( Resetn, Clock )
BEGIN

IF Resetn � ’0’ THEN
Q <� (OTHERS �> ’0’) ;

ELSIF Clock’EVENT AND Clock � ’1’ THEN
Q <� D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.46 Code for an n-bit register with asynchronous clear.

TheD and Q signals in Figure 7.46 are defined in terms of N . The statement that resets
all the bits of Q to 0 uses the odd-looking syntax Q <= (OTHERS=> ’0’). For the default
value ofN = 16, this statement is equivalent to the statement Q <= ”0000000000000000”.
The (OTHERS=> ’0’) syntax results in a ’0’digit being assigned to each bit of Q, regardless
of how many bits Q has. It allows the code to be used for any value of N , rather than only
for N = 16.

Example 7.7A FOUR-BIT SHIFT REGISTER Assume that we wish to write VHDL code that represents
the four-bit shift register in Figure 7.19. One approach is to write hierarchical code that
uses four subcircuits. Each subcircuit consists of a D flip-flop with a 2-to-1 multiplexer
connected to the D input. Figure 7.47 defines the entity named muxdff, which represents
this subcircuit. The two data inputs are named D0 and D1, and they are selected using the
Sel input. The process statement specifies that on the positive clock edge if Sel = 0, then
Q is assigned the value of D0; otherwise, Q is assigned the value of D1.

Figure 7.48 defines the four-bit shift register. The statement labeled Stage3 instantiates
the left-most flip-flop, which has the output Q3, and the statement labeled Stage0 instantiates
the right-most flip-flop, Q0. When L= 1, it is loaded in parallel from the R input, and when
L = 0, shifting takes place in the left to right direction. Serial data is shifted into the
most-significant bit, Q3, from the w input.
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY muxdff IS
PORT ( D0, D1, Sel, Clock : IN STD LOGIC ;

Q : OUT STD LOGIC ) ;
END muxdff ;

ARCHITECTURE Behavior OF muxdff IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL Clock’EVENT AND Clock � ’1’ ;
IF Sel � ’0’ THEN

Q <� D0 ;
ELSE

Q <� D1 ;
END IF ;

END PROCESS ;
END Behavior ;

Figure 7.47 Code for a D flip-flop with a 2-to-1 multiplexer on the D
input.

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY shift4 IS
PORT ( R : IN STD LOGIC VECTOR(3 DOWNTO 0) ;

L, w, Clock : IN STD LOGIC ;
Q : BUFFER STD LOGIC VECTOR(3 DOWNTO 0) ) ;

END shift4 ;

ARCHITECTURE Structure OF shift4 IS
COMPONENT muxdff

PORT ( D0, D1, Sel, Clock : IN STD LOGIC ;
Q : OUT STD LOGIC ) ;

END COMPONENT ;
BEGIN

Stage3: muxdff PORT MAP ( w, R(3), L, Clock, Q(3) ) ;
Stage2: muxdff PORT MAP ( Q(3), R(2), L, Clock, Q(2) ) ;
Stage1: muxdff PORT MAP ( Q(2), R(1), L, Clock, Q(1) ) ;
Stage0: muxdff PORT MAP ( Q(1), R(0), L, Clock, Q(0) ) ;

END Structure ;

Figure 7.48 Hierarchical code for a four-bit shift register.
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1 LIBRARY ieee ;
2 USE ieee.std logic 1164.all ;

3 ENTITY shift4 IS
4 PORT ( R : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
5 Clock : IN STD LOGIC ;
6 L, w : IN STD LOGIC ;
7 Q : BUFFER STD LOGIC VECTOR(3 DOWNTO 0) ) ;
8 END shift4 ;

9 ARCHITECTURE Behavior OF shift4 IS
10 BEGIN
11 PROCESS
12 BEGIN
13 WAIT UNTIL Clock’EVENT AND Clock � ’1’ ;
14 IF L � ’1’ THEN
15 Q <� R ;
16 ELSE
17 Q(0) <� Q(1) ;
18 Q(1) <� Q(2);
19 Q(2) <� Q(3) ;
20 Q(3) <� w ;
21 END IF ;
22 END PROCESS ;
23 END Behavior ;

Figure 7.49 Alternative code for a shift register.

Example 7.8ALTERNATIVE CODE FOR A FOUR-BIT SHIFT REGISTER A different style of code for the
four-bit shift register is given in Figure 7.49. The lines of code are numbered for ease
of reference. Instead of using subcircuits, the shift register is described using sequential
statements. Due to the WAIT UNTIL statement in line 13, any signal that is assigned a
value inside the process has to be implemented as the output of a flip-flop. Lines 14 and
15 specify the parallel loading of the shift register when L = 1. The ELSE clause in lines
16 to 20 specifies the shifting operation. Line 17 shifts the value of Q1 into the flip-flop
with the output Q0. Lines 18 and 19 shift the values of Q2 and Q3 into the flip-flops with
the outputs Q1 and Q2, respectively. Finally, line 20 shifts the value of w into the left-most
flip-flop, which has the output Q3. Note that the process semantics, described in section
6.6.6, stipulate that the four assignments in lines 17 to 20 are scheduled to occur only after
all of the statements in the process have been evaluated. Hence all four flip-flops change
their values at the same time, as required in the shift register. The code generates the same
shift-register circuit as the code in Figure 7.48.

It is instructive to consider the effect of reversing the ordering of lines 17 through 20
in Figure 7.49, as indicated in Figure 7.50. In this case the first shift operation specified
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1 LIBRARY ieee ;
2 USE ieee.std logic 1164.all ;

3 ENTITY shift4 IS
4 PORT ( R : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
5 Clock : IN STD LOGIC ;
6 L, w : IN STD LOGIC ;
7 Q : BUFFER STD LOGIC VECTOR(3 DOWNTO 0) ) ;
8 END shift4 ;

9 ARCHITECTURE Behavior OF shift4 IS
10 BEGIN
11 PROCESS
12 BEGIN
13 WAIT UNTIL Clock’EVENT AND Clock � ’1’ ;
14 IF L � ’1’ THEN
15 Q <� R ;
16 ELSE
17 Q(3) <� w ;
18 Q(2) <� Q(3) ;
19 Q(1) <� Q(2);
20 Q(0) <� Q(1) ;
21 END IF ;
22 END PROCESS ;
23 END Behavior ;

Figure 7.50 Code that reverses the ordering of statements in Figure 7.49.

in the code, in line 17, shifts the value of w into the left-most flip-flop with the output Q3.
Due to the semantics of the process statement, the assignment to Q3 does not take effect
until all of the subsequent statements inside the process are evaluated. Hence line 18 shifts
the present value of Q3, before it is changed as a result of line 17, into the flip-flop with the
output Q2. Similarly, lines 19 and 20 shift the present values of Q2 and Q1 into the flip-flops
with the outputs Q1 and Q0, respectively. The code produces the same circuit as it did with
the ordering of the statements in Figure 7.49.

Example 7.9 N-BIT SHIFT REGISTER Figure 7.51 shows code that can be used to represent shift registers
of any size. The GENERIC parameter N , which has the default value 8 in the figure, sets
the number of flip-flops. The code is identical to that in Figure 7.49 with two exceptions.
First, R and Q are defined in terms ofN . Second, the ELSE clause that describes the shifting
operation is generalized to work for any number of flip-flops.

Lines 18 to 20 specify the shifting operation for the right-most N − 1 flip-flops, which
have the outputs QN−2 to Q0. The construct used is called a FOR LOOP. It is similar to the
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1 LIBRARY ieee ;
2 USE ieee.std logic 1164.all ;

3 ENTITY shiftn IS
4 GENERIC ( N : INTEGER :� 8 ) ;
5 PORT ( R : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;
6 Clock : IN STD LOGIC ;
7 L, w : IN STD LOGIC ;
8 Q : BUFFER STD LOGIC VECTOR(N−1 DOWNTO 0) ) ;
9 END shiftn ;

10 ARCHITECTURE Behavior OF shiftn IS
11 BEGIN
12 PROCESS
13 BEGIN
14 WAIT UNTIL Clock’EVENT AND Clock � ’1’ ;
15 IF L � ’1’ THEN
16 Q <� R ;
17 ELSE
18 Genbits: FOR i IN 0 TO N-2 LOOP
19 Q(i) <� Q(i + 1) ;
20 END LOOP ;
21 Q(N-1) <� w ;
22 END IF ;
23 END PROCESS ;
24 END Behavior ;

Figure 7.51 Code for an n-bit left-to-right shift register.

FOR GENERATE statement, introduced in section 6.6.4, which is used to generate a set of
concurrent statements. The FOR LOOP is used to generate a set of sequential statements.
The first loop iteration shifts the present value of Q1 into the flip-flop with the output Q0.
The next loop iteration shifts Q2 into the flip-flop with the output Q1, and so on, with the
final iteration shifting QN−1 into the flip-flop with the output QN−2. Line 21 completes the
shift operation by shifting the value of the serial input w into the left-most flip-flop with the
output QN−1.

Example 7.10UP-COUNTER Figure 7.52 shows the code for a four-bit up-counter that has a reset input,
Resetn, and an enable input, E. In the architecture body the flip-flops in the counter are
represented by the signal named Count. The process statement specifies an asynchronous
reset of Count if Resetn = 0. The ELSIF clause specifies that on the positive clock edge,
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std logic unsigned.all ;

ENTITY upcount IS
PORT ( Clock, Resetn, E : IN STD LOGIC ;

Q : OUT STD LOGIC VECTOR (3 DOWNTO 0)) ;
END upcount ;

ARCHITECTURE Behavior OF upcount IS
SIGNAL Count : STD LOGIC VECTOR (3 DOWNTO 0) ;

BEGIN
PROCESS ( Clock, Resetn )
BEGIN

IF Resetn � ’0’ THEN
Count <� ”0000” ;

ELSIF (Clock’EVENT AND Clock � ’1’) THEN
IF E � ’1’ THEN

Count <� Count + 1 ;
ELSE

Count <� Count ;
END IF ;

END IF ;
END PROCESS ;
Q <� Count ;

END Behavior ;

Figure 7.52 Code for a four-bit up-counter.

if E = 1, the count is incremented. If E = 0, the code explicitly assigns Count <= Count.
This statement is not required to correctly describe the counter, because of the implied
memory semantics, but it may be included for clarity. The Q outputs are assigned the value
of Count at the end of the code. The code produces the circuit shown in Figure 7.23 if the
VHDL compiler opts to use T flip-flops, and it generates the circuit in Figure 7.24 (with the
reset input added) if the compiler chooses D flip-flops.

Example 7.11 USING INTEGER SIGNALS IN A COUNTER Counters are often defined in VHDL using
the INTEGER type, which was introduced in section 5.5.4. The code in Figure 7.53 defines
an up-counter that has a parallel-load input in addition to a reset input. The parallel data,
R, as well as the counter’s output, Q, are defined using the INTEGER type. Since they
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY upcount IS
PORT ( R : IN INTEGER RANGE 0 TO 15 ;

Clock, Resetn, L : IN STD LOGIC ;
Q : BUFFER INTEGER RANGE 0 TO 15 ) ;

END upcount ;

ARCHITECTURE Behavior OF upcount IS
BEGIN

PROCESS ( Clock, Resetn )
BEGIN

IF Resetn � ’0’ THEN
Q <� 0 ;

ELSIF (Clock’EVENT AND Clock � ’1’) THEN
IF L � ’1’ THEN

Q <� R ;
ELSE

Q <� Q + 1 ;
END IF;

END IF;
END PROCESS;

END Behavior;

Figure 7.53 A four-bit counter with parallel load, using INTEGER signals.

have the range from 0 to 15, both of these signals represent four-bit quantities. In Figure
7.52 the signal Count is defined to represent the flip-flops in the counter. This signal is not
needed if the Q outputs have the BUFFER mode, as shown in Figure 7.53. The if-then-else
statement at the beginning of the process includes the same asynchronous reset as in Figure
7.53. The ELSIF clause specifies that on the positive clock edge, if L = 1, the flip-flops in
the counter are loaded in parallel from the R inputs. If L = 0, the count is incremented.

Example 7.12DOWN-COUNTER Figure 7.54 shows the code for a down-counter named downcnt. To
make it easy to change the starting count, it is defined as a GENERIC parameter named
modulus. On the positive clock edge, if L = 1, the counter is loaded with the value
modulus−1, and if L = 0, the count is decremented. The counter also includes an enable
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY downcnt IS
GENERIC ( modulus : INTEGER :� 8 ) ;
PORT ( Clock, L, E : IN STD LOGIC ;

Q : OUT INTEGER RANGE 0 TO modulus−1 ) ;
END downcnt ;

ARCHITECTURE Behavior OF downcnt IS
SIGNAL Count : INTEGER RANGE 0 TO modulus−1 ;

BEGIN
PROCESS
BEGIN

WAIT UNTIL (Clock’EVENT AND Clock � ’1’) ;
IF L � ’1’ THEN

Count <� modulus−1 ;
ELSE

IF E � ’1’ THEN
Count <� Count−1 ;

END IF ;
END IF ;

END PROCESS;
Q <� Count ;

END Behavior ;

Figure 7.54 Code for a down-counter.

input, E. Setting E = 1 allows the count to be decremented when an active clock edge
occurs.

7.14 Design Examples

This section presents two examples of digital systems that make use of some of the building
blocks described in this chapter and in Chapter 6.

7.14.1 Bus Structure

Digital systems often contain a set of registers used to store data. Figure 7.55 gives an
example of a system that has k n-bit registers, R1 to Rk. Each register is connected to a
common set of n wires, which are used to transfer data into and out of the registers. This
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Figure 7.55 A digital system with k registers.

common set of wires is usually called a bus. In addition to registers, in a real system other
types of circuit blocks would be connected to the bus. The figure shows how n bits of data
can be placed on the bus from another circuit block, using the control input Extern. The
data stored in any of the registers can be transferred via the bus to a different register or to
another circuit block that is connected to the bus.

It is essential to ensure that only one circuit block attempts to place data onto the bus
wires at any given time. In Figure 7.55 each register is connected to the bus through an n-bit
tri-state buffer. A control circuit is used to ensure that only one of the tri-state buffer enable
inputs, R1out, . . . ,Rkout , is asserted at a given time. The control circuit also produces the
signals R1in, . . . ,Rkin, which control when data is loaded into each register. In general, the
control circuit could perform a number of functions, such as transferring the data stored in
one register into another register and the like. Figure 7.55 shows an input signal named
Function that instructs the control circuit to perform a particular task. The control circuit is
synchronized by a clock input, which is the same clock signal that controls the k registers.

Figure 7.56 provides a more detailed view of how the registers from Figure 7.55 can
be connected to a bus. To keep the picture simple, 2 two-bit registers are shown, but the
same scheme can be used for larger registers. For register R1, two tri-state buffers enabled
by R1out are used to connect each flip-flop output to a wire in the bus. The D input on
each flip-flop is connected to a 2-to-1 multiplexer, whose select input is controlled by R1in.
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If R1in = 0, the flip-flops are loaded from their Q outputs; hence the stored data does
not change. But if R1in = 1, data is loaded into the flip-flops from the bus. Instead of
using multiplexers on the flip-flop inputs, one could attempt to connect the D inputs on
the flip-flops directly to the bus. Then it is necessary to control the clock inputs on all
flip-flops to ensure that they are clocked only when new data should be loaded into the
register. This approach is not good because it may happen that different flip-flops will be
clocked at slightly different times, leading to a problem known as clock skew. A detailed
discussion of the issues related to the clocking of flip-flops is provided in section 10.3.

The system in Figure 7.55 can be used in many different ways, depending on the design
of the control circuit and on how many registers and other circuit blocks are connected to
the bus. As a simple example, consider a system that has three registers, R1, R2, and R3.
Each register is connected to the bus as indicated in Figure 7.56. We will design a control
circuit that performs a single function—it swaps the contents of registers R1 and R2, using
R3 for temporary storage.

The required swapping is done in three steps, each needing one clock cycle. In the first
step the contents of R2 are transferred into R3. Then the contents of R1 are transferred into
R2. Finally, the contents of R3, which are the original contents of R2, are transferred into
R1. Note that we say that the contents of one register, Ri, are “transferred” into another
register, Rj. This jargon is commonly used to indicate that the new contents of Rj will be
a copy of the contents of Ri. The contents of Ri are not changed as a result of the transfer.
Therefore, it would be more precise to say that the contents of Ri are “copied” into Rj.

Using a Shift Register for Control
There are many ways to design a suitable control circuit for the swap operation. One

possibility is to use the left-to-right shift register shown in Figure 7.57. Assume that the
reset input is used to clear the flip-flops to 0. Hence the control signals R1in, R1out , and so
on are not asserted, because the shift register outputs have the value 0. The serial input w
normally has the value 0. We assume that changes in the value of w are synchronized to
occur shortly after the active clock edge. This assumption is reasonable because w would
normally be generated as the output of some circuit that is controlled by the same clock
signal. When the desired swap should be performed, w is set to 1 for one clock cycle, and
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D Q

Q

D Q

Q

w

R2
out

R3
in

,

Reset

R1
out

R2
in

, R3
out

R1
in

,

Figure 7.57 A shift-register control circuit.
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then w returns to 0. After the next active clock edge, the output of the left-most flip-flop
becomes equal to 1, which asserts both R2out and R3in. The contents of register R2 are
placed onto the bus wires and are loaded into register R3 on the next active clock edge.
This clock edge also shifts the contents of the shift register, resulting in R1out = R2in = 1.
Note that since w is now 0, the first flip-flop is cleared, causing R2out = R3in = 0. The
contents of R1 are now on the bus and are loaded into R2 on the next clock edge. After this
clock edge the shift register contains 001 and thus asserts R3out and R1in. The contents of
R3 are now on the bus and are loaded into R1 on the next clock edge.

Using the control circuit in Figure 7.57, when w changes to 1 the swap operation does
not begin until after the next active clock edge. We can modify the control circuit so that
it starts the swap operation in the same clock cycle in which w changes to 1. One possible
approach is illustrated in Figure 7.58. The reset signal is used to set the shift-register
contents to 100, by presetting the left-most flip-flop to 1 and clearing the other two flip-
flops. As long as w = 0, the output control signals are not asserted. When w changes to 1,
the signals R2out and R3in are immediately asserted and the contents of R2 are placed onto
the bus. The next active clock edge loads this data into R3 and also shifts the shift register
contents to 010. Since the signal R1out is now asserted, the contents of R1 appear on the
bus. The next clock edge loads this data into R2 and changes the shift register contents to
001. The contents of R3 are now on the bus; this data is loaded into R1 at the next clock
edge, which also changes the shift register contents to 100. We assume that w had the value
1 for only one clock cycle; hence the output control signals are not asserted at this point.
It may not be obvious to the reader how to design a circuit such as the one in Figure 7.58,
because we have presented the design in an ad hoc fashion. In section 8.3 we will show
how this circuit can be designed using a more formal approach.

The circuit in Figure 7.58 assumes that a preset input is available on the left-most
flip-flop. If the flip-flop has only a clear input, then we can use the equivalent circuit
shown in Figure 7.59. In this circuit we use the Q output of the left-most flip-flop and also
complement the input to this flip-flop by using a NOR gate instead of an OR gate.
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Figure 7.58 A modified control circuit.
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Figure 7.59 A modified version of the circuit in Figure 7.58.

Using a Multiplexer to Implement a Bus
In Figure 7.55 we used tri-state buffers to control access to the bus. An alternative

approach is to use multiplexers, as depicted in Figure 7.60. The outputs of each register
are connected to a multiplexer. This multiplexer’s output is connected to the inputs of the
registers, thus realizing the bus. The multiplexer select inputs determine which register’s
contents appear on the bus. Although the figure shows just one multiplexer symbol, we
actually need one multiplexer for each bit in the registers. For example, assume that
there are 4 eight-bit registers, R1 to R4, plus the externally-supplied eight-bit Data. To
interconnect them, we need eight 5-to-1 multiplexers. In Figure 7.57 we used a shift

Data

R1in

Multiplexers

R2in Rkin

Bus

Clock

S j 1–

S
0

R1 R2 Rk

Figure 7.60 Using multiplexers to implement a bus.
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register to implement the control circuit. A similar approach can be used with multiplexers.
The signals that control when data is loaded into a register, like R1in, can still be connected
directly to the shift-register outputs. However, instead of using control signals like R1out
to place the contents of a register onto the bus, we have to generate the select inputs for the
multiplexers. One way to do so is to connect the shift-register outputs to an encoder circuit
that produces the select inputs for the multiplexer. We discussed encoder circuits in sec-
tion 6.3.

The tri-state buffer and multiplexer approaches for implementing a bus are both equally
valid. However, some types of chips, such as most PLDs, do not contain a sufficient number
of tri-state buffers to realize even moderately large buses. In such chips the multiplexer-
based approach is the only practical alternative. In practice, circuits are designed with CAD
tools. If the designer describes the circuit using tri-state buffers, but there are not enough
such buffers in the target device, then the CAD tools automatically produce an equivalent
circuit that uses multiplexers.

VHDLCode
This section presents VHDL code for our circuit example that swaps the contents of

two registers. We first give the code for the style of circuit in Figure 7.55 that uses tri-
state buffers to implement the bus and then give the code for the style of circuit in Figure
7.60 that uses multiplexers. The code is written in a hierarchical fashion, using subcircuits
for the registers, tri-state buffers, and the shift register. Figure 7.61 gives the code for
an n-bit register of the type in Figure 7.56. The number of bits in the register is set by

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY regn IS
GENERIC ( N : INTEGER :� 8 ) ;
PORT ( R : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;

Rin, Clock : IN STD LOGIC ;
Q : OUT STD LOGIC VECTOR(N−1 DOWNTO 0) ) ;

END regn ;

ARCHITECTURE Behavior OF regn IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL Clock’EVENT AND Clock � ’1’ ;
IF Rin � ’1’ THEN

Q <� R ;
END IF ;

END PROCESS ;
END Behavior ;

Figure 7.61 Code for an n-bit register of the type in Figure 7.56.
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the generic parameter N , which has the default value of 8. The process that describes the
register specifies that if the input Rin = 1, then the flip-flops are loaded from the n-bit input
R. Otherwise, the flip-flops retain their presently stored values. The circuit synthesized
from this code has a 2-to-1 multiplexer controlled by Rin connected to the D input on each
flip-flop, as depicted in Figure 7.56.

Figure 7.62 gives the code for a subcircuit that represents n tri-state buffers, each
enabled by the input E. The number of buffers is set by the generic parameter N . The
inputs to the buffers are the n-bit signal X , and the outputs are the n-bit signal F . The
architecture uses the syntax (OTHERS => ’Z’) to specify that the output of each buffer is
set to the value Z if E = 0; otherwise, the output is set to F = X .

Figure 7.63 provides the code for a shift register that can be used to implement the
control circuit in Figure 7.57. The number of flip-flops is set by the generic parameter K ,
which has the default value of 4. The shift register has an active-low asynchronous reset
input. The shift operation is defined with a FOR LOOP in the style used in Example 7.9.

To use the entities in Figures 7.61 through 7.63 as subcircuits, we have to provide
component declarations for each one. For convenience, we placed these declarations inside
a single package, named components, which is shown in Figure 7.64. This package is used
in the code given in Figure 7.65. It represents the digital system in Figure 7.55 with 3
eight-bit registers, R1, R2, and R3.

The circuit in Figure 7.55 includes tri-state buffers that are used to place n bits of
externally supplied data on the bus. In the code in Figure 7.65, these buffers are instantiated
in the statement labeled tri_ext. Each of the eight buffers is enabled by the input signal
Extern, and the data inputs on the buffers are attached to the eight-bit signal Data. When
Extern = 1, the value of Data is placed on the bus, which is represented by the signal
BusWires. The BusWires port represents the circuit’s output. This port has the mode
INOUT, which is required because BusWires is connected to the outputs of tri-state buffers
and these buffers are connected to the inputs of the registers.

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY trin IS
GENERIC ( N : INTEGER :� 8 ) ;
PORT ( X : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;

E : IN STD LOGIC ;
F : OUT STD LOGIC VECTOR(N−1 DOWNTO 0) ) ;

END trin ;

ARCHITECTURE Behavior OF trin IS
BEGIN

F <� (OTHERS �> ’Z’) WHEN E � ’0’ ELSE X ;
END Behavior ;

Figure 7.62 Code for an n-bit tri-state buffer.
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY shiftr IS - - left-to-right shift register with async reset
GENERIC ( K : INTEGER :� 4 ) ;
PORT ( Resetn, Clock, w : IN STD LOGIC ;

Q : BUFFER STD LOGIC VECTOR(1 TO K) ) ;
END shiftr ;

ARCHITECTURE Behavior OF shiftr IS
BEGIN

PROCESS ( Resetn, Clock )
BEGIN

IF Resetn � ’0’ THEN
Q <� (OTHERS �> ’0’) ;

ELSIF Clock’EVENT AND Clock � ’1’ THEN
Genbits: FOR i IN K DOWNTO 2 LOOP

Q(i) <� Q(i−1) ;
END LOOP ;
Q(1) <� w ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.63 Code for the shift register in Figure 7.57.

We assume that a three-bit control signal named RinExt exists, which is used to allow
the externally supplied data to be loaded from the bus into registers R1, R2, or R3. The
RinExt input is not shown in Figure 7.55, to keep the figure simple, but it would be generated
by the same external circuit block that produces Extern and Data. When RinExt(1) = 1,
the data on the bus is loaded into register R1; when RinExt(2) = 1, the data is loaded into
R2; and when RinExt(3) = 1, the data is loaded into R3.

In Figure 7.65 the three-bit shift register is instantiated in the statement labeled control.
The outputs of the shift register are the three-bit signal Q. The next three statements connect
Q to the control signals that determine when data is loaded into each register, which are
represented by the three-bit signal Rin. The signals Rin(1), Rin(2), and Rin(3) in the
code correspond to the signals R1in, R2in, and R3in in Figure 7.55. As specified in Figure
7.57, the left-most shift-register output, Q(1), controls when data is loaded into register R3.
Similarly, Q(2) controls register R2, and Q(3) controls R1. Each bit in Rin is ORed with the
corresponding bit in RinExt so that externally supplied data can be stored in the registers
as discussed above. The code also connects the shift-register outputs to the enable inputs,
called Rout, on the tri-state buffers that connect the registers to the bus. Figure 7.57 shows
that Q(1) is used to put the contents of R2 onto the bus; hence Rout(2) is assigned the value
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

PACKAGE components IS

COMPONENT regn - - register
GENERIC ( N : INTEGER :� 8 ) ;
PORT ( R : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;

Rin, Clock : IN STD LOGIC ;
Q : OUT STD LOGIC VECTOR(N−1 DOWNTO 0) ) ;

END COMPONENT ;

COMPONENT shiftr - - left-to-right shift register with async reset
GENERIC ( K : INTEGER :� 4 ) ;
PORT ( Resetn, Clock, w : IN STD LOGIC ;

Q : BUFFER STD LOGIC VECTOR(1 TO K) ) ;
END component ;

COMPONENT trin - - tri-state buffers
GENERIC ( N : INTEGER :� 8 ) ;
PORT ( X : IN STD LOGIC VECTOR(N−1 DOWNTO 0) ;

E : IN STD LOGIC ;
F : OUT STD LOGIC VECTOR(N−1 DOWNTO 0) ) ;

END COMPONENT ;

END components ;

Figure 7.64 Package and component declarations.

of Q(1). Similarly, Rout(1) is assigned the value of Q(2), and Rout(3) is assigned the value
of Q(3). The remaining statements in the code instantiate the registers and tri-state buffers
in the system.

VHDLCode Using Multiplexers
Figure 7.66 shows how the code in Figure 7.65 can be modified to use multiplexers

instead of tri-state buffers. Using the circuit structure shown in Figure 7.60, the bus is
implemented using eight 4-to-1 multiplexers. Three of the data inputs on each 4-to-1
multiplexer are connected to one bit from registers R1, R2, and R3. The fourth data input is
connected to one bit of the Data input signal to allow externally supplied data to be written
into the registers. When the shift register’s contents are 000, the multiplexers select Data
to be placed on the bus. This data is loaded into the register selected by RinExt. It is loaded
into R1 if RinExt(1) = 1, R2 if RinExt(2) = 1, and R3 if RinExt(3) = 1.

TheRout signal in Figure 7.65, which is used as the enable inputs on the tri-state buffers
connected to the bus, is not needed for the multiplexer implementation. Instead, we have
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE work.components.all ;

ENTITY swap IS
PORT ( Data : IN STD LOGIC VECTOR(7 DOWNTO 0) ;

Resetn, w : IN STD LOGIC ;
Clock, Extern : IN STD LOGIC ;
RinExt : IN STD LOGIC VECTOR(1 TO 3) ;
BusWires : INOUT STD LOGIC VECTOR(7 DOWNTO 0) ) ;

END swap ;

ARCHITECTURE Behavior OF swap IS
SIGNAL Rin, Rout, Q : STD LOGIC VECTOR(1 TO 3) ;
SIGNAL R1, R2, R3 : STD LOGIC VECTOR(7 DOWNTO 0) ;

BEGIN
control: shiftr GENERIC MAP ( K �> 3 )

PORT MAP ( Resetn, Clock, w, Q ) ;
Rin(1) <� RinExt(1) OR Q(3) ;
Rin(2) <� RinExt(2) OR Q(2) ;
Rin(3) <� RinExt(3) OR Q(1) ;
Rout(1) <� Q(2) ; Rout(2) <� Q(1) ; Rout(3) <� Q(3) ;

tri ext: trin PORT MAP ( Data, Extern, BusWires ) ;
reg1: regn PORT MAP ( BusWires, Rin(1), Clock, R1 ) ;
reg2: regn PORT MAP ( BusWires, Rin(2), Clock, R2 ) ;
reg3: regn PORT MAP ( BusWires, Rin(3), Clock, R3 ) ;
tri1: trin PORT MAP ( R1, Rout(1), BusWires ) ;
tri2: trin PORT MAP ( R2, Rout(2), BusWires ) ;
tri3: trin PORT MAP ( R3, Rout(3), BusWires ) ;

END Behavior ;

Figure 7.65 A digital system like the one in Figure 7.55.

to provide the select inputs on the multiplexers. In the architecture body in Figure 7.66,
the shift-register outputs are called Q. These signals are used to generate the Rin control
signals for the registers in the same way as shown in Figure 7.65. We said in the discussion
concerning Figure 7.60 that an encoder is needed between the shift-register outputs and the
multiplexer select inputs. A suitable encoder is described in the selected signal assignment
labeled encoder. It produces the multiplexer select inputs, which are named S. It sets
S = 00 when the shift register contains 000, S = 10 when the shift register contains 100,
and so on, as given in the code. The multiplexers are described by the selected signal
assignment labeledmuxes. This statement places the value ofData onto the bus (BusWires)
if S = 00, the contents of register R1 if S = 01, and so on. Using this scheme, when the
swap operation is not active, the multiplexers place the bits from the Data input on the bus.
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE work.components.all ;
ENTITY swapmux IS

PORT ( Data : IN STD LOGIC VECTOR(7 DOWNTO 0) ;
Resetn, w : IN STD LOGIC ;
Clock : IN STD LOGIC ;
RinExt : IN STD LOGIC VECTOR(1 TO 3) ;
BusWires : BUFFER STD LOGIC VECTOR(7 DOWNTO 0) ) ;

END swapmux ;

ARCHITECTURE Behavior OF swapmux IS
SIGNAL Rin, Q : STD LOGIC VECTOR(1 TO 3) ;
SIGNAL S : STD LOGIC VECTOR(1 DOWNTO 0) ;
SIGNAL R1, R2, R3 : STD LOGIC VECTOR(7 DOWNTO 0) ;

BEGIN
control: shiftr GENERIC MAP ( K �> 3 )

PORT MAP ( Resetn, Clock, w, Q ) ;
Rin(1) <� RinExt(1) OR Q(3) ;
Rin(2) <� RinExt(2) OR Q(2) ;
Rin(3) <� RinExt(3) OR Q(1) ;

reg1: regn PORT MAP ( BusWires, Rin(1), Clock, R1 ) ;
reg2: regn PORT MAP ( BusWires, Rin(2), Clock, R2 ) ;
reg3: regn PORT MAP ( BusWires, Rin(3), Clock, R3 ) ;
encoder:
WITH Q SELECT

S <� ”00” WHEN ”000”,
”10” WHEN ”100”,
”01” WHEN ”010”,
”11” WHEN OTHERS;

muxes: - -eight 4-to-1 multiplexers
WITH S SELECT

BusWires <� Data WHEN ”00”,
R1 WHEN ”01”,
R2 WHEN ”10”,
R3 WHEN OTHERS ;

END Behavior ;

Figure 7.66 Using multiplexers to implement a bus.

In Figure 7.66 we use two selected signal assignments, one to describe an encoder and
the other to describe the bus multiplexers. A simpler approach is to use a single selected
signal assignment as shown in Figure 7.67. The statement labeled muxes specifies directly
which signal should appear on BusWires for each pattern of the shift-register outputs. The
circuit synthesized from this statement is similar to an 8-to-1 multiplexer with the three
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ARCHITECTURE Behavior OF swapmux IS
SIGNAL Rin, Q : STD LOGIC VECTOR(1 TO 3) ;
SIGNAL R1, R2, R3 : STD LOGIC VECTOR(7 DOWNTO 0) ;

BEGIN
control: shiftr GENERIC MAP ( K �> 3 )

PORT MAP ( Resetn, Clock, w, Q ) ;
Rin(1) <� RinExt(1) OR Q(3) ;
Rin(2) <� RinExt(2) OR Q(2) ;
Rin(3) <� RinExt(3) OR Q(1) ;

reg1: regn PORT MAP ( BusWires, Rin(1), Clock, R1 ) ;
reg2: regn PORT MAP ( BusWires, Rin(2), Clock, R2 ) ;
reg3: regn PORT MAP ( BusWires, Rin(3), Clock, R3 ) ;

muxes:
WITH Q SELECT

BusWires <� Data WHEN ”000”,
R2 WHEN ”100”,
R1 WHEN ”010”,
R3 WHEN OTHERS ;

END Behavior ;

Figure 7.67 A simplified version of the architecture in Figure 7.66.

select inputs connected to the shift-register outputs. However, only half of the multiplexer
circuit is actually generated by the synthesis tools because there are only four data inputs.
The circuit generated from the code in Figure 7.67 is the same as the one generated from
the code in Figure 7.66.

Figure 7.68 gives an example of a timing simulation for a circuit synthesized from the
code in Figure 7.67. In the first half of the simulation, the circuit is reset, and the contents
of registers R1 and R2 are initialized. The hex value 55 is loaded into R1, and the value AA
is loaded into R2. The clock edge at 275 ns, marked by the vertical reference line in Figure
7.68, loads the value w = 1 into the shift register. The contents of R2 (AA) then appear on
the bus and are loaded into R3 by the clock edge at 325 ns. Following this clock edge, the
contents of the shift register are 010, and the data stored in R1 (55) is on the bus. The clock
edge at 375 ns loads this data into R2 and changes the shift register to 001. The contents
of R3 (AA) now appear on the bus and are loaded into R1 by the clock edge at 425 ns. The
shift register is now in state 000, and the swap is completed.

7.14.2 Simple Processor

A second example of a digital system like the one in Figure 7.55 is shown in Figure 7.69.
It has four n-bit registers, R0, . . . ,R3, that are connected to the bus using tri-state buffers.
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Figure 7.68 Timing simulation for the VHDL code in Figure 7.67.

External data can be loaded into the registers from the n-bit Data input, which is connected
to the bus using tri-state buffers enabled by the Extern control signal. The system also
includes an adder/subtractor module. One of its data inputs is provided by an n-bit register,
A, that is attached to the bus, while the other data input, B, is directly connected to the bus.
If the AddSub signal has the value 0, the module generates the sum A+ B; if AddSub = 1,
the module generates the difference A − B. To perform the subtraction, we assume that
the adder/subtractor includes the required XOR gates to form the 2’s complement of B, as
discussed in section 5.3. The register G stores the output produced by the adder/subtractor.
The A and G registers are controlled by the signals Ain, Gin, and Gout .

The system in Figure 7.69 can perform various functions, depending on the design of
the control circuit. As an example, we will design a control circuit that can perform the four
operations listed in Table 7.2. The left column in the table shows the name of an operation
and its operands; the right column indicates the function performed in the operation. For
the Load operation the meaning of Rx ← Data is that the data on the external Data input
is transferred across the bus into any register, Rx, where Rx can be R0 to R3. The Move
operation copies the data stored in register Ry into register Rx. In the table the square
brackets, as in [Rx], refer to the contents of a register. Since only a single transfer across
the bus is needed, both the Load and Move operations require only one step (clock cycle) to
be completed. The Add and Sub operations require three steps, as follows: In the first step
the contents of Rx are transferred across the bus into register A. Then in the next step, the
contents of Ry are placed onto the bus. The adder/subtractor module performs the required
function, and the results are stored in register G. Finally, in the third step the contents of G
are transferred into Rx.
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Table 7.2 Operations
performed in the
processor.

Operation Function Performed

Load Rx, Data Rx← Data

Move Rx,Ry Rx← [Ry]
Add Rx,Ry Rx← [Rx] + [Ry]
Sub Rx,Ry Rx← [Rx] − [Ry]

A digital system that performs the types of operations listed in Table 7.2 is usually
called a processor. The specific operation to be performed at any given time is indicated
using the control circuit input named Function. The operation is initiated by setting the w
input to 1, and the control circuit asserts the Done output when the operation is completed.

In Figure 7.55 we used a shift register to implement the control circuit. It is possible
to use a similar design for the system in Figure 7.69. To illustrate a different approach,
we will base the design of the control circuit on a counter. This circuit has to generate the
required control signals in each step of each operation. Since the longest operations (Add
and Sub) need three steps (clock cycles), a two-bit counter can be used. Figure 7.70 shows
a two-bit up-counter connected to a 2-to-4 decoder. Decoders are discussed in section
6.2. The decoder is enabled at all times by setting its enable (En) input permanently to the
value 1. Each of the decoder outputs represents a step in an operation. When no operation
is currently being performed, the count value is 00; hence the T0 output of the decoder is
asserted. In the first step of an operation, the count value is 01, and T1 is asserted. During the
second and third steps of the Add and Sub operations, T2 and T3 are asserted, respectively.

In each of steps T0 to T3, various control signal values have to be generated by the
control circuit, depending on the operation being performed. Figure 7.71 shows that the
operation is specified with six bits, which form the Function input. The two left-most bits,
F = f1 f0, are used as a two-bit number that identifies the operation. To represent Load,
Move, Add, and Sub, we use the codes f1 f0 = 00, 01, 10, and 11, respectively. The inputs
Rx1Rx0 are a binary number that identifies the Rx operand, while Ry1Ry0 identifies the Ry
operand. The Function inputs are stored in a six-bit Function Register when the FRin signal
is asserted.

Figure 7.71 also shows three 2-to-4 decoders that are used to decode the information
encoded in the F , Rx, and Ry inputs. We will see shortly that these decoders are included
as a convenience because their outputs provide simple-looking logic expressions for the
various control signals.

The circuits in Figures 7.70 and 7.71 form a part of the control circuit. Using the input
w and the signals T0, . . . ,T3, I0, . . . , I3, X0, . . . ,X3, and Y0, . . . ,Y3, we will show how to
derive the rest of the control circuit. It has to generate the outputs Extern, Done, Ain, Gin,
Gout , AddSub, R0in, . . . ,R3in, and R0out, . . . ,R3out . The control circuit also has to generate
the Clear and FRin signals used in Figures 7.70 and 7.71.
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Figure 7.70 A part of the control circuit for the processor.
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Table 7.3 Control signals asserted in each operation/time step.

T1 T2 T3

(Load): I0 Extern, Rin = X ,

Done

(Move): I1 Rin = X ,Rout = Y ,

Done

(Add): I2 Rout = X ,Ain Rout = Y ,Gin, Gout ,Rin = X ,

AddSub = 0 Done

(Sub): I3 Rout = X ,Ain Rout = Y ,Gin, Gout ,Rin = X ,

AddSub = 1 Done

Clear and FRin are defined in the same way for all operations. Clear is used to ensure
that the count value remains at 00 as long asw = 0 and no operation is being executed. Also,
it is used to clear the count value to 00 at the end of each operation. Hence an appropriate
logic expression is

Clear = w T0 + Done

The FRin signal is used to load the values on the Function inputs into the Function Register
when w changes to 1. Hence

FRin = wT0

The rest of the outputs from the control circuit depend on the specific step being performed
in each operation. The values that have to be generated for each signal are shown in Table
7.3. Each row in the table corresponds to a specific operation, and each column represents
one time step. The Extern signal is asserted only in the first step of the Load operation.
Therefore, the logic expression that implements this signal is

Extern = I0T1

Done is asserted in the first step of Load and Move, as well as in the third step of Add and
Sub. Hence

Done = (I0 + I1)T1 + (I2 + I3)T3

The Ain, Gin, and Gout signals are asserted in the Add and Sub operations. Ain is asserted in
step T1, Gin is asserted in T2, and Gout is asserted in T3. The AddSub signal has to be set to
0 in the Add operation and to 1 in the Sub operation. This is achieved with the following
logic expressions

Ain = (I2 + I3)T1

Gin = (I2 + I3)T2

Gout = (I2 + I3)T3

AddSub = I3
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The values of R0in, . . . ,R3in are determined using either the X0, . . . ,X3 signals or the
Y0, . . . ,Y3 signals. In Table 7.3 these actions are indicated by writing either Rin = X or
Rin = Y . The meaning of Rin = X is that R0in = X0, R1in = X1, and so on. Similarly, the
values of R0out, . . . ,R3out are specified using either Rout = X or Rout = Y .

We will develop the expressions for R0in and R0out by examining Table 7.3 and then
show how to derive the expressions for the other register control signals. The table shows
that R0in is set to the value of X0 in the first step of both the Load and Move operations and
in the third step of both the Add and Sub operations, which leads to the expression

R0in = (I0 + I1)T1X0 + (I2 + I3)T3X0

Similarly, R0out is set to the value of Y0 in the first step of Move. It is set to X0 in the
first step of Add and Sub and to Y0 in the second step of these operations, which gives

R0out = I1T1Y0 + (I2 + I3)(T1X0 + T2Y0)

The expressions for R1in and R1out are the same as those for R0in and R0out except that X1

and Y1 are used in place of X0 and Y0. The expressions for R2in, R2out , R3in, and R3out are
derived in the same way.

The circuits shown in Figures 7.70 and 7.71, combined with the circuits represented
by the above expressions, implement the control circuit in Figure 7.69.

Processors are extremely useful circuits that are widely used. We have presented only
the most basic aspects of processor design. However, the techniques presented can be
extended to design realistic processors, such as modern microprocessors. The interested
reader can refer to books on computer organization for more details on processor design
[1–2].

VHDLCode
In this section we give two different styles of VHDL code for describing the system

in Figure 7.69. The first style uses tri-state buffers to represent the bus, and it gives the
logic expressions shown above for the outputs of the control circuit. The second style of
code uses multiplexers to represent the bus, and it uses CASE statements that correspond
to Table 7.3 to describe the outputs of the control circuit.

VHDL code for an up-counter is shown in Figure 7.52. A modified version of this
counter, named upcount, is shown in the code in Figure 7.72. It has a synchronous reset
input, which is active high. In Figure 7.64 we defined the package named components,
which provides component declarations for a number of subcircuits. In the VHDL code for
the processor, we will use the regn and trin components listed in Figure 7.64, but not the
shiftr component. We created a new package called subccts for use with the processor. The
code is not shown here, but it includes component declarations for regn (Figure 7.61), trin
(Figure 7.62), upcount, and dec2to4 (Figure 6.30).

Complete code for the processor is given in Figure 7.73. In the architecture body, the
statements labeled counter and decT instantiate the subcircuits in Figure 7.70. Note that we
have assumed that the circuit has an active-high reset input, Reset, which is used to initialize
the counter to 00. The statement Func <= F & Rx & Ry uses the concatenate operator to
create the six-bit signal Func, which represents the inputs to the Function Register in Figure
7.71. The next statement instantiates the Function Register with the data inputs Func and
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std logic unsigned.all ;

ENTITY upcount IS
PORT ( Clear, Clock : IN STD LOGIC ;

Q : BUFFER STD LOGIC VECTOR(1 DOWNTO 0) ) ;
END upcount ;

ARCHITECTURE Behavior OF upcount IS
BEGIN

upcount: PROCESS ( Clock )
BEGIN

IF (Clock’EVENT AND Clock � ’1’) THEN
IF Clear � ’1’ THEN

Q <� ”00” ;
ELSE

Q <� Q + ’1’ ;
END IF ;

END IF;
END PROCESS;

END Behavior ;

Figure 7.72 Code for a two-bit up-counter with synchronous reset.

the outputs FuncReg. The statements labeled decI, decX, and decY instantiate the decoders
in Figure 7.71. Following these statements the previously derived logic expressions for
the outputs of the control circuit are given. For R0in, . . . ,R3in and R0out, . . . ,R3out , a
GENERATE statement is used to produce the expressions.

At the end of the code, the tri-state buffers and registers in the processor are instantiated,
and the adder/subtractor module is described using a selected signal assignment.

Using Multiplexers and CASE Statements
We showed in Figure 7.60 that a bus can be implemented using multiplexers, rather than

tri-state buffers. VHDL code that describes the processor using this approach is shown in
Figure 7.74. The same entity declaration given in Figure 7.73 can be used and is not shown
in Figure 7.74. The code illustrates a different way of describing the control circuit in the
processor. It does not give logic expressions for the signals Extern, Done, and so on, as we
did in Figure 7.73. Instead, CASE statements are used to represent the information shown
in Table 7.3. These statements are provided inside the process labeled controlsignals. Each
control signal is first assigned the value 0, as a default. This is required because the CASE
statements specify the values of the control signals only when they should be asserted, as
we did in Table 7.3. As explained for Figure 7.35, when the value of a signal is not specified,
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std logic signed.all ;
USE work.subccts.all ;

ENTITY proc IS
PORT ( Data : IN STD LOGIC VECTOR(7 DOWNTO 0) ;

Reset, w : IN STD LOGIC ;
Clock : IN STD LOGIC ;
F, Rx, Ry : IN STD LOGIC VECTOR(1 DOWNTO 0) ;
Done : BUFFER STD LOGIC ;
BusWires : INOUT STD LOGIC VECTOR(7 DOWNTO 0) ) ;

END proc ;

ARCHITECTURE Behavior OF proc IS
SIGNAL Rin, Rout : STD LOGIC VECTOR(0 TO 3) ;
SIGNAL Clear, High, AddSub : STD LOGIC ;
SIGNAL Extern, Ain, Gin, Gout, FRin : STD LOGIC ;
SIGNAL Count, Zero : STD LOGIC VECTOR(1 DOWNTO 0) ;
SIGNAL T, I, X, Y : STD LOGIC VECTOR(0 TO 3) ;
SIGNAL R0, R1, R2, R3 : STD LOGIC VECTOR(7 DOWNTO 0) ;
SIGNAL A, Sum, G : STD LOGIC VECTOR(7 DOWNTO 0) ;
SIGNAL Func, FuncReg : STD LOGIC VECTOR(1 TO 6) ;

BEGIN
Zero <� ”00” ; High <� ’1’ ;
Clear <� Reset OR Done OR (NOT w AND T(0)) ;
counter: upcount PORT MAP ( Clear, Clock, Count ) ;
decT: dec2to4 PORT MAP ( Count, High, T );
Func <� F & Rx & Ry ;
FRin <� w AND T(0) ;
functionreg: regn GENERIC MAP ( N �> 6 )

PORT MAP ( Func, FRin, Clock, FuncReg ) ;
decI: dec2to4 PORT MAP ( FuncReg(1 TO 2), High, I ) ;
decX: dec2to4 PORT MAP ( FuncReg(3 TO 4), High, X ) ;
decY: dec2to4 PORT MAP ( FuncReg(5 TO 6), High, Y ) ;
Extern <� I(0) AND T(1) ;
Done <� ((I(0) OR I(1)) AND T(1)) OR ((I(2) OR I(3)) AND T(3)) ;
Ain <� (I(2) OR I(3)) AND T(1) ;
Gin <� (I(2) OR I(3)) AND T(2) ;
Gout <� (I(2) OR I(3)) AND T(3) ;
AddSub <� I(3) ;

. . . continued in Part b.

Figure 7.73 Code for the processor (Part a).
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RegCntl:
FOR k IN 0 TO 3 GENERATE

Rin(k) <� ((I(0) OR I(1)) AND T(1) AND X(k)) OR
((I(2) OR I(3)) AND T(3) AND X(k)) ;

Rout(k) <� (I(1) AND T(1) AND Y(k)) OR
((I(2) OR I(3)) AND ((T(1) AND X(k)) OR (T(2) AND Y(k)))) ;

END GENERATE RegCntl ;
tri extern: trin PORT MAP ( Data, Extern, BusWires ) ;
reg0: regn PORT MAP ( BusWires, Rin(0), Clock, R0 ) ;
reg1: regn PORT MAP ( BusWires, Rin(1), Clock, R1 ) ;
reg2: regn PORT MAP ( BusWires, Rin(2), Clock, R2 ) ;
reg3: regn PORT MAP ( BusWires, Rin(3), Clock, R3 ) ;
tri0: trin PORT MAP ( R0, Rout(0), BusWires ) ;
tri1: trin PORT MAP ( R1, Rout(1), BusWires ) ;
tri2: trin PORT MAP ( R2, Rout(2), BusWires ) ;
tri3: trin PORT MAP ( R3, Rout(3), BusWires ) ;
regA: regn PORT MAP ( BusWires, Ain, Clock, A ) ;
alu:
WITH AddSub SELECT

Sum <� A + BusWires WHEN ’0’,
A − BusWires WHEN OTHERS ;

regG: regn PORT MAP ( Sum, Gin, Clock, G ) ;
triG: trin PORT MAP ( G, Gout, BusWires ) ;

END Behavior ;

Figure 7.73 Code for the processor (Part b).

the signal retains its current value. This implied memory results in a feedback connection
in the synthesized circuit. We avoid this problem by providing the default value of 0 for
each of the control signals involved in the CASE statements.

In Figure 7.73 the statements labeled decT and decI are used to decode the Count
signal and the stored values of the F input, respectively. The decT decoder has the outputs
T0, . . . ,T3, and decI produces I0, . . . , I3. In Figure 7.74 these two decoders are not used,
because they do not serve a useful purpose in this code. Instead, the signals T and I are
defined as two-bit signals, which are used in the CASE statements. The code sets T to the
value of Count, while I is set to the value of the two left-most bits in the Function Register,
which correspond to the stored values of the input F .

There are two nested levels of CASE statements. The first one enumerates the possible
values of T . For each WHEN clause in this CASE statement, which represents a column
in Table 7.3, there is a nested CASE statement that enumerates the four values of I . As
indicated by the comments in the code, the nested CASE statements correspond exactly to
the information given in Table 7.3.
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ARCHITECTURE Behavior OF proc IS
SIGNAL X, Y, Rin, Rout : STD LOGIC VECTOR(0 TO 3) ;
SIGNAL Clear, High, AddSub : STD LOGIC ;
SIGNAL Extern, Ain, Gin, Gout, FRin : STD LOGIC ;
SIGNAL Count, Zero, T, I : STD LOGIC VECTOR(1 DOWNTO 0) ;
SIGNAL R0, R1, R2, R3 : STD LOGIC VECTOR(7 DOWNTO 0) ;
SIGNAL A, Sum, G : STD LOGIC VECTOR(7 DOWNTO 0) ;
SIGNAL Func, FuncReg, Sel : STD LOGIC VECTOR(1 TO 6) ;

BEGIN
Zero <� ”00” ; High <� ’1’ ;
Clear <� Reset OR Done OR (NOT w AND NOT T(1) AND NOT T(0)) ;
counter: upcount PORT MAP ( Clear, Clock, Count ) ;
T <� Count ;
Func <� F & Rx & Ry ;
FRin <� w AND NOT T(1) AND NOT T(0) ;
functionreg: regn GENERIC MAP ( N �> 6 )

PORT MAP ( Func, FRin, Clock, FuncReg ) ;
I <� FuncReg(1 TO 2) ;
decX: dec2to4 PORT MAP ( FuncReg(3 TO 4), High, X ) ;
decY: dec2to4 PORT MAP ( FuncReg(5 TO 6), High, Y ) ;

controlsignals: PROCESS ( T, I, X, Y )
BEGIN

Extern <� ’0’ ; Done <� ’0’ ; Ain <� ’0’ ; Gin <� ’0’ ;
Gout <� ’0’ ; AddSub <� ’0’ ; Rin <� ”0000” ; Rout <� ”0000” ;
CASE T IS WHEN ”00” �> - - no signals asserted in time step T0

WHEN ”01” �> - - define signals asserted in time step T1
CASE I IS

WHEN ”00” �> - - Load
Extern <� ’1’ ; Rin <� X ; Done <� ’1’ ;

WHEN ”01” �> - - Move
Rout <� Y ; Rin <� X ; Done <� ’1’ ;

WHEN OTHERS �> - - Add, Sub
Rout <� X ; Ain <� ’1’ ;

END CASE ;

. . . continued in Part b

Figure 7.74 Alternative code for the processor (Part a).

At the end of Figure 7.74, the bus is described using a selected signal assignment. This
statement represents multiplexers that place the appropriate data onto BusWires, depending
on the values of Rout , Gout , and Extern.

The circuits synthesized from the code in Figures 7.73 and 7.74 are functionally equiv-
alent. The style of code in Figure 7.74 has the advantage that it does not require the manual
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WHEN ”10” �> - - define signals asserted in time step T2
CASE I IS

WHEN ”10” �> - - Add
Rout <� Y ; Gin <� ’1’ ;

WHEN ”11” �> - - Sub
Rout <� Y ; AddSub <� ’1’ ; Gin <� ’1’ ;

WHEN OTHERS �> - - Load, Move
END CASE ;

WHEN OTHERS �> - - define signals asserted in time step T3
CASE I IS

WHEN ”00” �> - - Load
WHEN ”01” �> - - Move
WHEN OTHERS �> - - Add, Sub

Gout <� ’1’ ; Rin <� X ; Done <� ’1’ ;
END CASE ;

END CASE ;
END PROCESS ;
reg0: regn PORT MAP ( BusWires, Rin(0), Clock, R0 ) ;
reg1: regn PORT MAP ( BusWires, Rin(1), Clock, R1 ) ;
reg2: regn PORT MAP ( BusWires, Rin(2), Clock, R2 ) ;
reg3: regn PORT MAP ( BusWires, Rin(3), Clock, R3 ) ;
regA: regn PORT MAP ( BusWires, Ain, Clock, A ) ;
alu: WITH AddSub SELECT

Sum <� A + BusWires WHEN ’0’,
A − BusWires WHEN OTHERS ;

regG: regn PORT MAP ( Sum, Gin, Clock, G ) ;
Sel <� Rout & Gout & Extern ;
WITH Sel SELECT

BusWires <� R0 WHEN ”100000”,
R1 WHEN ”010000”,
R2 WHEN ”001000”,
R3 WHEN ”000100”,
G WHEN ”000010”,
Data WHEN OTHERS ;

END Behavior ;

Figure 7.74 Alternative code for the processor (Part b).

effort of analyzing Table 7.3 to generate the logic expressions for the control signals used
for Figure 7.73. By using the style of code in Figure 7.74, these expressions are produced
automatically by the VHDL compiler as a result of analyzing the CASE statements. The
style of code in Figure 7.74 is less prone to careless errors. Also, using this style of code it
would be straightforward to provide additional capabilities in the processor, such as adding
other operations.
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We synthesized a circuit to implement the code in Figure 7.74 in a chip. Figure 7.75
gives an example of the results of a timing simulation. Each clock cycle in which w = 1
in this timing diagram indicates the start of an operation. In the first such operation, at 250
ns in the simulation time, the values of both inputs F and Rx are 00. Hence the operation
corresponds to “Load R0, Data.” The value of Data is 2A, which is loaded into R0 on the
next positive clock edge. The next operation loads 55 into register R1, and the subsequent
operation loads 22 into R2. At 850 ns the value of the input F is 10, while Rx = 01 and
Ry = 00. This operation is “Add R1, R0.” In the following clock cycle, the contents of
R1 (55) appear on the bus. This data is loaded into register A by the clock edge at 950 ns,
which also results in the contents of R0 (2A) being placed on the bus. The adder/subtractor
module generates the correct sum (7F), which is loaded into register G at 1050 ns. After
this clock edge the new contents of G (7F) are placed on the bus and loaded into register
R1 at 1150 ns. Two more operations are shown in the timing diagram. The one at 1250
ns (“Move R3, R1”) copies the contents of R1 (7F) into R3. Finally, the operation starting
at 1450 ns (“Sub R3, R2”) subtracts the contents of R2 (22) from the contents of R3 (7F),
producing the correct result, 7F − 22 = 5D.

Figure 7.75 Timing simulation for the VHDL code in Figure 7.74.
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7.14.3 Reaction Timer

We showed in Chapter 3 that electronic devices operate at remarkably fast speeds, with the
typical delay through a logic gate being less than 1 ns. In this example we use a logic circuit
to measure the speed of a much slower type of device—a person.

We will design a circuit that can be used to measure the reaction time of a person to
a specific event. The circuit turns on a small light, called a light-emitting diode (LED). In
response to the LED being turned on, the person attempts to press a switch as quickly as
possible. The circuit measures the elapsed time from when the LED is turned on until the
switch is pressed.

To measure the reaction time, a clock signal with an appropriate frequency is needed.
In this example we use a 100 Hz clock, which measures time at a resolution of 1/100 of a
second. The reaction time can then be displayed using two digits that represent fractions
of a second from 00/100 to 99/100.

Digital systems often include high-frequency clock signals to control various subsys-
tems. In this case assume the existence of an input clock signal with the frequency 102.4
kHz. From this signal we can derive the required 100 Hz signal by using a counter as a clock
divider. A timing diagram for a four-bit counter is given in Figure 7.22. It shows that the
least-significant bit output, Q0, of the counter is a periodic signal with half the frequency of
the clock input. Hence we can view Q0 as dividing the clock frequency by two. Similarly,
the Q1 output divides the clock frequency by four. In general, output Qi in an n-bit counter
divides the clock frequency by 2i+1. In the case of our 102.4 kHz clock signal, we can use
a 10-bit counter, as shown in Figure 7.76a. The counter output c9 has the required 100 Hz
frequency because 102400 Hz/1024 = 100 Hz.

The reaction timer circuit has to be able to turn an LED on and off. The graphical
symbol for an LED is shown in blue in Figure 7.76b. Small blue arrows in the symbol
represent the light that is emitted when the LED is turned on. The LED has two terminals:
the one on the left in the figure is the cathode, and the terminal on the right is the anode. To
turn the LED on, the cathode has to be set to a lower voltage than the anode, which causes
a current to flow through the LED. If the voltages on its two terminals are equal, the LED
is off.

Figure 7.76b shows one way to control the LED, using an inverter. If the input voltage
VLED = 0, then the voltage at the cathode is equal to VDD; hence the LED is off. But
if VLED = VDD, the cathode voltage is 0 V and the LED is on. The amount of current
that flows is limited by the value of the resistor RL. This current flows through the LED
and the NMOS transistor in the inverter. Since the current flows into the inverter, we
say that the inverter sinks the current. The maximum current that a logic gate can sink
without sustaining permanent damage is usually called IOL, which stands for the “maxi-
mum current when the output is low.” The value of RL is chosen such that the current
is less than IOL. As an example assume that the inverter is implemented inside a PLD
device. The typical value of IOL, which would be specified in the data sheet for the PLD,
is about 12 mA. For VDD = 5 V, this leads to RL ≈ 450 � because 5 V /450 � = 11
mA (there is actually a small voltage drop across the LED when it is turned on, but we
ignore this for simplicity). The amount of light emitted by the LED is proportional to
the current flow. If 11 mA is insufficient, then the inverter should be implemented in a
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Figure 7.76 A reaction-timer circuit.
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buffer chip, like those described in section 3.5, because buffers provide a higher value
of IOL.

The complete reaction-timer circuit is illustrated in Figure 7.76c, with the inverter
from part (b) shaded in grey. The graphical symbol for a push-button switch is shown in
the top left of the diagram. The switch normally makes contact with the top terminals, as
depicted in the figure. When depressed, the switch makes contact with the bottom terminals;
when released, it automatically springs back to the top position. In the figure the switch is
connected such that it normally produces a logic value of 1, and it produces a 0 pulse when
pressed.

When depressed, the push-button switch causes the D flip-flop to be synchronously
reset. The output of this flip-flop determines whether the LED is on or off, and it also
provides the count enable input to a two-digit BCD counter. As discussed in section 7.11,
each digit in a BCD counter has four bits that take the values 0000 to 1001. Thus the
counting sequence can be viewed as decimal numbers from 00 to 99. A circuit for the
BCD counter is given in Figure 7.28. In Figure 7.76c both the flip-flop and the counter are
clocked by the c9 output of the clock divider in part (a) of the figure. The intended use of
the reaction-timer circuit is to first depress the switch to turn off the LED and disable the
counter. Then the Reset input is asserted to clear the contents of the counter to 00. The
input w normally has the value 0, which keeps the flip-flop cleared and prevents the count
value from changing. The reaction test is initiated by setting w = 1 for one c9 clock cycle.
After the next positive edge of c9, the flip-flop output becomes a 1, which turns on the LED.
We assume that w returns to 0 after one clock cycle, but the flip-flop output remains at 1
because of the 2-to-1 multiplexer connected to the D input. The counter is then incremented
every 1/100 of a second. Each digit in the counter is connected through a code converter to
a 7-segment display, which we described in the discussion for Figure 6.25. When the user
depresses the switch, the flip-flop is cleared, which turns off the LED and stops the counter.
The two-digit display shows the elapsed time to the nearest 1/100 of a second from when
the LED was turned on until the user was able to respond by depressing the switch.

VHDLCode
To describe the circuit in Figure 7.76c usingVHDLcode, we can make use of subcircuits

for the BCD counter and the 7-segment code converter. The code for the latter subcircuit is
given in Figure 6.47 and is not repeated here. Code for the BCD counter, which represents
the circuit in Figure 7.28, is shown in Figure 7.77. The two-digit BCD output is represented
by the 2 four-bit signalsBCD1 andBCD0. TheClear input is used to provide a synchronous
reset for both digits in the counter. If E = 1, the count value is incremented on the positive
clock edge, and if E = 0, the count value is unchanged. Each digit can take the values from
0000 to 1001.

Figure 7.78 gives the code for the reaction timer. The input signal Pushn represents the
value produced by the push-button switch. The output signal LEDn represents the output
of the inverter that is used to control the LED. The two 7-segment displays are controlled
by the seven-bit signals Digit1 and Digit 0.

In Figure 7.56 we showed how a register, R, can be designed with a control signal Rin.
If Rin = 1 data is loaded into the register on the active clock edge and if Rin = 0, the stored
contents of the register are not changed. The flip-flop in Figure 7.76 is used in the same
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std logic unsigned.all ;

ENTITY BCDcount IS
PORT ( Clock : IN STD LOGIC ;

Clear, E : IN STD LOGIC ;
BCD1, BCD0 : BUFFER STD LOGIC VECTOR(3 DOWNTO 0) ) ;

END BCDcount ;

ARCHITECTURE Behavior OF BCDcount IS
BEGIN

PROCESS ( Clock )
BEGIN

IF Clock’EVENT AND Clock � ’1’ THEN
IF Clear � ’1’ THEN

BCD1 <� ”0000” ; BCD0 <� ”0000” ;
ELSIF E � ’1’ THEN

IF BCD0 � ”1001” THEN
BCD0 <� ”0000” ;
IF BCD1 � ”1001” THEN

BCD1 <� ”0000”;
ELSE

BCD1 <� BCD1 + ’1’ ;
END IF ;

ELSE
BCD0 <� BCD0 + ’1’ ;

END IF ;
END IF ;

END IF;
END PROCESS;

END Behavior ;

Figure 7.77 Code for the two-digit BCD counter in Figure 7.28.

way. If w = 1, the flip-flop is loaded with the value 1, but if w = 0 the stored value in the
flip-flop is not changed. This circuit is described by the process labeled flipflop in Figure
7.78, which also includes a synchronous reset input. We have chosen to use a synchronous
reset because the flip-flop output is connected to the enable input E on the BCD counter.
As we know from the discussion in section 7.3, it is important that all signals connected to
flip-flops meet the required setup and hold times. The push-button switch can be pressed at
any time and is not synchronized to the c9 clock signal. By using a synchronous reset for
the flip-flop in Figure 7.76, we avoid possible timing problems in the counter.

The flip-flop output is called LED, which is inverted to produce the LEDn signal that
controls the LED. In the device used to implement the circuit, LEDnwould be generated by
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY reaction IS
PORT ( c9, Reset : IN STD LOGIC ;

w, Pushn : IN STD LOGIC ;
LEDn : OUT STD LOGIC ;
Digit1, Digit0 : BUFFER STD LOGIC VECTOR(1 TO 7) ) ;

END reaction ;

ARCHITECTURE Behavior OF reaction IS
COMPONENT BCDcount

PORT ( Clock : IN STD LOGIC ;
Clear, E : IN STD LOGIC ;
BCD1, BCD0 : BUFFER STD LOGIC VECTOR(3 DOWNTO 0) ) ;

END COMPONENT ;
COMPONENT seg7

PORT ( bcd : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
leds : OUT STD LOGIC VECTOR(1 TO 7) ) ;

END COMPONENT ;
SIGNAL LED : STD LOGIC ;
SIGNAL BCD1, BCD0 : STD LOGIC VECTOR(3 DOWNTO 0) ;

BEGIN
flipflop: PROCESS
BEGIN

WAIT UNTIL c9’EVENT AND c9 � ’1’ ;
IF Pushn � ’0’ THEN

LED <� ’0’ ;
ELSIF w � ’1’ THEN

LED <� ’1’ ;
END IF ;

END PROCESS ;

LEDn <� NOT LED ;
counter: BCDcount PORT MAP ( c9, Reset, LED, BCD1, BCD0 ) ;
seg1 : seg7 PORT MAP ( BCD1, Digit1 ) ;
seg0 : seg7 PORT MAP ( BCD0, Digit0 ) ;

END Behavior ;

Figure 7.78 Code for the reaction timer.

a buffer that is connected to an output pin on the chip package. If a PLD is used, this buffer
has the associated value of IOL = 12 mA that we mentioned earlier. At the end of Figure
7.78, the BCD counter and 7-segment code converters are instantiated as subcircuits.

A simulation of the reaction-timer circuit implemented in a chip is shown in Figure
7.79. Initially, Pushn is set to 0 to simulate depressing the switch to turn off the LED, and
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Figure 7.79 Simulation of the reaction-timer circuit.

then Pushn returns to 1. Also, Reset is asserted to clear the counter. When w changes to 1,
the circuit sets LEDn to 0, which represents the LED being turned on. After some amount
of time, the switch will be depressed. In the simulation we arbitrarily set Pushn to 0 after
18 c9 clock cycles. Thus this choice represents the case when the person’s reaction time is
about 0.18 seconds. In human terms this duration is a very short time; for electronic circuits
it is a very long time. An inexpensive personal computer can perform tens of millions of
operations in 0.18 seconds!

7.14.4 Register Transfer Level (RTL) Code

At this point, we have introduced most of the VHDLconstructs that are needed for synthesis.
Most of our examples give behavioral code, utilizing IF-THEN-ELSE statements, CASE
statements, FOR loops, and so on. It is possible to write behavioral code in a style that
resembles a computer program, in which there is a complex flow of control with many loops
and branches. With such code, sometimes called high-level behavioral code, it is difficult to
relate the code to the final hardware implementation; it may even be difficult to predict what
circuit a high-level synthesis tool will produce. In this book we do not use the high-level
style of code. Instead, we present VHDL code in such a way that the code can be easily
related to the circuit that is being described. Most design modules presented are fairly small,
to facilitate simple descriptions. Larger designs are built by interconnecting the smaller
modules. This approach is usually referred to as the register-transfer level (RTL) style of
code. It is the most popular design method used in practice. RTL code is characterized by a
straightforward flow of control through the code; it comprises well-understood subcircuits
that are connected together in a simple way.
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7.15 Timing Analysis of Flip-flop Circuits

In Figure 7.15 we showed the timing parameters associated with a D flip-flop. A simple
circuit that uses this flip-flop is given in Figure 7.80. We wish to calculate the maximum
clock frequency, Fmax, for which this circuit will operate properly, and also determine if the
circuit suffers from any hold time violations. In the literature, this type of analysis of circuits
is usually called timing analysis. We will assume that the flip-flop timing parameters have
the values tsu = 0.6 ns, th = 0.4 ns, and 0.8 ns ≤ tcQ ≤ 1.0 ns. A range of minimum and
maximum values is given for tcQ because, as we mentioned in section 7.4.4, this is the usual
way of dealing with variations in delay that exist in integrated circuit chips.

To calculate the minimum period of the clock signal, Tmin = 1/Fmax, we need to
consider all paths in the circuit that start and end at flip-flops. In this simple circuit there is
only one such path, which starts when data is loaded into the flip-flop by a positive clock
edge, propagates to the Q output after the tcQ delay, propagates through the NOT gate, and
finally must meet the setup requirement at the D input. Therefore

Tmin = tcQ + tNOT + tsu

Since we are interested in the longest delay for this calculation, the maximum value of
tcQ should be used. For the calculation of tNOT we will assume that the delay through any
logic gate can be calculated as 1+ 0.1k, where k is the number of inputs to the gate. For a
NOT gate this gives 1.1 ns, which leads to

Tmin = 1.0+ 1.1+ 0.6 = 2.7 ns

Fmax = 1/2.7 ns = 370.37 MHz

It is also necessary to check if there are any hold time violations in the circuit. In this
case we need to examine the shortest possible delay from a positive clock edge to a change
in the value of the D input. The delay is given by tcQ + tNOT = 0.8+ 1.1 = 1.9 ns. Since
1.9 ns > th = 0.4 ns there is no hold time violation.

As another example of timing analysis of flip-flop circuits, consider the counter circuit
shown in Figure 7.81. We wish to calculate the maximum clock frequency for which this
circuit will operate properly assuming the same flip-flop timing parameters as we did for

D Q

Q

Q

Clear

Clock

Figure 7.80 A simple flip-flop circuit.
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Figure 7.81 A 4-bit counter.

Figure 7.80. We will again assume that the propagation delay through a logic gate can be
calculated as 1+ 0.1k.

There are many paths in this circuit that start and end at flip-flops. The longest such
path starts at flip-flop Q0 and ends at flip-flop Q3. The longest path in a circuit is often called
a critical path. The delay of the critical path includes the clock-to-Q delay of flip-flop Q0,
the propagation delay through three AND gates, and one XOR-gate delay. We must also
account for the setup time of flip-flop Q3. This gives

Tmin = tcQ + 3(tAND)+ tXOR + tsu

Using the maximum value of tcQ gives

Tmin = 1.0+ 3(1.2)+ 1.2+ 0.6 ns = 6.4 ns

Fmax = 1/6.4 ns = 156.25 MHz
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The shortest paths through the circuit are from each flip-flop to itself, through an XOR
gate. The minimum delay along each such path is tcQ + tXOR = 0.8+ 1.2 = 2.0 ns. Since
2.0 ns > th = 0.4 ns there are no hold time violations.

In the above analysis we assumed that the clock signal arrived at exactly the same time
at all four flip-flops. We will now repeat this analysis assuming that the clock signal still
arrives at flip-flops Q0, Q1, and Q2 simultaneously, but that there is a delay in the arrival
of the clock signal at flip-flop Q3. Such a variation in the arrival time of a clock signal at
different flip-flops is called clock skew, tskew, and can be caused by a number of factors.

In Figure 7.81 the critical path through the circuit is from flip-flop Q0 to Q3. However,
the clock skew at Q3 has the effect of reducing this delay, because it provides additional
time before data is loaded into this flip-flop. Taking a clock skew of 1.5 ns into account,
the delay of the path from flip-flop Q0 to Q3 is given by tcQ+ 3(tAND)+ tXOR+ tsu− tskew =
6.4−1.5 ns = 4.9 ns. There is now a different critical path through the circuit, which starts
at flip-flop Q0 and ends at Q2. The delay of this path gives

Tmin = tcQ + 2(tAND)+ tXOR + tsu
= 1.0+ 2(1.2)+ 1.2+ 0.6 ns

= 5.2 ns

Fmax = 1/5.2 ns = 192.31 MHz

In this case the clock skew results in an increase in the circuit’s maximum clock frequency.
But if the clock skew had been negative, which would be the case if the clock signal arrived
earlier at flip-flop Q3 than at other flip-flops, then the result would have been a reduced
Fmax.

Since the loading of data into flip-flop Q3 is delayed by the clock skew, it has the
effect of increasing the hold time requirement of this flip-flop to th + tskew, for all paths
that end at Q3 but start at Q0, Q1, or Q2. The shortest such path in the circuit is from
flip-flop Q2 to Q3 and has the delay tcQ + tAND + tXOR = 0.8+ 1.2+ 1.2 = 3.2 ns. Since
3.2 ns > th + tskew = 1.9 ns there is no hold time violation.

If we repeat the above hold time analysis for clock skew values tskew ≥ 3.2−th = 2.8 ns,
then hold time violations will exist. Thus, if tskew ≥ 2.8 ns the circuit will not work reliably
at any clock frequency. Due to the complications in circuit timing that arise in the presence
of clock skew, a good digital circuit design approach is to ensure that the clock signal
reaches all flip-flops with the smallest possible skew. We discuss clock synchronization
issues in section 10.3.

7.16 Concluding Remarks

In this chapter we have presented circuits that serve as basic storage elements in digital
systems. These elements are used to build larger units such as registers, shift registers,
and counters. Many other texts that deal with this material are available [3–11]. We
have illustrated how circuits with flip-flops can be described using VHDL code. More



January 24, 2008 14:23 vra_29532_ch07 Sheet number 92 Page number 472 black

472 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

information on VHDL can be found in [12–17]. In the next chapter a more formal method
for designing circuits with flip-flops will be presented.

7.17 Examples of Solved Problems

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

Example 7.13 Problem: Consider the circuit in Figure 7.82a. Assume that the input C is driven by a
square wave signal with a 50% duty cycle. Draw a timing diagram that shows the waveforms
at points A and B. Assume that the propagation delay through each gate is 	 seconds.

Solution: The timing diagram is shown in Figure 7.82b.

Example 7.14 Problem: Determine the functional behavior of the circuit in Figure 7.83. Assume that
input w is driven by a square wave signal.

A

C

(b) Timing diagram

(a) Circuit

A

B

C

1∆ 1∆

2∆ 2∆ 2∆ 2∆

3∆ 3∆

B

Figure 7.82 Circuit for Example 7.13.
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Figure 7.83 Circuit for Example 7.14.

Time FF0 FF1

interval J0 K0 Q0 J1 K1 Q1

Clear 1 1 0 0 1 0
t1 1 1 1 1 1 0
t2 0 1 0 0 1 1
t3 1 1 0 0 1 0
t4 1 1 1 1 1 0

Figure 7.84 Summary of the behavior of the circuit in Figure 7.83.

Solution: When both flip-flops are cleared, their outputs are Q0 = Q1 = 0. After the Clear
input goes high, each pulse on the w input will cause a change in the flip-flops as indicated
in Figure 7.84. Note that the figure shows the state of the signals after the changes caused
by the rising edge of a pulse have taken place.

In consecutive time intervals the values of Q1 Q0 are 00, 01, 10, 00, 01, and so on.
Therefore, the circuit generates the counting sequence: 0, 1, 2, 0, 1, and so on. Hence, the
circuit is a modulo-3 counter.

Example 7.15Problem: Figure 7.70 shows a circuit that generates four timing control signals T0, T1, T2,
and T3. Design a circuit that generates six such signals, T0 to T5.

Solution: The scheme of Figure 7.70 can be extended by using a modulo-6 counter, given
in Figure 7.26, and a decoder that produces the six timing signals. A simpler alternative is
possible by using a Johnson counter. Using three D-type flip-flops in a structure depicted
in Figure 7.30, we can generate six patterns of bits Q0Q1Q2 as shown in Figure 7.85. Then,
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Clock cycle Q0 Q1 Q2 Control signal

0 0 0 0 T0 = Q0Q2

1 1 0 0 T1 = Q0Q1

2 1 1 0 T2 = Q1Q2

3 1 1 1 T3 = Q0Q2

4 0 1 1 T4 = Q0Q1

5 0 0 1 T5 = Q1Q2

Figure 7.85 Timing signals for Example 7.15.

using only six more two-input AND gates, as shown in the figure, we can obtain the desired
signals. Note that the patterns Q0Q1Q2 equal to 010 and 101 cannot occur in the Johnson
counter, so these cases are treated as don’t care conditions.

Example 7.16 Problem: Design a circuit that can be used to control a vending machine. The circuit has
five inputs: Q (quarter), D (dime), N (nickel), Coin, and Resetn. When a coin is deposited
in the machine, a coin-sensing mechanism generates a pulse on the appropriate input (Q,
D, or N). To signify the occurrence of the event, the mechanism also generates a pulse on
the line Coin. The circuit is reset by using the Resetn signal (active low). When at least
30 cents has been deposited, the circuit activates its output, Z. No change is given if the
amount exceeds 30 cents.

Design the required circuit by using the following components: a six-bit adder, a six-bit
register, and any number of AND, OR, and NOT gates.

Solution: Figure 7.86 gives a possible circuit. The value of each coin is represented by a
corresponding five-bit number. It is added to the current total, which is held in register S.
The required output is

Z = s5 + s4s3s2s1

The register is clocked by the negative edge of theCoin signal. This allows for a propagation
delay through the adder, and ensures that a correct sum will be placed into the register.

In Chapter 9 we will show how this type of control circuit can be designed using a
more structured approach.

Example 7.17 Problem: Write VHDL code to implement the circuit in Figure 7.86.

Solution: Figure 7.87 gives the desired code.
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Figure 7.86 Circuit for Example 7.16.

Example 7.18Problem: In section 7.15 we presented a timing analysis for the counter circuit in Figure
7.81. Redesign this circuit to reduce the logic delay between flip-flops, so that the circuit
can operate at a higher maximum clock frequency.

Solution: As we showed in section 7.15, the performance of the counter circuit is limited
by the delay through its cascaded AND gates. To increase the circuit’s performance we
can refactor the AND gates as illustrated in Figure 7.88. The longest delay path in this
redesigned circuit, which starts at flip-flop Q0 and ends at Q3, provides the minimum clock
period

Tmin = tcQ + tAND + tXOR + tsu
= 1.0+ 1.4+ 1.2+ 0.6 ns = 4.2 ns
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LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std logic signed.all ;

ENTITY vend IS
PORT ( N, D, Q, Resetn, Coin : IN STD LOGIC ;

Z : OUT STD LOGIC ) ;
END vend ;

ARCHITECTURE Behavior OF vend IS
SIGNAL X: STD LOGIC VECTOR(4 DOWNTO 0) ;
SIGNAL S: STD LOGIC VECTOR(5 DOWNTO 0) ;

BEGIN
X(0) <� N OR Q ;
X(1) <� D ;
X(2) <� N ;
X(3) <� D OR Q ;
X(4) <� Q ;
PROCESS ( Resetn, Coin )
BEGIN

IF Resetn � ’0’ THEN
S <� ”000000” ;

ELSIF Coin’EVENT AND Coin � ’0’ THEN
S <� (’0’ & X) + S ;

END IF ;
END PROCESS ;
Z <� S(5) OR (S(4) AND S(3) AND S(2) AND S(1)) ;

END Behavior ;

Figure 7.87 Code for Example 7.17.

The redesigned counter has a maximum clock frequency of Fmax = 1/4.2 ns = 238.1 MHz,
compared to the result for the original counter, which was 156.25 MHz.

Problems

Answers to problems marked by an asterisk are given at the back of the book.

7.1 Consider the timing diagram in Figure P7.1. Assuming that the D and Clock inputs shown
are applied to the circuit in Figure 7.12, draw waveforms for the Qa, Qb, and Qc signals.

7.2 Can the circuit in Figure 7.3 be modified to implement an SR latch? Explain your answer.

7.3 Figure 7.5 shows a latch built with NOR gates. Draw a similar latch using NAND gates.
Derive its characteristic table and show its timing diagram.
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Figure 7.88 A faster 4-bit counter.

*7.4 Show a circuit that implements the gated SR latch using NAND gates only.

7.5 Given a 100-MHz clock signal, derive a circuit using D flip-flops to generate 50-MHz
and 25-MHz clock signals. Draw a timing diagram for all three clock signals, assuming
reasonable delays.

*7.6 An SR flip-flop is a flip-flop that has set and reset inputs like a gated SR latch. Show how
an SR flip-flop can be constructed using a D flip-flop and other logic gates.

7.7 The gated SR latch in Figure 7.6a has unpredictable behavior if the S and R inputs are
both equal to 1 when the Clk changes to 0. One way to solve this problem is to create a
set-dominant gated SR latch in which the condition S = R = 1 causes the latch to be set to
1. Design a set-dominant gated SR latch and show the circuit.

7.8 Show how a JK flip-flop can be constructed using a T flip-flop and other logic gates.
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D

Clock

Figure P7.1 Timing diagram for Problem 7.1.

*7.9 Consider the circuit in Figure P7.2. Assume that the two NAND gates have much longer
(about four times) propagation delay than the other gates in the circuit. How does this
circuit compare with the circuits that we discussed in this chapter?

A

B

C

D

E

Figure P7.2 Circuit for Problem 7.9.

7.10 Write VHDL code that represents a T flip-flop with an asynchronous clear input. Use
behavioral code, rather than structural code.

7.11 Write VHDL code that represents a JK flip-flop. Use behavioral code, rather than structural
code.

7.12 Synthesize a circuit for the code written for problem 7.11 by using your CAD tools. Simulate
the circuit and show a timing diagram that verifies the desired functionality.

7.13 A universal shift register can shift in both the left-to-right and right-to-left directions, and
it has parallel-load capability. Draw a circuit for such a shift register.

7.14 Write VHDL code for a universal shift register with n bits.
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7.15 Design a four-bit synchronous counter with parallel load. Use T flip-flops, instead of the D
flip-flops used in section 7.9.3.

*7.16 Design a three-bit up/down counter using T flip-flops. It should include a control input
called Up/Down. If Up/Down = 0, then the circuit should behave as an up-counter. If
Up/Down = 1, then the circuit should behave as a down-counter.

7.17 Repeat problem 7.16 using D flip-flops.

*7.18 The circuit in Figure P7.3 looks like a counter. What is the sequence that this circuit counts
in?

T Q

Q

1 T Q

Q

T Q

Q

Q0 Q1 Q2

Clock

Figure P7.3 The circuit for Problem 7.18.

7.19 Consider the circuit in Figure P7.4. How does this circuit compare with the circuit in Figure
7.17? Can the circuits be used for the same purposes? If not, what is the key difference
between them?

Clock

S Q

Q

Clk

R

S Q

Q

Clk

R

Q

Q

J

K

Figure P7.4 Circuit for Problem 7.19.

7.20 Construct a NOR-gate circuit, similar to the one in Figure 7.11a, which implements a
negative-edge-triggered D flip-flop.

7.21 Write behavioral VHDL code that represents a 24-bit up/down-counter with parallel load
and asynchronous reset.
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7.22 Modify the VHDL code in Figure 7.52 by adding a parameter that sets the number of
flip-flops in the counter.

7.23 Write behavioral VHDL code that represents a modulo-12 up-counter with synchronous
reset.

*7.24 For the flip-flops in the counter in Figure 7.25, assume that tsu = 3 ns, th = 1 ns, and the
propagation delay through a flip-flop is 1 ns. Assume that each AND gate, XOR gate, and
2-to-1 multiplexer has the propagation delay equal to 1 ns. What is the maximum clock
frequency for which the circuit will operate correctly?

7.25 Write hierarchical code (structural) for the circuit in Figure 7.28. Use the counter in Fig-
ure 7.25 as a subcircuit.

7.26 Write VHDL code that represents an eight-bit Johnson counter. Synthesize the code with
your CAD tools and give a timing simulation that shows the counting sequence.

7.27 Write behavioral VHDLcode in the style shown in Figure 7.51 that represents a ring counter.
Your code should have a parameter N that sets the number of flip-flops in the counter.

*7.28 Write behavioral VHDL code that describes the functionality of the circuit shown in Fig-
ure 7.42.

7.29 Figure 7.65 gives VHDL code for a digital system that swaps the contents of two registers,
R1 and R2, using register R3 for temporary storage. Create an equivalent schematic using
your CAD tools for this system. Synthesize a circuit for this schematic and perform a timing
simulation.

7.30 Repeat problem 7.29 using the control circuit in Figure 7.59.

7.31 Modify the code in Figure 7.67 to use the control circuit in Figure 7.59. Synthesize the
code for implementation in a chip and perform a timing simulation.

7.32 In section 7.14.2 we designed a processor that performs the operations listed in Table 7.3.
Design a modified circuit that performs an additional operation SwapRx, Ry. This operation
swaps the contents of registers Rx and Ry. Use three bits f2 f1 f0 to represent the input F
shown in Figure 7.71 because there are now five operations, rather than four. Add a new
register, named Tmp, into the system, to be used for temporary storage during the swap
operation. Show logic expressions for the outputs of the control circuit, as was done in
section 7.14.2.

7.33 A ring oscillator is a circuit that has an odd number, n, of inverters connected in a ringlike
structure, as shown in Figure P7.5. The output of each inverter is a periodic signal with a
certain period.
(a) Assume that all the inverters are identical; hence they all have the same delay, called
tp. Let the output of one of the inverters be named f . Give an equation that expresses the
period of the signal f in terms of n and tp.

f

Figure P7.5 A ring oscillator.
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Reset

Interval

100 ns

Figure P7.6 Timing of signals for Problem 7.33

(b) For this part you are to design a circuit that can be used to experimentally measure the
delay tp through one of the inverters in the ring oscillator. Assume the existence of an input
called Reset and another called Interval. The timing of these two signals is shown in Fig-
ure P7.6. The length of time for which Interval has the value 1 is known. Assume that this
length of time is 100 ns. Design a circuit that uses the Reset and Interval signals and the
signal f from part (a) to experimentally measure tp. In your design you may use logic gates
and subcircuits such as adders, flip-flops, counters, registers, and so on.

7.34 A circuit for a gated D latch is shown in Figure P7.7. Assume that the propagation delay
through either a NAND gate or an inverter is 1 ns. Complete the timing diagram given in
the figure, which shows the signal values with 1 ns resolution.

Q

Clock

D

Q

A

1
0

1
0

1
0

1
0

A

D

Clock

Q

Figure P7.7 Circuit and timing diagram for Problem 7.34.
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*7.35 A logic circuit has two inputs, Clock and Start, and two outputs, f and g. The behavior of
the circuit is described by the timing diagram in Figure P7.8. When a pulse is received
on the Start input, the circuit produces pulses on the f and g outputs as shown in the
timing diagram. Design a suitable circuit using only the following components: a three-
bit resettable positive-edge-triggered synchronous counter and basic logic gates. For your
answer assume that the delays through all logic gates and the counter are negligible.

1
0

1
0

1
0

1
0

g

f

Start

Clock

Figure P7.8 Timing diagram for Problem 7.35.

7.36 Write behavioral VHDL code for a four-digit BCD counter.

7.37 Determine the maximum clock frequency that can be used for the circuit in Figure 7.25.
Use the timing parameters given in section 7.15.

7.38 Repeat problem 7.37 for the circuit in Figure 7.60.

7.39 (a) Draw a circuit that could be synthesized from the VHDL code in Figure P7.9.
(b) How would you modify this code to specify a crossbar switch?

7.40 A digital control circuit has three inputs: Start, Stop and Clock, as well as an output signal
Run. The Start and Stop signals are of indeterminate duration and may span many clock
cycles. When the Start signal goes to 1, the circuit must generate Run= 1. The Run signal
must remain high until the Stop signal goes to 1, at which time it has to return to 0. All
changes in the Run signal must be synchronized with the Clock signal.
(a) Design the desired control circuit.
(b) Write VHDL code that specifies the desired circuit.
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY problem IS
PORT ( x1, x2, s: IN STD_LOGIC ;

y1, y2 : OUT STD_LOGIC) ;
END problem ;

ARCHITECTURE Behavior OF problem IS
BEGIN

PROCESS ( x1, x2, s )
BEGIN

IF s = ’0’ THEN
y1 <= x1 ;
y2 <= x2 ;

ELSIF s = ’1’ THEN
y1 <= x2 ;

END IF ;
END PROCESS ;

END Behavior ;

Figure P7.9 Code for Problem 7.39.
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This appendix describes the features of VHDL that are used in this book. It is meant to
serve as a convenient reference for the reader. Hence only brief descriptions are provided,
along with examples. The reader is encouraged to first study the introduction to VHDL in
sections 2.9 and 4.12.5.

Another useful source of information on VHDL is the MAX+plusII CAD system that
accompanies the book. The on-line help included with the software describes how to use
VHDL with MAX+plusII, and the “templates” provided with the Text Editor tool are a
convenient guide to VHDL syntax. We describe how to access these features of the CAD
tools in Appendix B.

In some ways VHDL uses an unusual syntax for describing logic circuits. The prime
reason is that VHDL was originally intended to be a language for documenting and simu-
lating circuits, rather than for describing circuits for synthesis. This appendix is not meant
to be a comprehensive VHDL manual. While we discuss almost all the features of VHDL
that are useful in the synthesis of logic circuits, we do not discuss any of the features that are
useful only for simulation of circuits or for other purposes. Although the omitted features
are not needed for any of the examples used in this book, a reader who wishes to learn more
about using VHDL can refer to specialized books [1–7].

How Not to Write VHDL Code
In section 2.9 we mentioned the most common problem encountered by designers who

are just beginning to write VHDL code. The tendency for the novice is to write code
that resembles a computer program, containing many variables and loops. It is difficult
to determine what logic circuit the CAD tools will produce when synthesizing such code.
This book contains more than 100 examples of complete VHDL code that represents a wide
range of logic circuits. In all of these examples, the code is easily related to the described
logic circuit. The reader is encouraged to adopt the same style of code. A good general
guideline is to assume that if the designer cannot readily determine what logic circuit is
described by the VHDL code, then the CAD tools are not likely to synthesize the circuit
that the designer is trying to describe.

Since VHDL is a complex language, errors in syntax and usage are quite common.
Some problems encountered by our students, as novice designers, are listed at the end of
this appendix in section A.11. The reader may find it useful to examine these errors in an
effort to avoid them when writing code.

Once complete VHDL code is written for a particular design, it is useful to analyze the
resulting circuit synthesized by the CAD tools. Much can be learned about VHDL, logic
circuits, and logic synthesis by studying the circuits that are produced automatically by the
CAD tools.

A.1 Documentation in VHDL Code

Documentation can be included in VHDL code by writing a comment. The two characters
‘-’, ‘-’ denote the beginning of the comment. The VHDL compiler ignores any text on a
line after the ‘- -’.
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Example A.1

- - this is a VHDL comment

A.2 Data Objects

Information is represented in VHDL code as data objects. Three kinds of data objects
are provided: signals, constants, and variables. For describing logic circuits, the most
important data objects are signals. They represent the logic signals (wires) in the circuit.
The constants and variables are also sometimes useful for describing logic circuits, but they
are used infrequently.

A.2.1 Data Object Names

The rules for specifying data object names are simple: any alphanumeric character may
be used in the name, as well as the ‘_’ underscore character. There are four caveats. A
name cannot be a VHDL keyword, it must begin with a letter, it cannot end with an ‘_’
underscore, and it cannot have two successive ‘_’ underscores. Thus examples of legal
names arex, x1, x_y, andByte. Some examples of illegal names are 1x, _y, x_ _y, and
entity. The latter name is not allowed because it is a VHDL keyword. We should note that
VHDL is not case sensitive. Hence x is the same as X, and ENTITY is the same as entity.
To make the examples of VHDL code in this book more readable, we use uppercase letters
in all keywords.

To avoid confusion when using the word signal, which can mean either a VHDL data
object or a logic signal in a circuit, we sometimes write the VHDL data object as SIGNAL.

A.2.2 Data Object Values and Numbers

We use SIGNAL data objects to represent individual logic signals in a circuit, multiple logic
signals, and binary numbers (integers). The value of an individual SIGNAL is specified
using apostrophes, as in ’0’ or ’1’. The value of a multibit SIGNAL is given with double
quotes. An example of a four-bit SIGNAL value is "1001", and an eight-bit value is
"10011000". Double quotes can also be used to denote a binary number. Hence while
"1001" can represent the four SIGNAL values ’1’, ’0’, ’0’, ’1’, it can also mean the integer
(1001)2 = (9)10. Integers can alternatively be specified in decimal by not using quotes, as
in 9 or 152. The values of CONSTANT or VARIABLE data objects are specified in the
same way as for SIGNAL data objects.

A.2.3 SIGNAL Data Objects

SIGNAL data objects represent the logic signals, or wires, in a circuit. There are three
places in which signals can be declared in VHDL code: in an entity declaration (see section
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A.4.1), in the declarative section of an architecture (see section A.4.2), and in the declarative
section of a package (see section A.5). A signal has to be declared with an associatedtype,
as follows:

SIGNAL signal_name : type_name ;

The signal’stype_namedetermines the legal values that the signal can have and its legal
uses in VHDL code. In this section we describe 10 signal types: BIT, BIT_VECTOR,
STD_LOGIC, STD_LOGIC_VECTOR, STD_ULOGIC, SIGNED, UNSIGNED, INTE-
GER, ENUMERATION, and BOOLEAN.

A.2.4 BIT and BIT_VECTOR Types

These types are predefined in the VHDL Standards IEEE 1076 and IEEE 1164. Hence no
library is needed to use these types in the code. Objects of BIT type can have the values
’0’ or ’1’. An object of BIT_VECTOR type is a linear array of BIT objects.

Example A.2
SIGNAL x1 : BIT ;
SIGNAL C : BIT_VECTOR (1 TO 4) ;
SIGNAL Byte : BIT_VECTOR (7 DOWNTO 0) ;

The signalsC andByteillustrate the two possible ways of defining a multibit data object.
The syntax “lowest_index TO highest_index” is useful for a multibit signal that is simply
an array of bits. In the signalC the most-significant (left-most) bit is referenced using
lowest_index, and the least-significant (right-most) bit is referenced using highest_index.
The syntax “highest_index DOWNTO lowest_index” is useful if the signal represents a
binary number. In this case the most-significant (left-most) bit has the index highest_index,
and the least-significant (right-most) bit has the index lowest_index.

The multibit signalC represents four BIT objects. It can be used as a single four-bit
quantity, or each bit can be referred to individually. The syntax for referring to the signals
individually isC (1), C (2), C (3), orC (4). An assignment statement such as

C <= "1010" ;

results inC (1)= 1, C (2)= 0, C (3)= 1, andC (4)= 0.
The signalBytecomprises eight BIT objects. The assignment statement

Byte<= "10011000" ;

results inByte(7) = 1, Byte(6) = 0, and so on toByte(0) = 0.

A.2.5 STD_LOGIC and STD_LOGIC_VECTOR Types

The STD_LOGIC type was added to the VHDL Standard in IEEE 1164. It provides more
flexibility than the BIT type. To use this type, we must include the two statements
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

These statements provide access to thestd_logic_1164package, which defines the
STD_LOGIC type. We describe VHDL packages in section A.5. In general, they are
used as a place to store VHDL code, such as the code that defines a type, which can then
be used in other source code files. The following values are legal for a STD_LOGIC data
object: 0, 1, Z,−, L, H, U, X, and W. Only the first four are useful for synthesis of logic
circuits. The value Z represents high impedance, and− stands for “don’t care.” The value
L stands for “weak 0,” H means “weak 1,” U means “uninitialized,” X means “unknown,”
and W means “weak unknown.” The STD_LOGIC_VECTOR type represents an array of
STD_LOGIC objects.

Example A.3

SIGNAL x1, x2, Cin, Cout, Sel : STD_LOGIC ;
SIGNAL C : STD_LOGIC_VECTOR (1 TO 4) ;
SIGNAL X, Y, S : STD_LOGIC_VECTOR (3 DOWNTO 0) ;

STD_LOGIC objects are often used in logic expressions in VHDL code.
STD_LOGIC_VECTOR signals can be used as binary numbers in arithmetic circuits by
including in the code the statement

USE ieee.std_logic_signed.all ;

Thestd_logic_signedpackage specifies that it is legal to use the STD_LOGIC_VECTOR
signals with arithmetic operators, like + (see section A.7.1). The VHDL compiler should
generate a circuit that works for signed numbers. An alternative is to use the package
std_logic_unsigned. In this case the compiler should generate a circuit that works for
unsigned numbers.

A.2.6 STD_ULOGIC Type

In this book we use the STD_LOGIC type in most examples of VHDL code. This type
is actually asubtypeof the STD_ULOGIC type. Signals that have the STD_ULOGIC
type can take the same values as the STD_LOGIC signals that we have been using. The
only difference between STD_ULOGIC and STD_LOGIC has to do with the concept of
a resolution function. In VHDL a resolution function is used to determine what value a
signal should take if there are two sources for that signal. For example, two tri-state buffers
could both have their outputs connected to a signal,x. At some given time one buffer might
produce the output value ’Z’ and the other buffer might produce the value 1. A resolution
function is used to determine that the value ofx should be 1 in this case. The STD_LOGIC
type allows multiple sources for a signal; it resolves the correct value using a resolution
function that is provided as part of thestd_logic_1164package. The STD_ULOGIC type
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does not permit signals to have multiple sources. We have introduced STD_ULOGIC for
completeness only; it is not used in this book.

A.2.7 SIGNED and UNSIGNED Types

Thestd_logic_signedandstd_logic_unsignedpackages mentioned in section A.2.5 make
use of another package, calledstd_logic_arith. This package defines the type of circuit
that should be used to implement the arithmetic operators, such as +. Thestd_logic_arith
package defines two signal types, SIGNED and UNSIGNED. These types are identical to
the STD_LOGIC_VECTOR type because they represent an array of STD_LOGIC signals.
The purpose of the SIGNED and UNSIGNED types is to allow the user to indicate in the
VHDL code what kind of number representation is being used. The SIGNED type is used
in code for circuits that deal with signed (2’s complement) numbers, and the UNSIGNED
type is used in code that deals with unsigned numbers.

Example A.4 Assume thatA andB are signals with the SIGNED type. Assume thatA is assigned the
value "1000", andB is assigned the value "0001". VHDL provides relational operators
(see Table A.1 in section A.3) that can be used to compare the values of two signals. The
comparisonA< B evaluates to true because the signed values areA= −8 andB= 1. On
the other hand, ifA andB are defined with the UNSIGNED type, thenA < B evaluates to
false because the unsigned values areA= 8 andB= 1.

Thestd_logic_signedpackage specifies that STD_LOGIC_VECTOR signals should be
treated like SIGNED signals. Similarly,std_logic_unsigned specifies that
STD_LOGIC_VECTOR signals should be treated like UNSIGNED signals. It is an arbi-
trary choice whether code is written using STD_LOGIC_VECTOR signals in conjunction
with the std_logic_signedor std_logic_unsignedpackages or using SIGNED and UN-
SIGNED signals with thestd_logic_arithpackage.

Thestd_logic_arithpackage, and hence thestd_logic_signedandstd_logic_unsigned
packages, are not actually a part of the VHDL standards. They are provided by Synopsys
Inc., which is a vendor of CAD software. However, these packages are included with most
CAD systems that support VHDL, and they are widely used in practice.

A.2.8 INTEGER Type

The VHDL standard defines the INTEGER type for use with arithmetic operators. In this
book the STD_LOGIC_VECTOR type is usually preferred in code for arithmetic circuits,
but the INTEGER type is used occasionally. An INTEGER signal represents a binary
number. The code does not specifically give the number of bits in the signal, as it does
for STD_LOGIC_VECTOR signals. By default, an INTEGER signal has 32 bits and can
represent numbers from−(231− 1) to 231− 1. This is one number less than the normal 2’s
complement range; the reason is simply that the VHDL standard specifies an equal number
of negative and positive numbers. Integers with fewer bits can also be declared, using the
RANGE keyword.
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Example A.5

SIGNAL X : INTEGER RANGE−127 TO 127 ;

This definesX as an eight-bit signed number.

A.2.9 BOOLEAN Type

An object of type BOOLEAN can have the values TRUE or FALSE, where TRUE is
equivalent to 1 and FALSE is 0.

Example A.6

SIGNAL Flag : Boolean ;

A.2.10 ENUMERATION Type

A SIGNAL of ENUMERATION type is one for which the possible values that the signal
can have are user specified. The general form of an ENUMERATION type is

TYPE enumerated_type_name IS (name {, name}) ;

The curly brackets indicate that one or more additional items can be included. We use these
brackets in this manner in several places in the appendix. The most common example of
using the ENUMERATION type is for specifying the states for a finite-state machine.

Example A.7

TYPE State_type IS (stateA, stateB, stateC) ;
SIGNAL y : State_type ;

This declares a signal namedy, for which the legal values arestateA, stateB, andstateC.
When the code is translated by the VHDL compiler, it automatically assigns bit patterns
(codes) to representstateA, stateB, andstateC.
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A.2.11 CONSTANT Data Objects

A CONSTANT is a data object whose value cannot be changed. Unlike a SIGNAL, a
CONSTANT does not represent a wire in a circuit. The general form of a CONSTANT
declaration is

CONSTANT constant_name : type_name := constant_value ;

The purpose of a constant is to improve the readability of code, by using the name of the
constant in place of a value or number.

Example A.8

CONSTANT Zero : STD_LOGIC_VECTOR (3 DOWNTO 0) := "0000" ;

Then the wordZerocan be used in the code to indicate the constant value "0000".

A.2.12 VARIABLE Data Objects

A VARIABLE, unlike a SIGNAL, does not necessarily represent a wire in a circuit. VARI-
ABLE data objects are sometimes used to hold the results of computations and for the index
variables in loops. We will give some examples in section A.9.7.

A.2.13 Type Conversion

VHDL is a strongly type-checked language, which means that it does not permit the value
of a signal of one type to be assigned to another signal that has a different type. Even for
signals that intuitively seem compatible, such as BIT and STD_LOGIC, using the two types
together is not permitted. To avoid this problem, we generally use only the STD_LOGIC
and STD_LOGIC_VECTOR types in this book. When it is necessary to use code that has a
mixture of types, type-conversion functions can be used to convert from one type to another.

Assume thatX is defined as an eight-bit STD_LOGIC_VECTOR signal andY is an
INTEGER signal defined with the range from 0 to 255. An example of a conversion function
that allows the value ofY to be assigned toX is

X <= CONV_STD_LOGIC_VECTOR(Y, 8) ;

This conversion function has two parameters: the name of the signal to be converted and
the number of bits inX. The function is provided as part of thestd_logic_arithpackage;
hence that package must be included in the code using the appropriate LIBRARY and USE
clauses. Other conversion functions are described in the MAX+plusII on-line help.
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A.2.14 Arrays

We said above that the BIT_VECTOR and STD_LOGIC_VECTOR types are arrays of BIT
and STD_LOGIC signals, respectively. The definitions of these arrays, which are provided
as part of the VHDL standards, are

TYPE BIT_VECTOR IS ARRAY (NATURAL RANGE<>) OF BIT ;
TYPE STD_LOGIC_VECTOR IS ARRAY (NATURAL RANGE<>) OF STD_LOGIC ;

The sizes of the arrays are not set in the definitions; the syntax (NATURAL RANGE<>)
has the effect of allowing the user to set the size of the array when a data object of either
type is declared. Arrays of any type can be defined by the user. For example

TYPE Byte IS ARRAY (7 DOWNTO 0) OF STD_LOGIC ;
SIGNAL X : Byte ;

declares the signalX with the typeByte, which is an eight-element array of STD_LOGIC
data objects.

An example that defines a two-dimensional array is

TYPE RegArray IS ARRAY(3 DOWNTO 0) OF STD_LOGIC_VECTOR(7 DOWNTO 0) ;
SIGNAL R : RegArray ;

This code definesR as an array with four elements. Each element is an eight-bit
STD_LOGIC_VECTOR signal. The syntaxR(i), where 3≥ i ≥ 0, is used to refer to
elementi of the array. The syntaxR(i)(j), where 7≥ j ≥ 0, is used to refer to one bit in
the arrayR(i). This bit has the type STD_LOGIC. An example using theRegArraytype is
given in section 10.2.6.

A.3 Operators

VHDL provides Boolean operators, arithmetic operators, and relational operators. They
are categorized in an unusual way, shown in Table A.1, according to the precedence of
the operators. Note that operators in the same category do not have precedence over one
another. There is no precedence among any Boolean operators. Thus a logic expression

x1 AND x2 AND x3 OR x4

does not have thex1x2x3+ x4 meaning that would be expected because AND does not have
precedence over OR. In fact, this expression is not even legal in VHDL as written above.
To be both legal and have the desired meaning, it must be written as

(x1 AND x2 AND x3) OR x4

For the relational operators, /= meansnot equal,<= meansless than or equal, and>=
meansgreater than or equal.
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Table A.1 The VHDL operators.

Operator Class Operator

Highest precedence Miscellaneous **, ABS, NOT

Multiplying *, /, MOD, REM

Sign +,−
Adding +,−, &

Relational =, /=,<,<=,>,>=

Lowest precedence Logical AND, OR, NAND, NOR, XOR, XNOR

A.4 VHDL Design Entity

A circuit or subcircuit described with VHDL code is called adesign entity, or justentity.
Figure A.1 shows the general structure of an entity. It has two main parts: theentity
declaration, which specifies the input and output signals for the entity, and thearchitecture,
which gives the circuit details.

Entity declaration

Architecture

Entity

Figure A.1 The general structure of a VHDL design entity.
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A.4.1 ENTITY Declaration

The input and output signals in an entity are specified using the ENTITY declaration, as
indicated in Figure A.2. The name of the entity can be any legal VHDL name. The square
brackets indicate an optional item. The input and output signals are specified using the
keyword PORT. Whether each port is an input, output, or bidirectional signal is specified
by themodeof the port. The available modes are summarized in Table A.2. If the mode of
a port is not specified, it is assumed to have the mode IN.

Table A.2 The possible modes for signals that are entity ports.

Mode Purpose

IN Used for a signal that is an input to an entity.

OUT Used for a signal that is an output from an entity. The value of the signal can not be used
inside the entity. This means that in an assignment statement, the signal can appear only
to the left of the<= operator.

INOUT Used for a signal that is both an input to an entity and an output from the entity.

BUFFER Used for a signal that is an output from an entity. The value of the signal can be used
inside the entity, which means that in an assignment statement, the signal can appear both
on the left and right sides of the<= operator.

A.4.2 Architecture

An ARCHITECTURE provides the circuit details for an entity. The general structure of an
architecture is shown in Figure A.3. It has two main parts: thedeclarative regionand the
architecture body. The declarative region appears preceding the BEGIN keyword. It can
be used to declare signals, user-defined types, and constants. It can also be used to declare
components and to specify attributes; we discuss the COMPONENT and ATTRIBUTE
keywords in sections A.6 and A.10.13, respectively.

The functionality of the entity is specified in the architecture body, which follows the
BEGIN keyword. This specification involves statements that define the logic functions in
the circuit, which can be given in a variety of ways. We will discuss a number of possibilities
in the sections that follow.

ENTITY entity_name IS
PORT ( [SIGNAL] signal_name {, signal_name} : [mode] type_name {;

SIGNAL] signal_name {, signal_name} : [mode] type_name } ) ;
END entity_name ;

Figure A.2 The general form of an entity declaration.
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ARCHITECTURE architecture_name OF entity_name IS
[SIGNAL declarations]
[CONSTANT declarations]
[TYPE declarations]
[COMPONENT declarations]
[ATTRIBUTE specifications]

BEGIN
{COMPONENT instantiation statement ;}
{CONCURRENT ASSIGNMENT statement ;}
{PROCESS statement ;}
{GENERATE statement ;}

END [architecture_name] ;

Figure A.3 The general form of an architecture.

Example A.9 Figure A.4 gives the VHDL code for an entity namedfulladd, which represents a full-adder
circuit. (The full-adder is discussed in section 5.2.) The entity declaration specifies the
input and output signals. The input portCin is the carry-in, and the bits to be added are the
input portsx andy. The output ports are the sum,s, and the carry-out,Cout. The input and
output signals are called theports of the entity. This term is adopted from the electrical
jargon in which it refers to an input or output connection in an electrical circuit.

The architecture defines the functionality of the full-adder using logic equations. The
name of the architecture can be any legal VHDL name. We chose the name LogicFunc for
this simple example. In terms of the general form of the architecture in Figure A.3, a logic
equation is a type of concurrent assignment statement. These statements are described in
section A.7.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY fulladd IS
PORT ( Cin, x, y : IN STD_LOGIC ;

s, Cout : OUT STD_LOGIC ) ;
END fulladd ;

ARCHITECTURE LogicFunc OF fulladd IS
BEGIN

s<= x XOR y XOR Cin ;
Cout<= (x AND y) OR (x AND Cin) OR (y AND Cin) ;

END LogicFunc ;

Figure A.4 Code for a full-adder.
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A.5 Package

A VHDL package serves as a repository. It is used to hold VHDL code that is of general
use, like the code that defines a type. The package can be included for use in any number of
other source code files, which can then use the definitions provided in the package. Like an
architecture, introduced in section A.4.2, a package can have two main parts: thepackage
declarationand thepackage body. The package_bodyis an optional part, which we do
not use in this book; one use of a package body is to define VHDL functions, such as the
conversion functions introduced in section A.2.13.

The general form of a package declaration is depicted in Figure A.5. Definitions
provided in the package, such as the definition of a type, can be used in any source code
file that includes the statements

LIBRARY library_name ;
USE library_name.package_name.all ;

The library_namerepresents the location in the computer file system where the package is
stored. A library can either be provided as part of a CAD system, in which case it is termed
a system library, or be created by the user, in which case it is called auser library. An
example of a system library is theieeelibrary. We discussed four packages in that library in
section A.2:std_logic_1164, std_logic_signed, std_logic_unsigned, andstd_logic_arith.

A special case of a user library is represented by the file-system directory where the
VHDL source code file that declares a package is stored. This directory can be referred
to by the library namework, which stands forworking directory. Hence, if a source code
file that contains a package declaration calleduser_ package_nameis compiled, then the
package can be used in another source code file (which is stored in the same file-system
directory) by including the statements

LIBRARY work ;
USE work.user_package_name.all ;

Actually, for the special case of thework library, the LIBRARY clause is not required,
because the work library is always accessible.

Figure A.5 shows that the package declaration can be used to declare signals and
components. Components are discussed in the next section. A signal declared in a package
can be used by any design entity that accesses the package. Such signals are similar in

PACKAGE package_name IS
[TYPE declarations]
[SIGNAL declarations]
[COMPONENT declarations]

END package_name ;

Figure A.5 The general form of a PACKAGE declaration.
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concept to global variables used in computer programming languages. In contrast, a signal
declared in an architecture can be used only inside that architecture. Such signals are
analogous to local variables in a programming language.

A.6 Using Subcircuits

A VHDL entity defined in one source code file can be used as a subcircuit in another
source code file. In VHDL jargon the subcircuit is called acomponent. A subcircuit
must be declared using acomponent declaration. This statement specifies the name of the
subcircuit and gives the names of its input and output ports. The component declaration
can appear either in the declaration region of an architecture or in a package declaration.
The general form of the statement is shown in Figure A.6. The syntax used is similar to the
syntax in an entity declaration.

Once a component declaration is given, the component can beinstantiatedas a subcir-
cuit. This is done using acomponent instantiationstatement. It has the general form

instance_name : component_name PORT MAP (
formal_name => actual_name {, formal_name => actual_name} ) ;

Eachformal_nameis the name of a port in the subcircuit. Eachactual_nameis the name
of a signal in the code that instantiates the subcircuit. The syntax “formal_name =>” is
provided so that the order of the signals listed after the PORT MAP keywords does not have
to be the same as the order of the ports in the corresponding COMPONENT declaration.
In VHDL jargon this is called thenamed association. If the signal names following the
PORT MAP keywords are given in the same order as in the COMPONENT declaration,
then “formal_name =>” is not needed. This is called thepositional association.

An example using a component (subcircuit) is shown in Figure A.7. It gives the code
for a four-bit ripple-carry adder built using four instances of thefulladd subcircuit. The
inputs to the adder are the carry-in,Cin, and the 2 four-bit numbersX andY. The output
is the four-bit sum,S, and the carry-out,Cout. We have chosen the name Structure in the
architecture because the hierarchical style of code that uses subcircuits is often called the
structuralstyle. Observe that a three-bit signal, C, is declared to represent the carry-outs
from stages 0, 1, and 2. This signal is declared in the architecture, rather than in the entity
declaration, because it is used internally in the circuit and is not an input or output port.

COMPONENT component_name
[GENERIC (parameter_name : integer := default_value {;

parameter_name : integer := default_value} ) ;]
PORT ( [SIGNAL] signal_name {, signal_name} : [mode] type_name {;

SIGNAL] signal_name {, signal_name} : [mode] type_name } ) ;
END COMPONENT ;

Figure A.6 The general form of a component declaration.
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY adder IS
PORT ( Cin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;
Cout : OUT STD_LOGIC ) ;

END adder ;

ARCHITECTURE Structure OF adder IS
SIGNAL C : STD_LOGIC_VECTOR(1 TO 3) ;
COMPONENT fulladd

PORT ( Cin, x, y : IN STD_LOGIC ;
s, Cout : OUT STD_LOGIC) ;

END COMPONENT ;
BEGIN

stage0: fulladd PORT MAP ( Cin , X(0), Y(0), S(0), C(1) ) ;
stage1: fulladd PORT MAP ( C(1), X(1), Y(1), S(1), C(2) ) ;
stage2: fulladd PORT MAP ( C(2), X(2), Y(2), S(2), C(3) ) ;
stage3: fulladd PORT MAP (

x => X(3), y => Y(3), Cin => C(3), s => S(3), Cout => Cout ) ;
END Structure ;

Figure A.7 Code for a four-bit adder, using component instantiation.

The next statement in the architecture gives the component declaration for thefulladd
subcircuit. The architecture body instantiates four copies of the full-adder subcircuit. In the
first three instantiation statements, we have used positional association because the signals
are listed in the same order as given in the declaration for the fulladd component in Figure
A.4. The last instantiation statement gives an example of named association. Note that it
is legal to use the same name for a signal in the architecture that is used for a port name
in a component. An example of this is theCout signal. The signal names used in the
instantiation statements implicitly specify how the component instances are interconnected
to create the adder entity.

A second example of component instantiation is shown in Figure A.8. A package called
lpm_componentsin the library namedlpm is included in the code. This package represents
a collection of components called theLibrary of Parameterized Modules (LPM), which is
a standardized library of circuit building blocks that are generally useful for implementing
logic circuits. The MAX+plusII CAD system includes the LPM components as standard
building blocks for creating logic circuits. Information about the components in the library
can be found in the MAX+plusII on-line help. We describe how to access this information
in Tutorial 3.

The code in Figure A.8 instantiates the LPM component calledlpm_add_sub, which
is introduced in section 5.5.1. It represents an adder/subtractor circuit. The GENERIC
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
LIBRARY lpm ;
USE lpm.lpm_components.all ;

ENTITY adderLPM IS
PORT ( Cin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;
Cout : OUT STD_LOGIC ) ;

END adderLPM ;

ARCHITECTURE Structure OF adderLPM IS
BEGIN

instance: lpm_add_sub
GENERIC MAP (LPM_WIDTH => 4)
PORT MAP (

dataa => X, datab => Y, Cin => Cin, result => S, Cout => Cout ) ;
END Structure ;

Figure A.8 Instantiating a four-bit adder from the LPM library.

keyword is used to set the number of bits in the adder/subtractor to 4. We discuss generics
in section A.8. The function of each PORT on thelpm_add_subcomponent is self-evident
from the port names used in the instantiation statement.

A.6.1 Declaring a COMPONENT in a Package

Figure A.5 shows that a component declaration can be given in a package. An example
is shown in Figure A.9. It defines the package namedfulladd_package, which provides
the component declaration for thefulladd entity. This package can be stored in a separate

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

PACKAGE fulladd_package IS
COMPONENT fulladd

PORT ( Cin, x, y : IN STD_LOGIC ;
s, Cout : OUT STD_LOGIC ) ;

END COMPONENT ;
END fulladd_package ;

Figure A.9 An example of a package declaration.
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE work.fulladd_package.all ;

ENTITY adder IS
PORT ( Cin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;
Cout : OUT STD_LOGIC ) ;

END adder ;

ARCHITECTURE Structure OF adder IS
SIGNAL C : STD_LOGIC_VECTOR(1 TO 3) ;

BEGIN
stage0: fulladd PORT MAP ( Cin, X(0), Y(0), S(0), C(1) ) ;
stage1: fulladd PORT MAP ( C(1), X(1), Y(1), S(1), C(2) ) ;
stage2: fulladd PORT MAP ( C(2), X(2), Y(2), S(2), C(3) ) ;
stage3: fulladd PORT MAP ( C(3), X(3), Y(3), S(3), Cout ) ;

END Structure ;

Figure A.10 Using a component defined in a package.

source code file or can be included at the end of the file that defines thefulladd entity (see
Figure A.4). Any source code that includes the statement “USE work.fulladd_package.all”
can use thefulladd component as a subcircuit. Figure A.10 shows how a four-bit ripple-
carry adder entity can be written to use the package. The code is the same as that in Figure
A.7 except that it includes the extra USE clause for the package and deletes the component
declaration statement from the architecture.

A.7 Concurrent Assignment Statements

A concurrent assignment statement is used to assign a value to a signal in an architecture
body. An example was given in Figure A.4, in which the logic equations illustrate one type
of concurrent assignment statement. VHDL provides four different types of concurrent
assignment statements: simple signal assignment, selected signal assignment, conditional
signal assignment, and generate statements.

A.7.1 Simple Signal Assignment

A simple signal assignment statement is used for a logic or an arithmetic expression. The
general form is
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signal_name<= expression ;

where<= is the VHDLassignment operator. The following examples illustrate its use.

SIGNAL x1, x2, x3, f : STD_LOGIC ;
·
·
·

f <= (x1 AND x2) OR x3 ;

This definesf in a logic expression, which involves single-bit quantities. VHDL also
supports multibit logic expressions, as in

SIGNAL A, B, C : STD_LOGIC_VECTOR (1 TO 3) ;
·
·
·

C <= A AND B ;

This results inC (1)=A(1)·B(1), C (2)=A(2)·B(2), andC (3)=A(3)·B(3).
An example of an arithmetic expression is

SIGNAL X, Y, S : STD_LOGIC_VECTOR (3 DOWNTO 0) ;
·
·
·

S <= X + Y ;

This represents a four-bit adder, without carry-in and carry-out. We can alternatively declare
a carry-in signal,Cin, and a five-bit signal,Sum, as follows

SIGNAL Cin : STD_LOGIC ;
SIGNAL Sum : STD_LOGIC_VECTOR (4 DOWNTO 0) ;

Then the statement

Sum <= (’0’ & X) + Y + Cin ;

represents the four-bit adder with carry-in and carry-out. The four sum bits areSum(3)
to Sum(0), while the carry-out is the bitSum(4). The syntax (’0’ & X) uses the VHDL
concatenate operator, &, to put a 0 on theleft end of the signalX. The reader should
not confuse this use of the & symbol with the logical AND operation, which is the usual
meaning of this symbol; in VHDL the logical AND is indicated by the word AND, and &
means concatenate. The concatenate operation prepends a 0 digit ontoX, creating a five-bit
number. VHDL requires at least one of the operands of an arithmetic expression to have the
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_signed.all ;

ENTITY adder IS
PORT ( Cin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;
Cout : OUT STD_LOGIC ) ;

END adder ;

ARCHITECTURE Behavior OF adder IS
SIGNAL Sum : STD_LOGIC_VECTOR(4 DOWNTO 0) ;

BEGIN
Sum<= (’0’ & X) + Y + Cin ;
S<= Sum(3 DOWNTO 0) ;
Cout<= Sum(4) ;

END Behavior ;

Figure A.11 Code for a four-bit adder, using arithmetic expressions.

same number of bits as the signal used to hold the result. The complete code for the four-bit
adder with carry signals is given in Figure A.11. We should note that this is a different way
(it is actually a better way) to describe a four-bit adder, in comparison with the structural
code in Figure A.7. Observe that the statement “S<= Sum(3 DOWNTO 0)” assigns the
lower four bits of theSumsignal, which are the four sum bits, to the outputS.

A.7.2 Assigning Signal Values Using OTHERS

Assume that we wish to set all bits in the signalSto 0. As we already know, one way to do
so is to write “S<= "0000" ;”. If the number of bits inS is large, a more convenient way
of expressing the assignment statement is to use the OTHERS keyword, as in

S<= (OTHERS => ’0’) ;

This statement also sets all bits inS to 0. But it has the benefit of working for any number
of bits, not just four. In general, the meaning of (OTHERS => Value) is to set each bit of
the destination operand toValue. An example of code that uses this construct is shown in
Figure A.28.
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A.7.3 Selected Signal Assignment

A selected signal assignment statement is used to set the value of a signal to one of several
alternatives based on a selection criterion. The general form is

[label:] - - an optional label can be placed here
WITH expression SELECT

signal_name<= expression WHEN constant_value{,
expression WHEN constant_value} ;

Example A.10

SIGNAL x1, x2, Sel, f : STD_LOGIC ;
·
·
·

WITH Sel SELECT
f <= x1 WHEN ’0’,

x2 WHEN OTHERS ;

This code describes a 2-to-1 multiplexer withSelas the select input. In a selected signal
assignment, all possible values of the select input,Selin this case, must be explicitly listed
in the code. The word OTHERS provides an easy way to meet this requirement. OTHERS
represents all possible values not already listed. In this case the other possible values are
1, Z,−, and so on. Another requirement for the selected signal assignment is that each
WHEN clause must specify a criterion that is mutually exclusive of the criteria in all other
WHEN clauses.

A.7.4 Conditional Signal Assignment

Similar to the selected signal assignment, the conditional signal assignment is used to set a
signal to one of several alternative values. The general form is

[label:]
signal_name<= expression WHEN logic_expression ELSE

{expression WHEN logic_expression ELSE}
expression ;

An example is

f <= ’1’ WHEN x1 = x2 ELSE ’0’ ;
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One key difference in comparison with the selected signal assignment has to be noted.
The conditions listed after each WHEN clause need not be mutually exclusive, because the
conditions are given a priority from the first listed to the last listed. This is illustrated by
the example in Figure A.12. The code represents a priority encoder in which the highest-
priority request is indicated as the output of the circuit. (Encoder circuits are described in
Chapter 6.) The output,f, of the priority encoder comprises two bits whose values depend
on the three inputs,req1, req2, andreq3. If req1 is 1, thenf is set to 01. Ifreq2 is 1,
thenf is set to 10, but only ifreq1 is not also 1. Hencereq1 has higher priority thanreq2.
Similarly, req1 andreq2 have higher priority thanreq3. Thus ifreq3 is 1, thenf is 11, but
only if neitherreq1 norreq2 is also 1. For this priority encoder, if none of the three inputs
is 1, thenf is assigned the value 00.

A.7.5 GENERATE Statement

There are two variants of the GENERATE statement: the FOR GENERATE and the IF
GENERATE. The general form of both types is shown in Figure A.13. The IF GENERATE
statement is seldom needed, but FOR GENERATE is often used in practice. It provides a
convenient way of repeating either a logic equation or a component instantiation. Figure
A.14 illustrates its use for component instantiation. The code in the figure is equivalent to
the code given in Figure A.7.

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY priority IS
PORT ( req1, req2, req3 : IN STD_LOGIC ;

f : OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ) ;
END priority ;

ARCHITECTURE Behavior OF priority IS
BEGIN

f <= "01" WHEN req1 = ’1’ ELSE
"10" WHEN req2 = ’1’ ELSE
"11" WHEN req3 = ’1’ ELSE
"00" ;

END Behavior;

Figure A.12 A priority encoder described with a conditional signal assignment.
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generate_label:
FOR index_variable IN range GENERATE

statement ;
{statement ;}

END GENERATE ;

generate_label:
IF expression GENERATE

statement ;
{statement ;}

END GENERATE ;

Figure A.13 The general forms of the GENERATE statement.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE work.fulladd_package.all ;

ENTITY adder IS
PORT ( Cin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;
Cout : OUT STD_LOGIC ) ;

END adder ;

ARCHITECTURE Structure OF adder IS
SIGNAL C : STD_LOGIC_VECTOR(0 TO 4) ;

BEGIN
C(0)<= Cin ;
Generate_label:
FOR i IN 0 TO 3 GENERATE

bit: fulladd PORT MAP ( C(i), X(i), Y(i), S(i), C(i+1) ) ;
END GENERATE ;
Cout<= C(4) ;

END Structure ;

Figure A.14 An example of component instantiation with FOR GENERATE.
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE work.fulladd_package.all ;

ENTITY addern IS
GENERIC ( n : INTEGER := 4 ) ;
PORT ( Cin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;
Cout : OUT STD_LOGIC ) ;

END addern ;

ARCHITECTURE Structure OF addern IS
SIGNAL C : STD_LOGIC_VECTOR(0 TO n) ;

BEGIN
C(0)<= Cin ;
Generate_label:
FOR i IN 0 TO n−1 GENERATE

stage: fulladd PORT MAP ( C(i), X(i), Y(i), S(i), C(i+1) ) ;
END GENERATE ;
Cout<= C(4) ;

END Structure ;

Figure A.15 An n-bit adder.

A.8 Defining an Entity with GENERICs

The code in Figure A.14 represents an adder for four-bit numbers. It is possible to make
this code more general by introducing a parameter in the code that represents the number
of bits in the adder. In VHDL jargon such a parameter is called a GENERIC. Figure A.15
gives the code for ann-bit adder entity, namedaddern. The GENERIC keyword is used to
define the number of bits,n, to be added. This parameter is used in the code, both in the
definitions of the signalsX, Y, andSand in the FOR GENERATE statement that instantiates
then full-adders.

It is possible to use the GENERIC feature with components that are instantiated as
subcircuits in other code. In section A.10.10 we give an example that uses theaddernentity
as a subcircuit.

A.9 Sequential Assignment Statements

The order in which the concurrent assignment statements in an architecture body appear
does not affect the meaning of the code. Many types of logic circuits can be described
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using these statements. However, VHDL also provides another type of statements, called
sequential assignment statements, for which the order of the statements in the code can
affect the semantics of the code. There are three variants of the sequential assignment
statements: IF statement, CASE statement, and loop statements.

A.9.1 PROCESS Statement

Since the order in which the sequential statements appear in VHDL code is significant,
whereas the ordering of concurrent statements is not, the sequential statements must be
separated from the concurrent statements. This is accomplished using a PROCESS state-
ment. The PROCESS statement appears inside an architecture body, and it encloses other
statements within it. The IF, CASE, and LOOP statements can appear only inside a pro-
cess. The general form of a PROCESS statement is shown in Figure A.16. Its structure is
somewhat similar to an architecture. VARIABLE data objects can be declared (only) inside
the process. Any variable declared can be used only by the code within the process; we say
that thescopeof the variable is limited to the process. To use the value of such a variable
outside the process, the variable’s value can be assigned to a signal. The various elements
of the process are best explained by giving some examples. But first we need to introduce
the IF, CASE, and LOOP statements.

The IF, CASE, and LOOP statements can be used to describe either combinational or
sequential circuits. We will introduce these statements by giving some examples of com-
binational circuits because they are easier to understand. Sequential circuits are described
in section A.10.

A.9.2 IF Statement

The general form of an IF statement is given in Figure A.17. An example using an IF
statement for combinational logic is

[process_label:]
PROCESS [( signal name {, signal name} )]

[VARIABLE declarations]
BEGIN

[WAIT statement]
[Simple Signal Assignment Statements]
[Variable Assignment Statements]
[IF Statements]
[CASE Statements]
[LOOP Statements]

END PROCESS [process_label] ;

Figure A.16 The general form of a PROCESS statement.
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IF expression THEN
statement ;
{statement ;}

ELSIF expression THEN
statement ;
{statement ;}

ELSE
statement ;
{statement ;}

END IF ;

Figure A.17 The general form of an IF statement.

IF Sel = ’0’ THEN
f <= x1 ;

ELSE
f <= x2 ;

END IF ;

This code defines the 2-to-1 multiplexer that was used as an example of a selected signal as-
signment in the previous section. Examples of sequential logic described with IF statements
are given in section A.10.

A.9.3 CASE Statement

The general form of a CASE statement is shown in Figure A.18. Theconstant_valuecan
be a single value, such as 2, a list of values separated by the| pipe, such as 2|3, or a range,
such as 2 to 4. An example of a CASE statement used to describe combinational logic is

CASE expression IS
WHEN constant_value =>

statement ;
{statement ;}

WHEN constant_value =>
statement ;
{statement ;}

WHEN OTHERS =>
statement ;
{statement ;}

END CASE ;

Figure A.18 The general form of a CASE statement.
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CASE Sel IS
WHEN ’0’ =>

f <= x1 ;
WHEN OTHERS =>

f <= x2 ;
END CASE ;

This code represents the same 2-to-1 multiplexer described in section A.9.2 using the IF
statement. Similar to a selected signal assignment, all possible valuations of the expression
used for the WHEN clauses must be listed; hence the OTHERS keyword is needed. Also, all
WHEN clauses in the CASE statement must be mutually exclusive. Examples of sequential
circuits described with the CASE statement are given in section A.10.11.

A.9.4 Loop Statements

VHDL provides two types of loop statements: the FOR-LOOP statement and the WHILE-
LOOP statement. Their general forms are shown in Figure A.19. These statements are used
to repeat one or more sequential assignment statements in much the same way as a FOR
GENERATE statement is used to repeat concurrent assignment statements. Examples of
the FOR-LOOP are given in section A.9.7.

A.9.5 Using a Process for a Combinational Circuit

An example of a PROCESS statement is shown in Figure A.20. It includes the code for
the IF statement from section A.9.2. The signalsSel, x1, andx2 are shown in parentheses
after the PROCESS keyword. They indicate which signals the process depends on and are
called thesensitivity listof the process. For a process that describes combinational logic,
as in this example, the sensitivity list includes all input signals used inside the process.

[loop_label:]
FOR variable_name IN range LOOP

statement ;
{statement ;}

END LOOP [loop_label] ;

[loop_label:]
WHILE boolean_expression LOOP

statement ;
{statement ;}

END LOOP [loop_label] ;

Figure A.19 The general forms of FOR-LOOP and
WHILE-LOOP statements.
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PROCESS ( Sel, x1, x2 )
BEGIN

IF Sel = ’0’ THEN
f <= x1

ELSE
f <= x2 ;

END IF ;
END PROCESS ;

Figure A.20 A PROCESS statement.

In VHDL jargon a process is described as follows. When the value of a signal in the
sensitivity list changes, the process becomesactive. Once active, the statements inside the
process are “evaluated” in sequential order. Any signal assignments made in the process
take effect only after all the statements inside the process have been evaluated. We say that
the signal assignment statements inside the process arescheduledand will take effect at the
end of the process.

The process describes a logic circuit and is translated into logic equations in the same
manner as the concurrent assignment statements in an architecture body. The concept of the
process statements being evaluated in sequence provides a convenient way of understanding
the semantics of the code inside a process. In particular, a key concept is that if multiple
assignments are made to a signal inside a process, only the last one to be evaluated has any
effect. This is illustrated in the next example.

A.9.6 Statement Ordering

The IF statement in Figure A.20 describes a multiplexer that assigns either of two inputs,
x1 or x2, to the outputf. Another way of describing the multiplexer with an IF statement
is shown in Figure A.21. The statement “f<= x1 ;” is evaluated first. However, the
signalf may not actually be changed to the value ofx1, because there may be a subsequent
assignment tof in the code inside the process statement. At this point in the process,x1
represents thedefaultvalue for f if no other assignment tof is evaluated. If we assume

PROCESS ( Sel, x1, x2 )
BEGIN

f <= x1 ;
IF Sel = 1 THEN

f <= x2 ;
END IF ;

END PROCESS ;

Figure A.21 An example illustrating the ordering of
statements within a PROCESS.
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thatSel= 1, then the statement “f<= x2 ;” will be evaluated. The effect of this second
assignment tof is to override the default assignment. Hence the result of the process is that
f is set to the valuex2 whenSel= 1. If we assume thatSel= 0, then the IF condition fails
andf is assigned its default value,x1.

This example illustrates the effect of the ordering of statements inside a process. If the
two statements were reversed in order, then the IF statement would be evaluated first and
the statement “f<= x1 ;” would be evaluated last. Hence the process would always result
in f being set to the value ofx1.

Implied Memory
Consider the process in Figure A.22. It is the same as the process in Figure A.21 except

that the default assignment statement “f<= x1 ;” has been removed. Because the process
does not specify a default value forf, and there is no ELSE clause in the IF statement, the
meaning of the process is thatf should retain its present value when the IF condition is not
satisfied. The following expression is generated by the VHDL compiler for this process

f = Sel· x2+ Sel· f
Hence whenSel= 0, the value ofx2 is “remembered” at the outputf. In VHDL jargon this
is calledimplied memoryor implicit memory. Although it is rarely useful for combinational
circuits, we will show shortly that implied memory is the key concept used to describe
sequential circuits.

A.9.7 Using a VARIABLE in a PROCESS

We mentioned earlier that VHDL provides VARIABLE data objects, in addition to SIGNAL
data objects. Unlike a signal, a variable data object does not represent a wire in a circuit.
Therefore, a variable can be used to describe the functionality of a logic circuit in ways that
are not possible using a signal. This concept is illustrated in Figure A.23. The intent of
the code is to describe a logic circuit that counts the number of bits in the three-bit signal
X that are equal to 1. The count is output using the signal calledCount, which is a two-bit
unsigned integer. Notice thatCountis declared with the modeBufferbecause it is used in
the architecture body on both the left and right sides of an assignment operator. Table A.2
explains the meaning of theBuffermode.

PROCESS ( Sel, x2 )
BEGIN

IF Sel = 1 THEN
f <= x2 ;

END IF ;
END PROCESS ;

Figure A.22 An example of implied memory.
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY numbits IS
PORT ( X : IN STD_LOGIC_VECTOR(1 TO 3) ;

Count : BUFFER INTEGER RANGE 0 TO 3 ) ;
END numbits ;

ARCHITECTURE Behavior OF numbits IS
BEGIN

PROCESS ( X ) - - count the number of bits in X with the value 1
BEGIN

Count<= 0 ; - - the 0 with no quotes is a decimal number
FOR i IN 1 TO 3 LOOP

IF X(i) = ’1’ THEN
Count<= Count + 1 ;

END IF ;
END LOOP ;

END PROCESS ;
END Behavior ;

Figure A.23 A FOR-LOOP that does not represent a sensible circuit.

Inside the process,Countis initially set to 0. No quotes are used for the number 0 in this
case, because VHDL allows a decimal number, which we said in section A.2.2 is denoted
with no quotes, to be assigned to an INTEGER signal. The code gives a FOR-LOOP with
the loop index variablei. For the values ofi from 1 to 3, the IF statement inside the FOR-
LOOP checks the value of bit X(i); if it is 1, then the value ofCountis incremented. The
code given in the figure is legal VHDL code and can be compiled without generating any
errors. However, it will not work as intended, and it does not represent a sensible logic
circuit.

There are two reasons why the code in Figure A.23 will not work as intended. First, there
are multiple assignment statements for the signalCountwithin the process. As explained
for the previous example, only the last of these assignments will have any effect. Hence
if any bit in X is 1, then the statement “Count<= ’0’ ;” will not have the desired effect
of initializing Count to 0, because it will be overridden by the assignment statement in
the FOR-LOOP. Also, the FOR-LOOP will not work as desired, because each iteration for
which X (1) is 1 will override the effect of the previous iteration. The second reason why
the code is not sensible is that the statement “Count<= Count + ’1’ ;” describes a circuit
with feedback. Since the circuit is combinational, such feedback will result in oscillations
and the circuit will not be stable.

The desired behavior of the VHDL code in Figure A.23 can be achieved using a variable,
instead of a signal. This is illustrated in Figure A.24, in which the variableTmp is used
instead of the signalCountinside the process. The value ofTmpis assigned toCountat the
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY Numbits IS
PORT ( X : IN STD_LOGIC_VECTOR(1 TO 3) ;

Count : OUT INTEGER RANGE 0 TO 3 ) ;
END Numbits ;

ARCHITECTURE Behavior OF Numbits IS
BEGIN

PROCESS ( X ) - - count the number of bits in X equal to 1
VARIABLE TMP : INTEGER ;

BEGIN
Tmp := 0 ;
FOR i IN 1 TO 3 LOOP

IF X(i) = ’1’ THEN
Tmp := Tmp + 1 ;

END IF ;
END LOOP ;
Count<= Tmp ;

END PROCESS ;
END Behavior ;

Figure A.24 The FOR-LOOP from Figure A.23 using a variable.

end of the process. Observe that the assignment statements toTmpare indicated with the :=
operator, as opposed to the<= operator. The := is called thevariable assignment operator.
Unlike<=, it does not result in the assignment beingscheduleduntil the end of the process.
The variable assignment takes place immediately. Thisimmediateassignment solves the
first of the two problems with the code in Figure A.23. The second problem is also solved
by using a variable instead of a signal. Because the variable does not represent a wire in
a circuit, the FOR-LOOP need not be literally interpreted as a circuit with feedback. By
using the variable, the FOR-LOOP represents only a desiredbehavior, or functionality, of
the circuit. When the code is translated, the VHDL compiler will generate a combinational
circuit that implements the functionality expressed in the FOR-LOOP.

When the code in Figure A.24 is translated by the VHDL compiler, it produces the
circuit with 2 two-bit adders shown in Figure A.25. It is possible to see how this circuit
corresponds to the FOR-LOOP in the code. The result of the first iteration of the loop is
thatCountis set to the value ofX (1). The second iteration then addsX (1) toX (2). This is
realized by the top adder in the figure. The third iteration addsX (3) to the sum produced
from the second iteration. This corresponds to the bottom adder. When this circuit is
optimized by the logic synthesis algorithms, the resulting expressions forCountare
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x0x1 y0

0

y1

s0s1

Two-bit adder

X(2) 0 X(1)

x0x1 y0y1

s0s1

Two-bit adder

0 X(3)

Count (0)Count (1)

Figure A.25 The circuit generated from the code in Figure
A.24.

Count(1) = X(1)X(2) + X(1)X(3) + X(2)X(3)
Count(0) = X(1)⊕ X(2) ⊕ X(3)

These expressions represent a full-adder circuit, withCount(0) as the sum output and
Count(1) as the carry-out. It is interesting to note that even though the VHDL code describes
the desired behavior of the circuit in an abstract way, using a FOR-LOOP, in this example
the logic synthesis algorithms produce the most efficient circuit, which is the full-adder.
As we said at the beginning of this appendix and in section 2.9, the style of code in Figure
A.24 should be avoided, because it is often difficult for the designer to envisage what logic
circuit the code represents.

As another example of the use of a variable, Figure A.26 gives the code for ann-bit
NAND gate entity, namedNANDn. The number of inputs to the NAND gate is set by the
GENERIC parametern. The inputs are then-bit signalX, and the output isf . The variable
Tmpis defined in the architecture and originally set to the value of the input signalX (1). In
the FOR LOOP,Tmpis ANDed successively with input signalsX (2) to X (n). SinceTmp
is a variable data object, assignments to it take effect immediately; they are not scheduled
to take effect at the end of the process. The complement ofTmp is assigned tof , thus
completing the description of then-input NAND operation.

Figure A.27 shows the same code given in Figure A.26 but with the data objectTmp
defined as a signal, instead of as a variable. This code gives a wrong result, because only
the last statement included in the process has any effect onTmp. The code results inTmp=
Tmp·X(4), as determined by the last iteration of the FOR LOOP. Also, sinceTmpis never
initialized, its value is unknown. Hence the value of the outputf = Tmpis unknown.
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY NANDn IS
GENERIC ( n : INTEGER := 4 ) ;
PORT ( X : IN STD_LOGIC_VECTOR(1 TO n) ;

f : OUT STD_LOGIC ) ;
END NANDn ;

ARCHITECTURE Behavior OF NANDn IS
BEGIN

PROCESS ( X )
VARIABLE Tmp : STD_LOGIC ;

BEGIN
Tmp := X(1) ;
AND_bits: FOR i IN 2 TO n LOOP

Tmp := Tmp AND X(i) ;
END LOOP AND_bits ;
f <= NOT Tmp ;

END PROCESS ;
END Behavior ;

Figure A.26 Using a variable to describe an n-input NAND gate.

Figure A.28 shows one way to describe then-input NAND gate using signals. Here
Tmpis defined as ann-bit signal, which is set to containn 1s using the (OTHERS => ’1’)
construct. The conditional signal assignment specifies thatf is 0 only if all bits in the input
X are 1, thus describing the NAND operation.

A final example of variables used in a sequential circuit is given in section A.10.8. In
general, using both variables and signals in VHDL code can lead to confusion because they
imply different semantics. Since variables do not necessarily represent wires in a circuit,
the meaning of code that uses variables is sometimes ill defined. To avoid confusion, in
this book we use variables only for the loop indices in FOR GENERATE and FOR LOOP
statements. Except for similar purposes, the reader should avoid using variables because
they are not needed for describing logic circuits.

A.10 Sequential Circuits

Although combinational circuits can be described using either concurrent or sequential
assignment statements, sequential circuits can be described only with sequential assignment
statements. We now give some representative examples of sequential circuits.
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY NANDn IS
GENERIC ( n : INTEGER := 4 ) ;
PORT ( X : IN STD_LOGIC_VECTOR(1 TO n) ;

f : OUT STD_LOGIC ) ;
END NANDn ;

ARCHITECTURE Behavior OF NANDn IS
SIGNAL Tmp : STD_LOGIC ;

BEGIN
PROCESS ( X )
BEGIN

Tmp<= X(1) ;
AND_bits: FOR i IN 2 TO n LOOP

Tmp<= Tmp AND X(i) ;
END LOOP AND_bits ;
f <= NOT Tmp ;

END PROCESS ;
END Behavior ;

Figure A.27 The code from Figure A.26 using a signal.

A.10.1 A Gated D Latch

Figure A.29 gives the code for a gated D latch. The process sensitivity list includes both
the latch’s data input,D, and clock,clk. Hence whenever a change occurs in the value of
eitherD or clk, the process becomes active. The IF statement specifies that Q should be set
to the value ofD whenever the clock is 1. There is no ELSE clause in the IF statement. As
we explained for Figure A.22, this implies that Q should retain its present value when the
IF condition is not met.

A.10.2 D Flip-Flop

Figure A.30 gives a process that is slightly different from the one in Figure A.29. The
sensitivity list includes only theClocksignal, which means that the process is active only
when the value ofClockchanges. The condition in the IF statement looks unusual. The
syntax Clock’EVENT represents achangein the value of the clock signal. In VHDL jargon
’EVENT is called anattribute, and combining ’EVENT with a signal name, such asClock,
yields a logical condition. The combination in the IF statement of the two conditions
Clock’EVENT and Clock = ’1’ specifies that Q should be assigned the value ofD when
“a change occurs in the value ofClock, andClock is now 1”. This describes a low-to-high
transition of the clock signal; hence the code describes a positive-edge-triggered D flip-flop.
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY NANDn IS
GENERIC ( n : INTEGER := 4 ) ;
PORT ( X : IN STD_LOGIC_VECTOR(1 TO n) ;

f : OUT STD_LOGIC ) ;
END NANDn ;

ARCHITECTURE Behavior OF NANDn IS
SIGNAL Tmp : STD_LOGIC_VECTOR(1 TO n) ;

BEGIN
Tmp<= (OTHERS => ’1’) ;
f <= ’0’ WHEN X = Tmp ELSE ’1’ ;

END Behavior ;

Figure A.28 Using a signal to describe an n-input NAND gate.

The std_logic_1164package defines the two functions namedrising_edgeand
falling_edge. They can be used as a short-form notation for the condition that checks for
the occurrence of a clock edge. In Figure A.30 we could replace the line “IF Clock’EVENT
AND Clock = ’1’ THEN” with the equivalent line “IF rising_edge(Clock) THEN”. We do
not userising_edgeor falling_edgein this book; they are mentioned for completeness.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY latch IS
PORT ( D, clk : IN STD_LOGIC ;

Q : OUT STD_LOGIC ) ;
END latch ;

ARCHITECTURE Behavior OF latch IS
BEGIN

PROCESS ( D, clk )
BEGIN

IF clk = ’1’ THEN
Q<= D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure A.29 A gated D Latch.
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY flipflop IS
PORT ( D, Clock : IN STD_LOGIC ;

Q : OUT STD_LOGIC ) ;
END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

PROCESS ( Clock )
BEGIN

IF Clock’EVENT AND Clock = ’1’ THEN
Q<= D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure A.30 D flip-flop.

A.10.3 Using a WAIT UNTIL Statement

The process in Figure A.31 uses a different syntax to describe a D flip-flop. Synchronization
with the clock edge is specified using the statement “WAIT UNTIL Clock = ’1’ ;”. This
statement should be read as “wait for the next positive-edge of the clock signal.” A process
that uses a WAIT UNTIL statement is a special case because the sensitivity list is omitted.
Use of this WAIT UNTIL statement implicitly specifies that the sensitivity list includes
only Clock. For our purposes, which is using VHDL for synthesis of circuits, a process can
include a WAIT UNTIL statement only if it is the first statement in the process.

A.10.4 A Flip-Flop with Asynchronous Reset

Figure A.32 gives a process that is similar to the one in Figure A.30. It describes a D
flip-flop with an asynchronous reset, or clear, input. The reset signal has the nameResetn.
WhenResetn= 0, the flip-flop output Q is set to 0. Appending the lettern to a signal name
is a widely used convention to denote an active-low signal.

A.10.5 Synchronous Reset

Figure A.33 shows how a flip-flop with a synchronous reset input can be described.
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY flipflop IS
PORT ( D, Clock : IN STD_LOGIC ;

Q : OUT STD_LOGIC ) ;
END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL Clock = ’1’ ;
Q<= D ;

END PROCESS ;
END Behavior ;

Figure A.31 Equivalent code to Figure A.30, using a WAIT UNTIL
statement.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY flipflop IS
PORT ( D, Resetn, Clock : IN STD_LOGIC ;

Q : OUT STD_LOGIC ) ;
END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

PROCESS ( Resetn, Clock )
BEGIN

IF Resetn = ’0’ THEN
Q<= ’0’ ;

ELSIF Clock’EVENT AND Clock = ’1’ THEN
Q<= D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure A.32 D flip-flop with asynchronous reset.
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A.10.6 Instantiating a Flip-Flop from a Library

Because flip-flops are widely used in logic circuits, most CAD systems provide an assort-
ment of flip-flop components that can be instantiated in VHDL code. An example of this
is provided in Figure A.34. It uses a package namedmaxplus2in the library calledaltera.
The maxplus2 package is part of the MAX+plusII system and includes many types of basic
circuit elements. Figure A.34 instantiates the component nameddff, which is a D flip-flop
declared in themaxplus2package. The documentation provided in MAX+plusII specifies
that thedff component has active-low asynchronous reset and preset inputs.

A.10.7 Registers

One possible approach for describing a multibit register is to create an entity that instantiates
multiple flip-flops. A more convenient method is illustrated in Figure A.35. It gives the
same code shown in Figure A.32 but using the four-bit STD_LOGIC_VECTOR inputD
and the four-bit output Q. The code describes a four-bit register with asynchronous clear.

Figure A.36 gives the code for an entity namedregn. It shows how the code in Figure
A.35 can be extended to represent ann-bit register. The number of flip-flops is set by the
generic parametern.

The code in Figure A.37 shows how an enable input can be added to then-bit register
from Figure A.36. When the active clock edge occurs, the flip-flops in the register cannot

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY flipflop IS
PORT ( D, Resetn, Clock : IN STD_LOGIC ;

Q : OUT STD_LOGIC ) ;
END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL Clock = ’1’ ;
IF Resetn = ’0’ THEN

Q<= ’0’ ;
ELSE

Q<= D ;
END IF ;

END PROCESS ;
END Behavior ;

Figure A.33 D flip-flop with synchronous reset.
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
LIBRARY altera ;
USE altera.maxplus2.all ;

ENTITY flipflop IS
PORT ( D, Clock : IN STD_LOGIC ;

Resetn, Presetn : IN STD_LOGIC ;
Q : OUT STD_LOGIC ) ;

END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

Dff_instance: Dff PORT MAP (
D, Clock, Resetn, Presetn, Q ) ;

END Behavior ;

Figure A.34 Instantiating a D flip-flop component.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY reg4 IS
PORT ( D : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

Resetn, Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ) ;

END reg4 ;

ARCHITECTURE Behavior OF reg4 IS
BEGIN

PROCESS ( Resetn, Clock )
BEGIN

IF Resetn = ’0’ THEN
Q<= "0000" ;

ELSIF Clock’EVENT AND Clock = ’1’ THEN
Q<= D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure A.35 Code for a four-bit register with asynchronous clear.
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY regn IS
GENERIC ( n : INTEGER := 4 ) ;
PORT ( D : IN STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;

Resetn, Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR(n−1 DOWNTO 0) ) ;

END regn ;

ARCHITECTURE Behavior OF regn IS
BEGIN

PROCESS ( Resetn, Clock )
BEGIN

IF Resetn = ’0’ THEN
Q<= (OTHERS => ’0’) ;

ELSIF Clock’EVENT AND Clock = ’1’ THEN
Q<= D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure A.36 Code for an n-bit register with asynchronous clear.

change their stored values if the enableE is 0. If E = 1, the register responds to the active
clock edge in the normal way.

A.10.8 Shift Registers

An example of code that defines a four-bit shift register is shown in Figure A.38. The lines
of code are numbered for ease of reference. The shift register has a serial input,w, and
parallel outputs, Q. The right-most bit in the register is Q(4), and the left-most bit is Q(1);
shifting is performed in the right-to-left direction. The architecture declares the signalSreg,
which is used to describe the shift operation. All assignments toSregare synchronized to
the clock edge by the IF condition; henceSregrepresents the outputs of flip-flops. The
statement in line 13 specifies thatSreg(4) is assigned the value ofw. As we explained
previously, this assignment does not take effect immediately but is scheduled to occur at the
end of the process. In line 14 the current value ofSreg(4), before it is shifted as a result of
line 13, is assigned toSreg(3). Lines 15 and 16 complete the shift operation. They assign
the current values ofSreg(3) andSreg(2), before they are changed as a result of lines 14
and 15, toSreg(2) andSreg(1), respectively. Finally,Sregis assigned to the Q outputs.

The key point that has to be appreciated in the code in Figure A.38 is that the assignment
statements in lines 13 to 16 do not take effect until the end of the process. Hence all flip-
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY regne IS
GENERIC ( n : INTEGER := 4 ) ;
PORT ( D : IN STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;

Resetn : IN STD_LOGIC ;
E, Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR(n−1 DOWNTO 0) ) ;

END regne ;

ARCHITECTURE Behavior OF regne IS
BEGIN

PROCESS ( Resetn, Clock )
BEGIN

IF Resetn = ’0’ THEN
Q<= (OTHERS => ’0’) ;

ELSIF Clock’EVENT AND Clock = ’1’ THEN
IF E = ’1’ THEN

Q<= D ;
END IF ;

END IF ;
END PROCESS ;

END Behavior ;

Figure A.37 VHDL code for an n-bit register with an enable input.

flops change their values at the same time, as required in the shift register. We could write
the statements in lines 13 to 16 in any order without changing the meaning of the code.

In section A.9.7 we introduced variables and showed how they differ from signals. As
another example of the semantics involved using variables, Figure A.39 gives the code from
Figure A.38 but withSregdeclared as a variable, instead of as a signal. The statement in
line 13 assigns the value ofw to Sreg(4). SinceSregis a variable, the assignment takes
effect immediately. In line 14 the value ofSreg(4), which has already been changed tow,
is assigned toSreg(3). Hence line 14 results inSreg(3) = w. Similarly, lines 15 and 16
setSreg(2) andSreg(1) to the value ofw. The code does not describe the desired shift
register, but rather loads all flip-flops with the value on the inputw.

For the code in Figure A.39 to correctly describe a shift register, the ordering of lines
13 to 16 has to be reversed. Then the first assignment setsSreg(1) to the value ofSreg(2),
the second setsSreg(2) to the value ofSreg(3), and so on. Each successive assignment
is not affected by the one that precedes it; hence the semantics of using variables does not
cause a problem. As we said in section A.9.7, it can be confusing to use both signals and
variables at the same time because they imply different semantics.
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1 LIBRARY ieee ;
2 USE ieee.std_logic_1164.all ;

3 ENTITY shift4 IS
4 PORT ( w, Clock : IN STD_LOGIC ;
5 Q : OUT STD_LOGIC_VECTOR(1 TO 4) ) ;
6 END shift4 ;

7 ARCHITECTURE Behavior OF shift4 IS
8 SIGNAL Sreg : STD_LOGIC_VECTOR(1 TO 4) ;
9 BEGIN
10 PROCESS ( Clock )
11 BEGIN
12 IF Clock’EVENT AND Clock = ’1’ THEN
13 Sreg(4)<= w ;
14 Sreg(3)<= Sreg(4) ;
15 Sreg(2)<= Sreg(3) ;
16 Sreg(1)<= Sreg(2) ;
17 END IF ;
18 END PROCESS ;
19 Q<= Sreg ;
20 END Behavior ;

Figure A.38 Code for a four-bit shift register.

A.10.9 Counters

Figure A.40 shows the code for a four-bit counter with an asynchronous reset input. The
counter also has an enable input. On the positive clock edge, if the enableE is 1, the
count is incremented. IfE = 0, the counter holds its current value. Because counters are
commonly needed in logic circuits, most CAD systems provide a selection of counters that
can be instantiated in a design. For example, MAX+plusII provides the counter defined by
the LPM standard, which is a variable-width counter with options for enabling the counter,
resetting the count to 0, and presetting the count to a specific number.

A.10.10 Using Subcircuits with GENERIC Parameters

We have shown several examples of VHDL entities that include generic parameters. When
these subcircuits are used as components in other code, the generic parameters can be
set to whatever values are needed. To give an example of component instantiation using
generics, consider the circuit shown in Figure A.41. The circuit adds the binary number
represented by thek-bit input X to itself a number of times. Such a circuit is often called
anaccumulator. To store the result of each addition operation, the circuit includes ak-bit
register. The register has an asynchronous reset input,Resetn. It also has an enable input,



April 26, 1999 11:53 g02-appa Sheet number 42 Page number 726 black

726 A P P E N D I X A • VHDL Reference

1 LIBRARY ieee ;
2 USE ieee.std_logic_1164.all ;

3 ENTITY shift4 IS
4 PORT ( w, Clock : IN STD_LOGIC ;
5 Q : OUT STD_LOGIC_VECTOR(1 TO 4) ) ;
6 END shift4 ;

7 ARCHITECTURE Behavior OF shift4 IS
8 BEGIN
9 PROCESS ( Clock )
10 VARIABLE Sreg : STD_LOGIC_VECTOR(1 TO 4) ;
11 BEGIN
12 IF Clock’EVENT AND Clock = ’1’ THEN
13 Sreg(4) := w ;
14 Sreg(3) := Sreg(4) ;
15 Sreg(2) := Sreg(3) ;
16 Sreg(1) := Sreg(2) ;
17 END IF ;
18 Q<= Sreg ;
19 END PROCESS ;
20 END Behavior ;

Figure A.39 The code from Figure A.38, using a variable.

E, which is controlled by a four-bit counter. The counter has an asynchronous clear input
and a count enable input. The circuit operates by first clearing all bits in the register and
counter to 0. Then in each clock cycle, the counter is incremented, and the sum outputs
from the adder are stored in the register. When the counter reaches the value 1111, the
enable inputs on both the register and counter are set to 0 by the NAND gate. Hence the
circuit remains in this state until it is reset again. The final value stored in the register is
equal to 15X.

We can represent the accumulator circuit using several subcircuits described in this
appendix: addern(Figure A.15),NANDn (Figure A.28),regne, andcount4. We placed
the component declaration statements for all of these subcircuits in one package, named
components, which is shown in Figure A.42.

Complete code for the accumulator is given in Figure A.43. It uses the generic pa-
rameterk to represent the number of bits in the inputX. Using this parameter in the code
makes it easy to change the bit-width at a later time if desired. The architecture defines the
signalSumto represent the outputs of the adder; for simplicity, we ignore the possibility of
arithmetic overflow and assume that the sum can be represented usingk bits. The four-bit
signalC represents the outputs from the counter. TheStopsignal is connected to the enable
inputs on the register and counter.

The statement labeledadderinstantiates theaddernsubcircuit. The GENERIC MAP
keywords are used to specify the value of the adder’s generic parameter,n. The syntax
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_unsigned.all ;

ENTITY count4 IS
PORT ( Resetn : IN STD_LOGIC ;

E, Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR (3 DOWNTO 0) ) ;

END count4 ;

ARCHITECTURE Behavior OF count4 IS
SIGNAL Count : STD_LOGIC_VECTOR (3 DOWNTO 0) ;

BEGIN
PROCESS ( Clock, Resetn )
BEGIN

IF Resetn = ’0’ THEN
Count<= "0000" ;

ELSIF (Clock’EVENT AND Clock = ’1’) THEN
IF E = ’1’ THEN

Count<= Count + 1 ;
END IF ;

END IF ;
END PROCESS ;
Q<= Count ;

END Behavior ;

Figure A.40 An example of a counter.

( n => k ) sets the number of bits in the adder tok. We do not need the carry-in port on
the adder, but a signal must be connected to it. The signalZero_bit, which is set to ’0’ in
the code, is used as a placeholder for the carry-in port (the VHDL syntax does not permit
a constant value, such as ’1’, to be associated directly with a port; hence a signal must be
defined for this purpose). Thek-bit data inputs to the adder areX and the output of the
register, which is namedResult. The sum output from the adder is namedSum, and the
carry-out, which is not used in the circuit, is namedCout.

The regnesubcircuit is instantiated in the statement labeledreg. GENERIC MAP is
used to set the number of bits in the register tok. Thek-bit register input is provided by the
Sumoutput from the adder. The register’s output is namedResult; this signal represents the
output of the accumulator circuit. It has the mode BUFFER in the entity declaration. This
is required in the VHDL syntax for the signal to be connected to a port on an instantiated
component.

Thecount4andNANDncomponents are instantiated in the statements labeledCounter
andNANDgate. We do not have to use the GENERIC MAP keyword forNANDn, because
the default value of its generic parameter is 4, which is the value needed in this application.
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Figure A.41 The accumulator circuit.

A.10.11 A Moore-Type Finite State Machine

Figure A.44 shows the state diagram of a simple Moore machine. The code for this machine
is shown in Figure A.45. The signal namedy represents the state of the machine. It is
declared with an enumerated type,State_type, that has the three possible values A, B, and C.
When the code is compiled, the VHDL compiler automatically performs a state assignment
to select appropriate bit patterns for the three states. The behavior of the machine is defined
by the process with the sensitive list that comprises the reset and clock signals.

The VHDL code includes an asynchronous reset input that puts the machine in state
A. The state table for the machine is defined using a CASE statement. Each WHEN clause
corresponds to a present state of the machine, and the IF statement inside the WHEN clause
specifies the next state to be reached after the next positive edge of the clock signal. Since
the machine is of the Moore type, the outputz can be defined as a separate concurrent
assignment statement that depends only on the present state of the machine. Alternatively,
the appropriate value forz could have been specified within each WHEN clause of the
CASE statement.

An alternative way to describe a Moore-type finite state machine is given in the archi-
tecture in Figure A.46. Two signals are used to describe how the machine moves from one
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

PACKAGE components IS

COMPONENT addern - - n-bit adder
GENERIC ( n : INTEGER := 4 ) ;
PORT ( Cin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;
Cout : OUT STD_LOGIC ) ;

END COMPONENT ;

COMPONENT regne - - n-bit register with enable
GENERIC ( n : INTEGER := 4 ) ;
PORT ( D : IN STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;

Resetn : IN STD_LOGIC ;
E, Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR(n−1 DOWNTO 0) ) ;

END COMPONENT ;

COMPONENT count4 - - 4-bit counter with enable
PORT ( Resetn : IN STD_LOGIC ;

E, Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR (3 DOWNTO 0) ) ;

END COMPONENT ;

COMPONENT NANDn - - n-bit AND gate
GENERIC ( n : INTEGER := 4 ) ;
PORT ( X : IN STD_LOGIC_VECTOR(1 TO n) ;

f : OUT STD_LOGIC ) ;
END COMPONENT ;

END components ;

Figure A.42 Component declarations for the accumulator circuit.

state to another state. The signaly_presentrepresents the outputs of the state flip-flops,
and the signaly_nextrepresents the inputs to the flip-flops. The code has two processes.
The top process describes a combinational circuit. It uses a CASE statement to specify the
values thaty_nextshould have for each value ofy_present. The other process represents
a sequential circuit, which specifies thaty_presentis assigned the value ofy_nexton the
positive clock edge. The process also specifies thaty_presentshould take the valueA when
Resetnis 0, which provides the asynchronous reset.
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE work.components.all ;

ENTITY accum IS
GENERIC ( k : INTEGER := 8 ) ;
PORT ( Resetn, Clock : IN STD_LOGIC ;

X : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
Result : BUFFER STD_LOGIC_VECTOR(k-1 DOWNTO 0) ) ;

END accum ;

ARCHITECTURE Structure OF accum IS
SIGNAL Sum : STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
SIGNAL C : STD_LOGIC_VECTOR(3 DOWNTO 0) ;
SIGNAL Zero_bit, Cout, Stop : STD_LOGIC ;

BEGIN
Zero_bit<= ’0’ ;
adder: addern

GENERIC MAP ( n => k )
PORT MAP ( Zero_bit, X, Result, Sum, Cout ) ;

reg: regne
GENERIC MAP ( n => k )
PORT MAP ( Sum, Resetn, Stop, Clock, Result ) ;

Counter: count4
PORT MAP ( Clock, Resetn, Stop, C ) ;

NANDgate: NANDn
PORT MAP ( C, Stop ) ;

END Structure ;

Figure A.43 Code for the accumulator circuit.

Although Figures A.45 and A.46 provide functionally equivalent code, when using the
MAX+plusII CAD system, the code in Figure A.45 is preferable. MAX+plusII recognizes
the code in Figure A.45 as a finite state machine. It reports all results of synthesizing or
simulating the code in terms of the states of the machine. For example, when using the
simulator CAD tool, the value of they signal is reported using the names A, B, and C. If
the code in Figure A.46 is used instead, then MAX+plusII reports only the logic values of
the signals. For example, the value of they_presentsignal is shown by the simulator as 00,
or 01, and so on.
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Figure A.44 State diagram of a simple Moore-type FSM.

A.10.12 A Mealy-Type Finite State Machine

A state diagram for a simple Mealy machine is shown in Figure A.47. The corresponding
code is given in Figure A.48. The code is the same as in Figure A.45 except that the output
z is specified using a separate CASE statement. The CASE statement states that when the
FSM is in stateA, zshould be 0, but when in stateB, zshould take the value ofw. This CASE
statement properly describes the logic needed forz. However, it is not obvious why we
have used a second CASE statement in the code, rather than specify the value ofz inside the
CASE statement that defines the state table for the machine. This approach would not work
properly because the CASE statement for the state table is nested inside the IF statement
that waits for a clock edge to occur. Hence if we placed the code forz inside this CASE
statement, then the value ofz could change only as a result of a clock edge. This does not
meet the requirements of the Mealy-type FSM, because the value ofzdepends not only on
the state of the machine but also on the value of the inputw.

A.10.13 Manual State Assignment for a Finite State Machine

Instead of having the VHDL compiler determine the state assignment, it is possible to
encode the state bits manually. One way to do this in the MAX+plusII system is to use
an ATTRIBUTE specification. An attribute provides information about a VHDL element,
such as a type. An example showing how an attribute is used for a finite state machine is
given in Figure A.49. The code represents the Moore machine from Figure A.45 with the
addition of two ATTRIBUTE specifications. The attributes specify that the state encoding
should be 00 for state A, 01 for state B, and 11 for state C.
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY moore IS
PORT ( Clock : IN STD_LOGIC ;

w : IN STD_LOGIC ;
Resetn : IN STD_LOGIC ;
z : OUT STD_LOGIC ) ;

END moore ;

ARCHITECTURE Behavior OF moore IS
TYPE State_type IS (A, B, C) ;
SIGNAL y : State_type ;

BEGIN
PROCESS ( Resetn, Clock )
BEGIN

IF Resetn = ’0’ THEN
y <= A ;

ELSIF (Clock’EVENT AND Clock = ’1’) THEN
CASE y IS

WHEN A =>
IF w = ’0’ THEN

y <= A ;
ELSE

y <= B ;
END IF ;

WHEN B =>
IF w = ’0’ THEN

y <= A ;
ELSE

y <= C ;
END IF ;

WHEN C =>
IF w = ’0’ THEN

y <= A ;
ELSE

y <= C ;
END IF ;

END CASE ;
END IF ;

END PROCESS ;

z<= ’1’ WHEN y = C ELSE ’0’ ;
END Behavior ;

Figure A.45 An example of a Moore-type finite state machine.
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ARCHITECTURE Behavior OF moore IS
TYPE State_type IS (A, B, C) ;
SIGNAL y_present, y_next : State_type ;

BEGIN
PROCESS ( w, y_present )
BEGIN

CASE y_present IS
WHEN A =>

IF w = ’0’ THEN
y_next<= A ;

ELSE
y_next<= B ;

END IF ;
WHEN B =>

IF w = ’0’ THEN
y_next<= A ;

ELSE
y_next<= C ;

END IF ;
WHEN C =>

IF w = ’0’ THEN
y_next<= A ;

ELSE
y_next<= C ;

END IF ;
END CASE ;

END PROCESS ;

PROCESS ( Clock, Resetn )
BEGIN

IF Resetn = ’0’ THEN
y_present<= A ;

ELSIF (Clock’EVENT AND Clock = ’1’) THEN
y_present<= y_next ;

END IF ;
END PROCESS ;

z<= ’1’ WHEN y_present = C ELSE ’0’ ;
END Behavior ;

Figure A.46 Code equivalent to Figure A.45, using two processes.
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Figure A.47 State diagram of a Mealy-type FSM.

A.11 Common Errors in VHDL Code

This section lists some common errors that our students have made when writing VHDL
code.

ENTITY and ARCHITECTURE Names
The name used in an ENTITY declaration and the corresponding ARCHITECTURE

must be identical. The code

ENTITY adder IS
...

END adder ;

ARCHITECTURE Structure OF adder4 IS
...

END Structure ;

is erroneous because the ENTITY declaration uses the nameadder, whereas the architecture
uses the nameadder4.

Missing Semicolon
Every VHDL statement must end with a semicolon.

Use of Quotes
Single quotes are used for single-bit data, double quotes for multibit data, and no quotes

are used for integer data. Examples are given in section A.2.

Combinational versus Sequential Statements
Combinational statements include simple signal assignments, selected signal assign-

ments, and generate statements. Simple signal assignments can be used either outside or
inside a PROCESS statement. The other types of combinational statements can be used
only outside a PROCESS statement.
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Sequential statements include IF, CASE, and LOOP statements. Each of these types
of statements can be used only inside a process statement.

Component Instantiation
The following statement contains two errors

control: shiftr GENERIC MAP ( K => 3 ) ;
PORT MAP ( ’1’, Clock, w, Q ) ;

There should be no semicolon at the end of the first line, because the two lines represent a
single VHDL statement. Also, it is illegal to associate a constant value (’1’) with a port on
a component. The following code shows how the two errors can be fixed

SIGNAL High ;
...

High<= ’1’ ;
control: shiftr GENERIC MAP ( K => 3 )

PORT MAP ( High, Clock, w, Q ) ;

Label, Signal, and Variable Names
It is illegal to use any VHDL keyword as a label, signal, or variable name. For example,

it is illegal to name a signalIn or Out. Also, it is illegal to use the same name multiple
times for any label, signal, or variable in a given VHDL design. A common error is to use
the same name for a signal and a variable used as the index in a generate or loop statement.
For instance, if the code uses the generate statement

Generate_label:
FOR i IN 0 TO 3 GENERATE

bit: fulladd PORT MAP ( C(i), X(i), Y(i), S(i), C(i+1) ) ;
END GENERATE ;

then it is illegal to define a signal namedi (or I , because VHDL does not distinguish between
lower and uppercase letters).

Implied Memory
As shown in section A.10, implied memory is used to describe storage elements. Care

must be taken to avoid unintentional implied memory. The code

IF LA = ’1’ THEN
EA <= ’1’ ;

END IF ;

results in implied memory for theEA signal. If this is not desired, then the code can be
fixed by writing
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LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mealy IS
PORT ( Clock, Resetn : IN STD_LOGIC ;

w : IN STD_LOGIC ;
z : OUT STD_LOGIC ) ;

END mealy ;

ARCHITECTURE Behavior OF mealy IS
TYPE State_type IS (A, B) ;
SIGNAL y : State_type ;

BEGIN
PROCESS ( Resetn, Clock )
BEGIN

IF Resetn = ’0’ THEN
y <= A ;

ELSIF (Clock’EVENT AND Clock = ’1’) THEN
CASE y IS

WHEN A =>
IF w = ’0’ THEN y <= A ;
ELSE y<= B ;
END IF ;

WHEN B =>
IF w = ’0’ THEN y <= A ;
ELSE y<= B ;
END IF ;

END CASE ;
END IF ;

END PROCESS ;

PROCESS ( y, w )
BEGIN

CASE y IS
WHEN A =>

z<= ’0’ ;
WHEN B =>

z<= w ;
END CASE ;

END PROCESS ;
END Behavior ;

Figure A.48 An example of a Mealy-type machine.
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ARCHITECTURE Behavior OF moore IS
TYPE State_type IS (A, B, C) ;
ATTRIBUTE ENUM_ENCODING : STRING ;
ATTRIBUTE ENUM_ENCODING OF State_type : TYPE IS "00 01 11" ;
SIGNAL y_present, y_next : State_type ;

BEGIN
· · · etc.

Figure A.49 An example of specifying the state assignment manually.

IF LA = ’1’ THEN
EA <= ’1’ ;

ELSE
EA <= ’0’ ;

END IF ;

Implied memory also applies to CASE statements. The statement

CASE y IS
WHEN S1 =>

EA <= ’1’ ;
WHEN S2 =>

EB<= ’1’ ;
END CASE ;

does not specify the value of theEAsignal wheny is not equal toS1, and it does not specify
the value ofEB wheny is not equal toS2. To avoid having implied memory for bothEA
andEB, these signals should be assigned default values, as in the code

EA <= ’0’ ; EB <= ’0’ ;
CASE y IS

WHEN S1 =>
EA <= ’1’ ;

WHEN S2 =>
EB<= ’1’ ;

END CASE ;

In general, the designer should attempt to write VHDL code that contains as few errors
as possible because finding the source of an error can often be difficult.
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A.12 Concluding Remarks

This appendix describes all the important VHDL constructs that are useful for the synthesis
of logic circuits. As mentioned earlier, we do not discuss any features of VHDL that are
useful only for simulation of circuits, or for other purposes. A reader who wishes to learn
more about using VHDL can refer to specialized books [1–7].
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MAX+plusII is one of the most sophisticated and easiest to use CAD systems available on
the market. In this tutorial we introduce the design of logic circuits using MAX+plusII.
Step-by-step instructions are presented for performing design entry with three methods:
using schematic capture, writing VHDL code, and using a truth table. The tutorial also
illustrates functional simulation.

B.1 Introduction

This tutorial assumes that the reader has access to a computer on which MAX+plusII is
installed. Instructions for installing the copy of MAX+plusII provided with the book are
included with the CD-ROM. The MAX+plusII software will run on several different types
of computer systems. For this tutorial a computer running a Microsoft operating systems
(Windows95, Windows98, or WindowsNT) is assumed. Although MAX+plusII operates
similarly on all of the supported types of computers, there are some minor differences.
A reader who is not using a Microsoft Windows operating system may experience some
slight discrepancies from this tutorial. Examples of potential differences are the locations
of files in the computer’s file system and the exact appearance of windows displayed by the
software. All such discrepancies are minor and will not affect the reader’s ability to follow
the tutorial.

This tutorial does not describe how to use the operating system provided on the com-
puter. We assume that the reader already knows how to perform actions such as running
programs, operating a mouse, moving, resizing, minimizing and maximizing windows, cre-
ating directories (folders) and files, and the like. A reader who is not familiar with these
procedures will need to learn how to use the computer’s operating system before proceeding.

B.1.1 Getting Started

Each logic circuit, or subcircuit, being designed in MAX+plusII is called aproject. The
software works on one project at a time and keeps all information for that project in a single
directory in the file system (we use the traditional termdirectory for a location in the file
system, but in Microsoft Windows the termfolder is used). To begin a new logic circuit
design, the first step is to create a directory to hold its files. As part of the installation of the
MAX+plusII software, a few sample projects are placed into a directory called\max2work.
To hold the design files for this tutorial, we created the subdirectory\max2work\tutorial1.
The location and name of the directory is not important; hence the reader may use any valid
directory.

To create a directory to work in, use the normal utilities provided by the computer’s
operating system. MAX+plusII is not involved in this step. After the directory has been
created, start the MAX+plusII software. You should see a window similar to the one in
Figure B.1. This window is called theMAX+plusII Manager. It provides access to all the
features of MAX+plusII, which the user selects with the computer mouse.

Most of the commands provided by MAX+plusII are accessed by using a set of menus
that are located in the Manager window below the title bar. For example, in Figure B.1
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Figure B.1 The MAX+plusII Manager window.

clicking the left mouse button on the menu namedFile opens the menu shown in Figure B.2.
Clicking the left mouse button on the entryExit MAX+plusII Alt+F4 exits from MAX+plusII.
In general, whenever the mouse is used to select something, theleft button is used. Hence
we will not normally specify which button to use. In the few cases when it is necessary to use
theright mouse button, it will be specified explicitly. We should note that theAlt+F4 part of

Figure B.2 The File menu in the Manager window.



April 27, 1999 12:26 g02-appb Sheet number 4 Page number 742 black

742 A P P E N D I X B • Tutorial 1

the menu item indicates a keyboard shortcut; instead of using the mouse, the command can
alternatively be invoked by the holding down the Alt key on the keyboard and pressing the
F4 function key. Keyboard shortcuts are available for a few of the MAX+plusII commands,
but commands are usually invoked using the mouse. For some commands it is necessary
to access two or more menus in sequence. We use the conventionMenu1 | Menu2 | Item
to indicate that to select the desired command the user should first click the left mouse
button onMenu1, then within this menu click onMenu2, and then withinMenu2 click on
Item. For example,File | Exit MAX+plusII describes how to use the mouse to exit from the
MAX+plusII system.

The MAX+plusII system includes 11 main software modules, calledapplications.
They can be accessed in two different ways. First, all the applications can be invoked via
theMAX+plusII menu in the Manager window, as illustrated in Figure B.3. Second, some
of the applications can be invoked using the small icons that appear below the Manager
title bar. (If no icons are visible under the Manager title bar, selectOptions | Preferences
to open the Preferences dialog box. Then use the mouse to place a check mark beside the
entry forShow Toolbar and clickOK.) To see which applications in Figure B.3 a particular
icon is associated with, place the mouse pointer on top of the icon; the Manager displays a
message near the bottom of the window that gives the name of the application.

The applications introduced in this tutorial include the Graphic Editor, Text Editor,
Waveform Editor, Compiler, Simulator, Message Processor, and Hierarchy Display. The
others are introduced in Tutorial 2.

Figure B.3 The MAX+plus II menu in the Manager window.
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MAX+plusII On-Line Help
MAX+plusII provides comprehensive on-line documentation that answers most of the

questions that may arise when using the software. The documentation is accessed from
theHelp menu in the Manager window. To get some idea of the extent of documentation
provided, it is worthwhile for the reader to browse through theHelp menu. For instance,
selectingHelp | MAX+plusII Table of Contents shows all the categories of documentation
available.

The user can quickly search through the Help topics by selectingHelp | Search for
Help on, which opens a dialog box into which keywords can be entered. The available
Help topics that match the keywords are automatically displayed. Two other methods
are provided for quickly finding documentation for specific topics. First, while using any
application, pressing the F1 function key on the keyboard opens a Help display that shows
the commands available for that application. Second, in some instances holding down the
Shift key and pressing the F1 key changes the mouse pointer into ahelppointer. This feature
is available when using the schematic capture tool provided in MAX+plusII. Clicking the
help pointer on any circuit element in a schematic automatically displays any documentation
that is available for that circuit element.

B.2 Design Entry Using Schematic Capture

In Chapter 2 we introduced three types of design entry methods: truth tables, schematic
capture, and VHDL. This section illustrates the process of using the schematic capture tool
provided in MAX+plusII, which is called the Graphic Editor. As a simple example, we will
draw a schematic for the logic functionf = x1x2+x2x3. A circuit diagram forf was shown
in Figure 2.26 and is reproduced as Figure B.4a. The truth table forf is given in Figure B.4b.
Chapter 2 also introduced functional simulation. After creating the schematic, we show
how to use the functional simulator in MAX+plusII to verify the schematic’s functionality.

x3

(a) Circuit (b) Truth table

f

x3

x1

x2

0
0
1
1

0
1
0
1

0
1
0
0

x2 f

0
0
1

0
1
0

0
1
1

1 1 1

0
0
0
0

x1

1
1
1
1

Figure B.4 The logic function of Figure 2.26.
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B.2.1 Specifying the Project Name

As a first step we will specify the name of the design project. In the Manager window select
File | Project | Name to open the pop-up box illustrated in Figure B.5. It is necessary to
specify the location of the directory where MAX+plusII will store any files created for the
project. For this example the directory used is named d:\max2work\tutorial1. The disk
drive designation, d:, is selected using theDrives pull-down menu shown in Figure B.5.
The directory name is selected using the box labeledDirectories. Use the mouse to double-
click on the directory names displayed in the box until the proper directory is selected; the
selected directory appears next to the wordsDirectory is, as illustrated in the figure. In the
box labeledProject Name, typegraphic1as the name for this project and then clickOK.
Observe that the name of the project is displayed in the title bar of the Manager window.

B.2.2 Using the Graphic Editor

The next step is to draw the schematic. In the Manager window selectMAX+plusII |
Graphic Editor. The Graphic Editor window appears inside the Manager window. It may
be helpful to move or resize the Graphic Editor window and to increase the size of the
Manager window to provide more work space. In the screen capture in Figure B.6, the
Graphic Editor window is maximized so that it fills the entire Manager window.

The title bar in Figure B.6 includes some menu names and icons that did not appear
in Figure B.1. This is because the Manager window always indicates the features available
in whatever application is currently being used. A number of icons that are used to invoke
Graphic Editor features also appear along the left edge of the window. To see a description
of the Graphic Editor feature associated with each icon, position the mouse on top of the
icon; a message is displayed near the bottom of the window. Two of the most useful icons

Figure B.5 Specifying the name and working directory for a project.
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Figure B.6 The Graphic Editor display.

are the ones that look like a magnifying glass. These icons are used to see a larger or smaller
view of the schematic.

Naming the Schematic
The schematic being created must be given a name. SelectFile | Save As to open the

pop-up box depicted in Figure B.7. The directory that we chose for the project is already
selected in the pop-up box. The Graphic Editor will create a separate file for the schematic
and store it in the project’s directory. In the box labeledFile Name, typegraphic1.gdf.

Figure B.7 Specifying the name of a schematic.
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You must use exactly this name. The namegraphic1must match the name of the project,
and the filename extensiongdf, which stands forgraphic design file, must be used for all
schematics. ClickOK to return to the Graphic Editor.

Importing Logic-Gate Symbols
The Graphic Editor provides several libraries which contain circuit elements that can be

imported into a schematic. For our simple example we will use a library calledPrimitives,
which contains basic logic gates. To access the library, double-click on the blank space in
the middle of the Graphic Editor display to open the pop-up box in Figure B.8 (another way
to open this box is to selectSymbol | Enter Symbol). The box labeledSymbol Libraries
lists several available libraries, including the Primitives library. To open it, double-click on
the line that ends with the wordprim. A list of the logic gates in the library is automatically
displayed in theSymbol Files box. Double-click on theand2symbol to import it into the
schematic (you can alternatively click onand2and then clickOK). A two-input AND-gate
symbol now appears in the Graphic Editor window.

Any symbol in a schematic can be selected using the mouse. Position the mouse pointer
on top of the AND-gate symbol in the schematic and click the mouse to select it. The symbol
is highlighted in red. To move a symbol, select it and, while continuing to press the mouse
button, drag the mouse to move the symbol. To make it easier to position the graphical
symbols, a grid of guidelines can be displayed in the Graphic Editor window by selecting
Options | Show Guidelines. Spacing between grid lines can be adjusted usingOptions |
Guideline Spacing.

The logic functionf requires a second two-input AND gate, a two-input OR gate, and
a NOT gate. Use the following steps to import them into the schematic.

Figure B.8 Importing a logic gate from the Primitives library.
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Position the mouse pointer over the AND-gate symbol that has already been imported.
Press and hold down the Ctrl keyboard key and click and drag the mouse away from the
AND-gate symbol. The Graphic Editor automatically imports a second instance of the
AND-gate symbol. This shortcut procedure for making a copy of a circuit element is
convenient when you need many instances of the same element in a schematic. Of course,
an alternative approach is to import each instance of the symbol by opening the Primitives
library as described above.

To import the OR-gate symbol, again double-click on a blank space in the Graphic
Editor and then double-click on the Primitives library. In the box labeledSymbol Files,
use the scroll bar to scroll down through the list of gates to find the symbol namedor2.
Import this symbol into the schematic. Next import the NOT gate using the same procedure.
To orient the NOT gate so that it points downward, as depicted in Figure B.4a, select the
NOT-gate symbol and then use the commandEdit | Rotate | 270 to rotate the symbol 270
degrees counterclockwise. The symbols in the schematic can be moved by selecting them
and dragging the mouse, as explained above. More than one symbol can be selected at the
same time by clicking the mouse and dragging an outline around the symbols. The selected
symbols are moved together by clicking on any one of them and moving it. Experiment
with this procedure. Arrange the symbols so that the schematic appears similar to the one
in Figure B.9.

Importing Input and Output Symbols
Now that the logic-gate symbols have been entered, it is necessary to import symbols

to represent the input and output ports of the circuit. Open the Primitives library again.
Click the mouse anywhere in the box labeledSymbol Files and then type the letter “i” to
jump ahead in the list of symbols to those whose names begin withi. This shortcut can be
used in addition to the scroll bars provided on theSymbol Files box. Import the symbol

Figure B.9 A partially completed schematic for the circuit in Figure B.4.
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namedinput into the schematic. Import two additional instances of the input symbol. To
represent the output of the circuit, open the Primitives library and import the symbol named
output. Arrange the symbols to appear as illustrated in Figure B.10.

Assigning Names to Input and Output Symbols
Point to the wordPIN_NAME on the input pin symbol in the upper-left corner of the

schematic and double-click the mouse. The pin name is selected, allowing a new pin name
to be typed. Typex1 as the pin name. Hitting carriage return immediately after typing the
pin name causes the mouse focus to move to the pin directly below the one currently being
named. This method can be used to name any number of pins. Assign the namesx2 andx3
to the middle and bottom input pins, respectively. Finally, assign the namef to the output
pin.

Connecting Nodes with Wires
The next step is to draw lines (wires) to connect the symbols in the schematic together.

Click on the icon that looks like an arrowhead along the left edge of the Manager win-
dow. This icon is called theSelection tool, and it allows the Graphic Editor to change
automatically between the modes of selecting a symbol on the screen or drawing wires to
interconnect symbols. The appropriate mode is chosen depending on where the mouse is
pointing.

Move the mouse pointer on top of thex1 input symbol. The mouse pointer appears
as an arrowhead when pointing anywhere on the symbol except at the right edge. The
arrowhead means that the symbol will be selected if the mouse button is pressed. Move the
mouse to point to the small line, called apinstub, on the right edge of thex1 input symbol.
The mouse pointer changes to a crosshair, which allows a wire to be drawn to connect the

Figure B.10 Input and output symbols added to the schematic in Figure B.9.
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pinstub to another location in the schematic. A connection between two or more pinstubs
in a schematic is called anode. The name derives from electrical terminology, where the
termnoderefers to any number of points in a circuit that are connected together by wires
and thus have the same voltage.

Connect the input symbol forx1 to the AND gate at the top of the schematic as follows.
While the mouse is pointing at the pinstub on thex1 symbol, click and hold the mouse
button. Drag the mouse to the right until the line (wire) that is drawn reaches the pinstub on
the top input of the AND gate; then release the button. The two pinstubs are now connected
and represent a single node in the circuit.

Use the same procedure to draw a wire from the pinstub on thex2 input symbol to
the other input on the AND gate. Then draw a wire from the pinstub on the input of the
NOT gate upward until it reaches the wire connectingx2 to the AND gate. Release the
mouse button and observe that a connecting dot is drawn automatically. The three pinstubs
corresponding to thex2 input symbol, the AND-gate input, and the NOT-gate input now
represent a single node in the circuit. Figure B.11 shows a magnified view of the part of the
schematic that contains the connections drawn so far. To increase or decrease the portion
of the schematic displayed on the screen, use the icons that look like magnifying glasses
on the left side of the Manager window.

To complete the schematic, connect the output of the NOT gate to the lower AND gate
and connect the input symbol forx3 to that AND gate as well. Connect the outputs of the
two AND gates to the OR gate and connect the OR gate to thef output symbol. If any
mistakes are made while connecting the symbols, erroneous wires can be selected with the
mouse and then removed by pressing the Delete key or by selectingEdit | Delete. The
finished schematic is depicted in Figure B.12. Save the schematic usingFile | Save.

Figure B.11 Connecting the symbols in the schematic from Figure B.10.
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Figure B.12 The completed schematic for the circuit in Figure B.4.

Since our example schematic is quite simple, it is easy to draw all the wires in the
circuit without producing a messy diagram. However, in larger schematics some nodes that
have to be connected may be far apart, in which case it is awkward to draw wires between
them. In such cases the nodes are connected by assigning labels to them, instead of drawing
wires. We will illustrate this method of connecting nodes in section D.3.1.

B.2.3 Synthesizing a Circuit from the Schematic

As we explained in section 2.8.2, after a schematic is entered into a CAD system, it is
processed by initial synthesis tools. These tools analyze the schematic and generate a
Boolean equation for each logic function in the circuit. In MAX+plusII the synthesis tools
are controlled by the application program called theCompiler.

Using the Compiler
To open the Compiler window, click the mouse on the Compiler icon (it looks like a

factory with a smoke stack) below the Manager window title bar or selectMAX+plusII |
Compiler.

For this tutorial we will use only the tools that are needed to allow us to perform a
functional simulation of the schematic. To tell the Compiler to use these tools, selectPro-
cessing | Functional SNF Extractor. The Compiler window should appear as shown in
Figure B.13. The window shows three software modules that are invoked in sequence by
the Compiler. The Compiler Netlist Extractor and Database Builder represent the initial
synthesis tools. The module called Functional SNF Extractor creates a file, called asimu-
lator netlist file (SNF), which describes the functionality of the circuit and is used by the
functional simulator.
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Figure B.13 The Compiler display.

Click the mouse on theStart button in the Compiler window. The Compiler indicates
its progress by displaying a red progress bar and by placing an icon under each of the three
software modules as they are executed. When the Compiler is finished, a window should be
displayed that indicates zero warnings and zero errors. ClickOK in this window to return
to the Compiler window.

If the Compiler does not specify zero warnings and zero errors, then at least one mistake
has been made when entering the schematic. In this case the Compiler opens a window
called theMessage Processor, which displays a message concerning each warning or error
generated. An example showing how the Message Processor can be used to quickly locate
and fix errors in a schematic is given in section B.2.5.

To close the Compiler window, use theClose button(it is an X) located in the top-right
corner of its window.

B.2.4 Performing Functional Simulation

Before the schematic can be simulated, it is necessary to create the desired waveforms, called
test vectors, to represent the input signals. For this tutorial we will use the MAX+plusII
Waveform Editor to draw test vectors, but it is also possible to use a text editor to create test
vectors in a plain text (ASCII) file. Documentation pertaining to ASCII test vectors can be
opened by selectingHelp | MAX+plusII Table of Contents. Click onSimulator, then click
onBasic Tools, and finally click onVector File (.vec).

Using the Waveform Editor
Open the Waveform Editor window by selectingMAX+plusII | Waveform Editor.

Because the Waveform Editor has many uses, it is necessary to indicate that we wish to
enter test vectors for simulation purposes. SelectFile | Save As and type (if not already
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there)graphic1.scfin the box labeledFile Name. A file with scf extension stores the
waveforms that will be used as simulation test vectors.

SelectNode | Enter Nodes from SNF to open the pop-up box shown in Figure B.14.
Click on theList button in the upper-right corner of this box to display the names of the nodes
in the current project in the box labeledAvailable Nodes & Groups. Click the mouse on
the namex3 to highlight it. Click on the button labeled => to copyx3 into the box labeled
Selected Nodes & Groups. Use the same procedure to select each of the other signals and
copy them into theSelected Nodes & Groups box. It is also possible to select multiple
nodes at the same time, by dragging the mouse upward or downward inside theAvailable
Nodes & Groups box. ClickOK to return to the Waveform Editor. The nodesx1, x2, x3,
andf are now shown in the waveform display.

We will now specify the logic values to be used for the input signals during functional
simulation. The logic values at the outputf will be generated automatically by the simulator.

SelectFile | End Time to specify the total amount of time for which the circuit will
be simulated. In the box labeledTime, type160nsto set the total simulation time to 160
nanoseconds. This amount of time is rather arbitrary because functional simulation does
not include any timing delays, as discussed in section 2.8.3. The concept ofsimulation time
will become more significant in Tutorial 2 when timing simulation is introduced. ClickOK
to return to the Waveform Editor. SelectView | Fit in Window so that the entire time range
from 0 to 160 ns is visible in the Waveform Editor display. In theOptions menu make
sure thatShow Grid has a check mark next to it so that the Waveform Editor displays light
vertical guidelines in the waveform area of the display. The guidelines provide a visual aid
for positioning the mouse when drawing waveforms. SelectOptions | Grid Size and type
20nsin the box labeledGrid Size. Click the mouse when pointing to any of the guidelines
and observe that a vertical reference line is drawn at that point. We will use the reference
line in Tutorial 2. Figure B.15 shows how the Waveform Editor window should look at this

Figure B.14 Selecting nodes for simulation.
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Figure B.15 The Waveform Editor display.

point. The input waveforms are set to logic value 0, and the output is shown as a hashed-line
pattern that indicates that the logic value has not yet been determined.

To thoroughly test the circuit during simulation, it is desirable to use as many different
values of the input signals as possible. For our small example, there are only eight different
valuations, and so it is easy to include all of them. To make all eight valuations fit in the
160 ns simulation time, the signal valuations have to change every 20 ns. To create the
waveforms for the input signals, do the following.

Activate theWaveform Editingtool by pressing its icon on the left edge of the window.
The icon is shown in the top-left corner of Figure B.16; it looks like two arrows pointing
left and right. Position the mouse pointer over the waveform for inputx3 at the 20 ns grid
line. Press and drag the mouse to the right to highlight the section of thex3 waveform from
20 ns to 40 ns, as illustrated in Figure B.16. The Waveform Editing Tool automatically

Figure B.16 Editing the waveform for x3 from Figure B.15.
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changes the selected portion of the waveform from its present value 0 to the value 1. Next
select the section of the waveform forx3 between 60 ns and 80 ns to set it to 1. Continue
in this manner to set every second 20 ns section ofx3 to 1.

An alternative way to draw waveforms is to use the Selection tool, which is activated
by selecting the icon that looks like an arrowhead along the left edge of the window. Using
the Selection tool, the procedure for drawing a waveform is to first select a section of the
waveform by dragging the mouse over it. The highlighted section can be set to 1 by selecting
Edit | Overwrite | High. The highlighted section can also be changed by using the buttons
labeled 0 or 1 along the left edge of the window.

Use the Waveform Editing tool to set the waveform forx2 to 1 in the range from 40 ns
to 80 ns, as well as from 120 ns to 160 ns. Also, set the waveform forx1 to 1 in the range
from 80 ns to 160 ns. The waveforms drawn, as illustrated in Figure B.17, now include all
eight input valuations. SelectFile | Save to save the waveforms in thegraphic1.scffile.

Performing the Simulation
To open the Simulator window, shown in Figure B.18, click on its icon (it looks like a

computer with a waveform on the screen) or SelectMAX+plusII | Simulator. MAX+plusII
provides both functional simulation and timing simulation. The type of simulation used by
the Simulator application is determined automatically by the settings used in the Compiler
application. The Simulator will perform a functional simulation in this case because we
instructed the Compiler to generate information for functional simulation, as discussed for
Figure B.13.

Observe in Figure B.18 that the Simulator specifies that it will use the file called
graphic1.scfas the simulator input and will perform the simulation for the time range from
0 to 160 ns. Click theStart button to perform the simulation. The Simulator displays a
message indicating that no errors were generated. ClickOK to return to the Simulator
window. The simulator stores the results of the simulation in thegraphic1.scffile. To
view the file, click on theOpen SCF button in the simulator window, which automatically
opens the Waveform Editor window and displays the file. As illustrated in Figure B.19, the
Simulator creates a waveform for the outputf. The reader should verify that the generated
waveform corresponds to the truth table forf given in Figure B.4b. The Waveform Editor
and Simulator windows can now be closed.

Figure B.17 The completed waveforms for x1, x2, and x3.
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Figure B.18 The Simulator display.

B.2.5 Using the Message Processor to Locate and Fix Errors

In the description in section B.2.3 of how the Compiler is used to synthesize a circuit from
the schematic, we said that the Compiler should produce a message stating that no warnings
or errors were generated. In this section we illustrate what happens when there is an error
in the schematic. To insert an error in the schematic created forf , reopen the schematic by
selectingFile |Open to open the pop-up box shown in Figure B.20. In the box labeledShow
in Files List, click onGraphic Editor Files. Then in the box labeledFiles, click on the name

Figure B.19 Functional simulation results for the waveforms in Figure B.17.



April 27, 1999 12:26 g02-appb Sheet number 18 Page number 756 black

756 A P P E N D I X B • Tutorial 1

Figure B.20 The dialog box used to reopen the schematic.

graphic1.gdfto put this name in the box labeledFile Name. Alternatively,graphic1.gdf
can be typed into the box rather than using the mouse to select it from the list of files. Click
OK to open the file inside the Graphic Editor.

Use the mouse to select the wire that connects the output of the OR gate to thef output
symbol. Delete the wire by pressing the Delete key; then save the schematic file. Open
the Compiler window and run the synthesis tools again. The Compiler should produce a
message stating that one warning and one error were found. ClickOK. A window, called
the Message Processor, is automatically opened to display the messages generated by the
Compiler, as illustrated in Figure B.21. If the Message Processor window is obscured
by some other window, selectMAX+plusII | Message Processor to bring the Message
Processor window to the foreground.

The warning message is produced because the OR-gate output is not connected to
any other node in the schematic. The error message states that thef output symbol is

Figure B.21 The Message Processor display.
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not connected to anything. Although it is clear how to fix the error, since we created it
purposely, in general some of the messages displayed by the Compiler when synthesizing
larger circuits may not be obvious. In such cases it is possible to select a message with the
mouse and then click on theHelp on Message button in the Message Processor window;
documentation that explains the message is automatically opened. Experiment with this
feature for both the warning and error messages in Figure B.21.

Another convenient feature of the Message Processor is theLocate button in the lower-
left corner of the window. It can be used to automatically display the section of the schematic
where the error exists. Select the warning message and then click theLocate button. Observe
that the Graphic Editor is automatically displayed with the OR gate highlighted. Next select
the error message in the Message Processor window and then click theLocate button again.
Thef output symbol becomes highlighted in the Graphic Editor.

Use the Graphic Editor to redraw the missing wire between the OR-gate output and
the f output symbol. Save the schematic and then use the Compiler to run the synthesis
tools to see that the error is fixed. We have now completed our introduction to design using
schematic capture. If any application windows are still open, close them to return to the
Manager window.

B.3 Design Entry Using VHDL

This section illustrates the process of using MAX+plusII to implement logic functions by
writing VHDL code. We will implement the functionf from section B.2, where we used
schematic capture. After typing the VHDL code, it will be simulated with the Functional
Simulator.

B.3.1 Specifying the Project Name

We need a new project name for the VHDL design. In the Manager window selectFile |
Project | Name. We will store the design files for the project in the same directory that
we used for the schematic capture design created earlier. In the box labeledProject Name,
typeexample1as the name for the project and then clickOK. The name of the project is
displayed in the title bar of the Manager window.

B.3.2 Using the Text Editor

MAX+plusII provides a text editor that can be used for typing VHDL code. Open the Text
Editor window by selectingMAX+plusII | Text Editor. The first step is to specify a name for
the file that will be created. SelectFile | Save As to open the pop-up box depicted in Figure
B.22. Typeexample1.vhdin the box labeledFile Name. You must use exactly this name.
The nameexample1must match the name of the project, and the filename extensionvhd
must be used for all files that contain VHDL code. WhenFile | Save As is selected, the Text
Editor places the default nameexample1.tdfin theFile Name box. Thetdf extension stands
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Figure B.22 Specifying a name for the VHDL design file.

for text design file. It is used for files that contain source code written in the Altera Hardware
Description Language (AHDL), which is another language supported by the MAX+plusII
system. Make sure to change the filename extension fromtdf to vhd. We should mention
that it is not necessary to use the Text Editor provided in MAX+plusII. Any text editor can
be used to create the file namedexample1.vhd, as long as the text editor can generate a plain
text (ASCII) file.

The VHDL code for this example is shown in Figure 2.29. Type the code into the Text
Editor to obtain the display in Figure B.23. Most of the commands available in the Text
Editor are self-explanatory. Text is entered at theinsertion point, which is indicated by a
thin vertical line. The insertion point can be moved either by using the keyboard arrow keys

Figure B.23 The Text Editor display showing the VHDL code from Figure 2.29.
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or by using the mouse. Two features of the Text Editor are especially convenient for typing
VHDL code. First, the editor can optionally display different types of VHDL statements
in different colors. To turn on this option, open theOptions menu and place a check mark
next to the item namedSyntax Coloring. Second, the editor can automatically indent the
text on a new line so that it matches the previous line. To turn on this option, place a check
mark besideOptions | Auto-indent. Save the file.

Using VHDL Templates
The syntax of VHDL code is sometimes difficult for a designer to remember. To help

with this issue, the Text Editor provides a collection ofVHDL templates. The templates
provide examples of various types of VHDL statements, such as an entity declaration, an
architecture, and a signal assignment statement. It is worthwhile to browse through the
templates by selectingTemplates | VHDL Template to become familiar with this resource.

B.3.3 Synthesizing a Circuit from the VHDL Code

In section 2.8.2 we said that a VHDL compiler generates a logic circuit from VHDL code.
The VHDL compiler provided by MAX+plusII is controlled by the Compiler application.

Using the Compiler
Open the Compiler window. As described for the design created with schematic capture

earlier, selectProcessing | Functional SNF Extractor so that the Compiler will generate the
information needed to perform functional simulation. Press theStart button in the Compiler
window. If the VHDL code has been typed correctly, the Compiler will display a message
that says that no errors or warnings were generated.

If the Compiler does not specify zero warnings and zero errors, then at least one mistake
was made when typing the VHDL code. In this case theMessage Processor window is
opened, and it displays a message corresponding to each warning or error found. An
example showing how the Message Processor can be used to quickly locate and fix errors
in VHDL code is given in section B.3.5. The Compiler window can now be closed.

B.3.4 Performing Functional Simulation

Functional simulation of the VHDL code is done in exactly the same way as the simulation
described earlier for the design created with schematic capture. Open the Waveform Editor
and selectFile | Save As to save the file with the nameexample1.scf. Following the
procedure given in section B.2.4, selectNode | Enter Nodes from SNF and import the
nodes in the project into the Waveform Editor. Draw the waveforms for inputsx1, x2, and
x3 shown in Figure B.17. It is also possible to open the previously drawn waveform file
graphic1.scfand then “copy and paste” the waveforms forx1, x2, andx3. The procedure
for copying waveforms is described inHelp | MAX+plusII Table of Contents |Waveform
Editor | Procedures | Copying, Cutting & Pasting Nodes and Groups. Open the Simulator
and click on theStart button. The waveform generated by the Simulator for the outputf
should be the same as the waveform in Figure B.19.
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B.3.5 Using the Message Processor to Debug VHDL Code

In section B.2.5 we showed that the Message Processor application can be used to quickly
locate and fix errors in a schematic. A similar procedure is available for finding errors
in VHDL code. To illustrate this, open theexample1.vhdfile with the Text Editor. In the
fourth line, which reads “END example1 ;” delete the semicolon at the end of the statement.
Save theexample1.vhdfile and then run the Compiler again. The Compiler generates one
error, and the Message Processor window is opened, as illustrated in Figure B.24. The error
message specifies that the problem was identified when processing line 6 in the VHDL
source code file. Select the error message in the Message Processor window and then click
the Locate button. The Text Editor window is automatically displayed with the insertion
point at line 6.

Fix the error by reinserting the missing semicolon; then save the file and run the synthe-
sis tools again, to confirm that the error is fixed. We have now completed the introduction
to design using VHDL code. Close any open application windows to return to the Manager
window.

B.4 Design Entry Using Truth Tables

This section describes the process of designing a logic circuit using a truth table. We will
implement the truth table shown in Figure B.25. It will be entered into the CAD system by
drawing a timing diagram with the Waveform Editor. We discuss the equivalence of truth
tables and timing diagrams in section 2.4.1.

We need to specify a new project name for the truth table design. UsingFile | Project
| Name, follow the procedure described in section B.3.1 to assign the nametiming1to the
project. Use the same directory as for the projects designed in the previous sections.

B.4.1 Using the Waveform Editor

Open the Waveform Editor window by selectingMAX+plusII Waveform Editor. The Wave-
form Editor can be used for multiple purposes. In section B.2.4 the editor was used to create

Figure B.24 The Message Processor window displaying an error in VHDL code.
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Figure B.25 A three-variable function.

input files for simulation. In this section the Waveform Editor will be used to create a differ-
ent type of file, called awaveform design file. To specify the type of file to be created, select
File | Save As. In the box labeledFile Name, type the nametiming1.wdf. You must use
exactly this name. The nametiming1must match the name of the project, and the filename
extensionwdf indicates that the waveforms will be used to describe a logic function, instead
of being used as simulation input.

B.4.2 Creating the Timing Diagram

To create a timing diagram, it is first necessary to specify the input and output signals for
the circuit. SelectNode | Insert Node to open the pop-up box shown in Figure B.26. In the
box labeledNode Name in Figure B.26, typex1. Sincex1 is an input to the circuit, make

Figure B.26 Inserting a node into the Waveform Editor.
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sure thatInput Pin is selected in the box labeledI/O Type. Click OK. The inputx1 appears
in the Waveform Editor display. Use the same procedure to insert inputsx2 andx3 into the
Waveform Editor display. Next, selectNode | Insert Node again and typef in theNode
Name box. Sincef is the output for the circuit, make sure thatOutput Pin is selected in
the box labeledI/O Type and then clickOK. An alternative way to open theInsert Node
pop-up box used above is to double-click in the Waveform Editor display in a blank space
under the column labeledName. The inserted node will be placed in the Waveform Editor
window at the location where the mouse was double-clicked.

Having inserted the waveforms into the Waveform Editor, we will now draw a timing
diagram to represent the truth table in Figure B.25. Since the truth table has eight rows, we
will need to draw eight valuations of the inputsx1, x2, andx3. In section B.2.4 we set the
size of the grid displayed in the Waveform Editor to 20 ns. If this same grid size is used,
then the total time range needed in the Waveform Display is 160 ns. SelectFile | End Time
and specify160nsas the total simulation time. To make the entire time range visible in
the waveform display, selectView | Fit in Window or type the shortcut command Ctrl+w
(while holding down the Ctrl key, press the w key). The Waveform Editor window should
now appear as shown in Figure B.27.

Following the procedure described in section B.2.4, modify the waveform for signal
x3 so that it is 1 for every second 20 ns time range. Also, edit the waveform forx2 so that
it is 1 for the time ranges from 40 ns to 80 ns and from 120 ns to 160 ns. Finally, set the
waveform forx1 to 1 in the time range from 80 ns to 160 ns. Previously, when using the
Waveform Editor, we did not specify a waveform for the output of the circuit, because the
output waveform was generated by the simulator. However, in this case we need to specify
a waveform for outputf that corresponds to its truth table. In Figure B.25 the function is

Figure B.27 The Waveform Editor display for the truth-table design.
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1 in the rows wherex1, x2, andx3 have the valuations 001, 011, 101, 110, and 111. Use
the Graphic Editor to change the waveform forf to 1 for the appropriate time ranges. For
instance,f should be set to 1 in the time range from 20 ns to 40 ns because this represents
the input valuation 001. After completing the waveform forf , the waveform display should
appear as shown in Figure B.28. Notice that we have rearranged the waveforms, by moving
f to the bottom, in comparison to Figure B.27. Waveforms can be moved by pointing the
mouse at the small symbol, called thenode handle, to the left of the signal name in the
waveform display and then dragging the waveform upward or downward. SelectFile | Save
to save the timing diagram in thetiming1.wdffile.

B.4.3 Synthesizing a Circuit from the Waveforms

The next step is to use the MAX+plusII Compiler to perform the initial synthesis steps for
the circuit. The Compiler will generate a Boolean expression to representf , according to
the truth table given by the timing diagram.

Use the same procedure described for the designs created with schematic capture and
VHDL code. Open the Compiler window and selectProcessing | Functional SNF Extractor.
Press theStart button in the Compiler window and then clickOK in response to the Compiler
message that says that no warnings or errors were found.

For the circuits designed in the previous sections, after logic synthesis was completed,
the next step performed was functional simulation. It does not make sense to perform the
functional simulation for the circuit designed in this section, because the waveforms that
would be used as inputs to the simulator would be the same waveforms used to design the

Figure B.28 The timing diagram representing the truth table in Figure B.25.
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circuit! In the next section we will use the circuit synthesized from the timing diagram in
this section as part of a larger circuit, and we will simulate the operation of the larger circuit.

The tutorial on design with truth tables is now complete, so close any open application
windows to return to the Manager window.

B.5 Mixing Design-Entry Methods

It is possible to design a logic circuit using a mixture of design-entry methods. As an
example, in this section we will create a schematic that includes the circuit designed using
the truth table in the previous section.

We need to specify a new project name for the mixed design. SelectFile | Project |
Name and assign the namemixed1to the project. Use the same directory as for the projects
designed in the previous sections.

B.5.1 Creating a Schematic That Includes a Truth Table

Open the Graphic Editor by selectingMAX+plusII | Graphic Editor. SelectFile | Save As
and, if not already there, type the namemixed1.gdfin theFile Name box. Make sure to use
exactly this name.

Double-click the blank space in the Graphic Editor to open theEnter Symbol pop-up
box, as shown in Figure B.29. In the box labeledSymbol Name, type the nametiming1,
which is the name of the circuit designed using a truth table in the previous section. Click
OK to import a graphical symbol for thetiming1 circuit into the Graphic Editor. Once

Figure B.29 Importing the truth-table design into the Graphic Editor.
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the timing1 symbol is imported into the Graphic Editor, double-clicking on the symbol
automatically opens the Waveform Editor and displays the waveforms that were used to
design the circuit. When the Waveform Editor is closed, the Graphic Editor is automatically
reopened. This ability to move quickly from one design-entry tool to another is convenient
when it is necessary to make changes to a schematic or the subcircuits in it.

Following the procedure described in section B.2.2, import a two-input AND-gate
symbol and a NOT gate from the Primitives library into the Graphic Editor. Also from the
Primitives library, import three input symbols and an output symbol. Arrange the symbols
in the schematic as illustrated in Figure B.30. As described in section B.2.2, assign the
namesx1, x2, andx3 to the input symbols and assign the namef to the output symbol. The
reader will observe that the namex3 is used twice in this design project: as an input to
the timing1subcircuit and as an input to the mixed schematic. The MAX+plusII compiler
treats these two nodes namedx3 as separate nodes because they appear in different levels
of the design project hierarchy. Connect the symbols in the schematic together as shown in
Figure B.31. Because a wire drawn with the Graphic Editor can be either straight or have
a single bend, it is necessary to draw more than one wire for the connection shown in the
figure from the AND-gate output to the input labeledx3 on thetiming1subcircuit. Start
drawing each wire so that it touches the end of the previously drawn wire; wires that touch
are automatically connected by the Graphic Editor. Save the schematic.

B.5.2 Synthesizing and Simulating a Circuit
from the Schematic

Use the procedure described for the designs created in the previous sections to synthesize a
circuit from the schematic. The synthesis tools will create a single logic circuit by merging
the timing1 subcircuit with the other logic gates in the schematic. Open the Compiler
window, selectProcessing | Functional SNF Extractor, and then run the Compiler.

Figure B.30 A schematic including a truth table and logic gates.



April 27, 1999 12:26 g02-appb Sheet number 28 Page number 766 black

766 A P P E N D I X B • Tutorial 1

Figure B.31 The completed schematic corresponding to Figure B.30.

Simulation of themixed1project is done in exactly the same way as for the other
projects created in this tutorial. Open the Waveform Editor and selectFile | Save As to
create a new file namedmixed1.scf. Following the procedure given in section B.2.2, import
the input and output nodesx1,x2,x3, andf into the Waveform Editor. Draw the waveforms
for inputsx1, x2, andx3 that are shown in Figure B.17. Open the Simulator and click on
theStart button; then selectOpen SCF to see the results of the simulation. The waveform
generated by the Simulator for the outputf should be exactly the same as the waveform
shown in Figure B.19. Themixed1schematic represents the logic functionf = x1x2+ x2x3

that was designed using both schematic capture and VHDL code in this tutorial. Techniques
that can be used to synthesize the expression forf from themixed1schematic are covered
in Chapter 4.

In practice a designer would not use a mixture of design-entry methods for a circuit as
simple as our example. The reason that we have created themixed1schematic is simply to
illustrate that MAX+plusII allows design-entry methods to be combined in a hierarchical
manner. It is also possible, although not shown here, to create a schematic that includes a
subcircuit designed using VHDL code. MAX+plusII provides a convenient feature, called
the Hierarchy Display, for working with hierarchical design projects.

B.5.3 Using the Hierarchy Display

SelectMAX+PlusII | Hierarchy Display to open the Hierarchy Display window shown in
Figure B.32. The display shows that the design project consists of two hierarchical levels,
with mixed1at the higher level andtiming1at the lower level. Themixed1design project has
an icon next to it, labeledgdf. It can be double-clicked to automatically open themixed1.gdf
file in the Graphic Editor. Similarly,timing1has an icon next to it, labeledwdf. If this icon
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Figure B.32 The Hierarchy Display window for the mixed1design project.

is double-clicked, the filetiming1.wdfis opened in the Waveform Editor. Experiment with
this method of opening design files. Figure B.32 also shows a small icon labeledacf, which
represents theassignment & configuration filefor the project. The file contains settings for
a large number of optional features of MAX+plusII that affect the way the design files are
processed. These settings are saved automatically in the assignment & configuration file,
and so we will not need to modify them manually. Although it is not necessary, theacffile
can be opened in the Text Editor by double-clicking on its icon in the Hierarchy Display.

B.5.4 Concluding Remarks

This tutorial has introduced the basic use of the MAX+plusII CAD system. We have shown
how to perform design entry by drawing a schematic, writing VHDL code, and drawing
a timing diagram that represents a truth table. Each design was processed by the initial
synthesis tools and then simulated with the functional simulator.

In the next tutorial we will show how the logic synthesis and physical design tools are
used to implement circuits in PLDs. The timing characteristics of the implemented circuits
will be examined using timing simulation.
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Blocks

Chapter Objectives

In this chapter you will learn about:

• Commonly used combinational subcircuits

• Multiplexers, which can be used for selection of signals and for implementation
of general logic functions

• Circuits used for encoding, decoding, and code-conversion purposes

• Key Verilog constructs used to define combinational circuits
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Previous chapters have introduced the basic techniques for design of logic circuits. In practice, a few types
of logic circuits are often used as building blocks in larger designs. This chapter discusses a number of these
blocks and gives examples of their use. The chapter also includes a major section on Verilog, which describes
several key features of the language.

6.1 Multiplexers

Multiplexers were introduced briefly in Chapters 2 and 3. A multiplexer circuit has a
number of data inputs, one or more select inputs, and one output. It passes the signal value
on one of the data inputs to the output. The data input is selected by the values of the select
inputs. Figure 6.1 shows a 2-to-1 multiplexer. Part (a) gives the symbol commonly used.
The select input, s, chooses as the output of the multiplexer either input w0 or w1. The
multiplexer’s functionality can be described in the form of a truth table as shown in part (b)

of the figure. Part (c) gives a sum-of-products implementation of the 2-to-1 multiplexer,
and part (d) illustrates how it can be constructed with transmission gates.

Figure 6.2a depicts a larger multiplexer with four data inputs, w0, . . . , w3, and two
select inputs, s1 and s0. As shown in the truth table in part (b) of the figure, the two-bit
number represented by s1s0 selects one of the data inputs as the output of the multiplexer.
A sum-of-products implementation of the 4-to-1 multiplexer appears in Figure 6.2c. It
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Figure 6.1 A 2-to-1 multiplexer.
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Figure 6.2 A 4-to-1 multiplexer.

realizes the multiplexer function

f = s1s0w0 + s1s0w1 + s1s0w2 + s1s0w3

It is possible to build larger multiplexers using the same approach. Usually, the num-
ber of data inputs, n, is an integer power of two. A multiplexer that has n data inputs,
w0, . . . , wn−1, requires � log2n � select inputs. Larger multiplexers can also be constructed
from smaller multiplexers. For example, the 4-to-1 multiplexer can be built using three
2-to-1 multiplexers as illustrated in Figure 6.3. If the 4-to-1 multiplexer is implemented
using transmission gates, then the structure in this figure is always used. Figure 6.4 shows
how a 16-to-1 multiplexer is constructed with five 4-to-1 multiplexers.
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Example 6.1Figure 6.5 shows a circuit that has two inputs, x1 and x2, and two outputs, y1 and y2. As
indicated by the blue lines, the function of the circuit is to allow either of its inputs to be
connected to either of its outputs, under the control of another input, s. A circuit that has
n inputs and k outputs, whose sole function is to provide a capability to connect any input
to any output, is usually referred to as an n×k crossbar switch. Crossbars of various sizes
can be created, with different numbers of inputs and outputs. When there are two inputs
and two outputs, it is called a 2×2 crossbar.

Figure 6.5b shows how the 2×2 crossbar can be implemented using 2-to-1 multiplexers.
The multiplexer select inputs are controlled by the signal s. If s = 0, the crossbar connects
x1 to y1 and x2 to y2, while if s = 1, the crossbar connects x1 to y2 and x2 to y1. Crossbar
switches are useful in many practical applications in which it is necessary to be able to
connect one set of wires to another set of wires, where the connection pattern changes from
time to time.

Example 6.2We introduced field-programmable gate array (FPGA) chips in section 3.6.5. Figure 3.39
depicts a small FPGAthat is programmed to implement a particular circuit. The logic blocks
in the FPGA have two inputs, and there are four tracks in each routing channel. Each of the
programmable switches that connects a logic block input or output to an interconnection
wire is shown as an X. A small part of Figure 3.39 is reproduced in Figure 6.6a. For clarity,
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(a) A 2x2 crossbar switch
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Figure 6.5 A practical application of multiplexers.
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Figure 6.6 Implementing programmable switches in an FPGA.
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the figure shows only a single logic block and the interconnection wires and switches
associated with its input terminals.

One way in which the programmable switches can be implemented is illustrated in
Figure 6.6b. Each X in part (a) of the figure is realized using an NMOS transistor controlled
by a storage cell. This type of programmable switch was also shown in Figure 3.68. We
described storage cells briefly in section 3.6.5 and will discuss them in more detail in section
10.1. Each cell stores a single logic value, either 0 or 1, and provides this value as the output
of the cell. Each storage cell is built by using several transistors. Thus the eight cells shown
in the figure use a significant amount of chip area.

The number of storage cells needed can be reduced by using multiplexers, as shown
in Figure 6.6c. Each logic block input is fed by a 4-to-1 multiplexer, with the select inputs
controlled by storage cells. This approach requires only four storage cells, instead of eight.
In commercial FPGAs the multiplexer-based approach is usually adopted.

6.1.1 Synthesis of Logic Functions Using Multiplexers

Multiplexers are useful in many practical applications, such as those described above. They
can also be used in a more general way to synthesize logic functions. Consider the example
in Figure 6.7a. The truth table defines the function f = w1 ⊕ w2. This function can be
implemented by a 4-to-1 multiplexer in which the values of f in each row of the truth table
are connected as constants to the multiplexer data inputs. The multiplexer select inputs are
driven by w1 and w2. Thus for each valuation of w1w2, the output f is equal to the function
value in the corresponding row of the truth table.

The above implementation is straightforward, but it is not very efficient. A better
implementation can be derived by manipulating the truth table as indicated in Figure 6.7b,
which allows f to be implemented by a single 2-to-1 multiplexer. One of the input signals,
w1 in this example, is chosen as the select input of the 2-to-1 multiplexer. The truth table
is redrawn to indicate the value of f for each value of w1. When w1 = 0, f has the same
value as input w2, and when w1 = 1, f has the value of w2. The circuit that implements
this truth table is given in Figure 6.7c. This procedure can be applied to synthesize a circuit
that implements any logic function.

Example 6.3Figure 6.8a gives the truth table for the three-input majority function, and it shows how the
truth table can be modified to implement the function using a 4-to-1 multiplexer. Any two
of the three inputs may be chosen as the multiplexer select inputs. We have chosen w1 and
w2 for this purpose, resulting in the circuit in Figure 6.8b.

Example 6.4Figure 6.9a indicates how the function f = w1⊕w2⊕w3 can be implemented using 2-to-1
multiplexers. When w1 = 0, f is equal to the XOR of w2 and w3, and when w1 = 1, f is the
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(a) Implementation using a 4-to-1 multiplexer
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Figure 6.7 Synthesis of a logic function using mutiplexers.

XNOR of w2 and w3. The left multiplexer in the circuit produces w2 ⊕w3, using the result
from Figure 6.7, and the right multiplexer uses the value of w1 to select either w2⊕w3 or its
complement. Note that we could have derived this circuit directly by writing the function
as f = (w2 ⊕ w3)⊕ w1.

Figure 6.10 gives an implementation of the three-input XOR function using a 4-to-1
multiplexer. Choosing w1 and w2 for the select inputs results in the circuit shown.

6.1.2 Multiplexer Synthesis Using Shannon’s Expansion

Figures 6.8 through 6.10 illustrate how truth tables can be interpreted to implement logic
functions using multiplexers. In each case the inputs to the multiplexers are the constants
0 and 1, or some variable or its complement. Besides using such simple inputs, it is
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Figure 6.8 Implementation of the three-input majority function
using a 4-to-1 multiplexer.

(a) Truth table

0 0

0 1

1 0

1 1

0

1

1

0

0 0

0 1

1 0

1 1

1

0

0

1

w
1
w
2
w
3

f

0

0

0

0

1

1

1

1

w
2

w
3

⊕

w
2

w
3

⊕

f

w
3

w
1

(b) Circuit

w
2

Figure 6.9 Three-input XOR implemented with 2-to-1 multiplexers.



March 13, 2007 12:06 vra80334_ch06 Sheet number 10 Page number 330 black

330 C H A P T E R 6 • Combinational-Circuit Building Blocks

f

w
1

w
2

(a) Truth table (b) Circuit

0 0

0 1

1 0

1 1

0

1

1

0

0 0

0 1

1 0

1 1

1

0

0

1

w
1
w
2
w
3

f

0

0

0

0

1

1

1

1

w
3

w
3

w
3

w
3

w
3

Figure 6.10 Three-input XOR implemented with a 4-to-1 multiplexer.

possible to connect more complex circuits as inputs to a multiplexer, allowing functions to
be synthesized using a combination of multiplexers and other logic gates. Suppose that we
want to implement the three-input majority function in Figure 6.8 using a 2-to-1 multiplexer
in this way. Figure 6.11 shows an intuitive way of realizing this function. The truth table
can be modified as shown on the right. If w1 = 0, then f = w2w3, and if w1 = 1, then
f = w2 + w3. Using w1 as the select input for a 2-to-1 multiplexer leads to the circuit in
Figure 6.11b.

This implementation can be derived using algebraic manipulation as follows. The
function in Figure 6.11a is expressed in sum-of-products form as

f = w1w2w3 + w1w2w3 + w1w2w3 + w1w2w3

It can be manipulated into

f = w1(w2w3)+ w1(w2w3 + w2w3 + w2w3)

= w1(w2w3)+ w1(w2 + w3)

which corresponds to the circuit in Figure 6.11b.
Multiplexer implementations of logic functions require that a given function be decom-

posed in terms of the variables that are used as the select inputs. This can be accomplished
by means of a theorem proposed by Claude Shannon [1].

Shannon’s Expansion Theorem Any Boolean function f (w1, . . . , wn) can be written in
the form

f (w1, w2, . . . , wn) = w1 · f (0, w2, . . . , wn)+ w1 · f (1, w2, . . . , wn)

This expansion can be done in terms of any of the n variables. We will leave the proof of
the theorem as an exercise for the reader (see problem 6.9).
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Figure 6.11 The three-input majority function implemented using a
2-to-1 multiplexer.

To illustrate its use, we can apply the theorem to the three-input majority function,
which can be written as

f (w1, w2, w3) = w1w2 + w1w3 + w2w3

Expanding this function in terms of w1 gives

f = w1(w2w3)+ w1(w2 + w3)

which is the expression that we derived above.
For the three-input XOR function, we have

f = w1 ⊕ w2 ⊕ w3

= w1 · (w2 ⊕ w3)+ w1 · (w2 ⊕ w3)

which gives the circuit in Figure 6.9b.
In Shannon’s expansion the term f (0, w2, . . . , wn) is called the cofactor of f with respect

to w1; it is denoted in shorthand notation as fw1 . Similarly, the term f (1, w2, . . . , wn) is
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called the cofactor of f with respect to w1, written fw1 . Hence we can write

f = w1fw1 + w1fw1

In general, if the expansion is done with respect to variable wi, then fwi denotes
f (w1, . . . , wi−1, 1, wi+1, . . . , wn) and

f (w1, . . . , wn) = wifwi + wifwi

The complexity of the logic expression may vary, depending on which variable, wi, is used,
as illustrated in Example 6.5.

Example 6.5 For the function f = w1w3 + w2w3, decomposition using w1 gives

f = w1fw1 + w1fw1

= w1(w3 + w2)+ w1(w2w3)

Using w2 instead of w1 produces

f = w2fw2 + w2fw2

= w2(w1w3)+ w2(w1 + w3)

Finally, using w3 gives

f = w3fw3 + w3fw3

= w3(w2)+ w3(w1)

The results generated using w1 and w2 have the same cost, but the expression produced
using w3 has a lower cost. In practice, the CAD tools that perform decompositions of this
type try a number of alternatives and choose the one that produces the best result.

Shannon’s expansion can be done in terms of more than one variable. For example,
expanding a function in terms of w1 and w2 gives

f (w1, . . . , wn) = w1w2 · f (0, 0, w3, . . . , wn)+ w1w2 · f (0, 1, w3, . . . , wn)

+ w1w2 · f (1, 0, w3, . . . , wn)+ w1w2 · f (1, 1, w3, . . . , wn)

This expansion gives a form that can be implemented using a 4-to-1 multiplexer. If Shan-
non’s expansion is done in terms of all n variables, then the result is the canonical sum-of-
products form, which was defined in section 2.6.1.
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(a) Using a 2-to-1 multiplexer
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Figure 6.12 The circuits synthesized in Example 6.6.

Example 6.6Assume that we wish to implement the function

f = w1w3 + w1w2 + w1w3

using a 2-to-1 multiplexer and any other necessary gates. Shannon’s expansion using w1

gives

f = w1fw1 + w1fw1

= w1(w3)+ w1(w2 + w3)

The corresponding circuit is shown in Figure 6.12a. Assume now that we wish to use a
4-to-1 multiplexer instead. Further decomposition using w2 gives

f = w1w2fw1w2 + w1w2fw1w2 + w1w2fw1w2 + w1w2fw1w2

= w1w2(w3)+ w1w2(w3)+ w1w2(w3)+ w1w2(1)

The circuit is shown in Figure 6.12b.

Example 6.7Consider the three-input majority function

f = w1w2 + w1w3 + w2w3
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Figure 6.13 The circuit synthesized in Example 6.7.

We wish to implement this function using only 2-to-1 multiplexers. Shannon’s expansion
using w1 yields

f = w1(w2w3)+ w1(w2 + w3 + w2w3)

= w1(w2w3)+ w1(w2 + w3)

Let g = w2w3 and h = w2 + w3. Expansion of both g and h using w2 gives

g = w2(0)+ w2(w3)

h = w2(w3)+ w2(1)

The corresponding circuit is shown in Figure 6.13. It is equivalent to the 4-to-1 multiplexer
circuit derived using a truth table in Figure 6.8.

Example 6.8 In section 3.6.5 we said that most FPGAs use lookup tables for their logic blocks. Assume
that an FPGA exists in which each logic block is a three-input lookup table (3-LUT).
Because it stores a truth table, a 3-LUT can realize any logic function of three variables.
Using Shannon’s expansion, any four-variable function can be realized with at most three
3-LUTs. Consider the function

f = w2w3 + w1w2w3 + w2w3w4 + w1w2w4

Expansion in terms of w1 produces

f = w1fw1 + w1fw1

= w1(w2w3 + w2w3 + w2w3w4)+ w1(w2w3 + w2w3w4 + w2w4)

= w1(w2w3 + w2w3)+ w1(w2w3 + w2w3w4 + w2w4)

A circuit with three 3-LUTs that implements this expression is shown in Figure 6.14a.
Decomposition of the function using w2, instead of w1, gives

f = w2fw2 + w2fw2

= w2(w3 + w1w4)+ w2(w1w3 + w3w4)
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Figure 6.14 Circuits synthesized in Example 6.8.

Observe that f w2
= fw2 ; hence only two 3-LUTs are needed, as illustrated in Figure 6.14b.

The LUT on the right implements the two-variable function w2fw2 + w2f w2
.

Since it is possible to implement any logic function using multiplexers, general-purpose
chips exist that contain multiplexers as their basic logic resources. Both Actel Corporation
[2] and QuickLogic Corporation [3] offer FPGAs in which the logic block comprises an ar-
rangement of multiplexers. Texas Instruments offers gate array chips that have multiplexer-
based logic blocks [4].

6.2 Decoders

Decoder circuits are used to decode encoded information. A binary decoder, depicted in
Figure 6.15, is a logic circuit with n inputs and 2n outputs. Only one output is asserted
at a time, and each output corresponds to one valuation of the inputs. The decoder also
has an enable input, En, that is used to disable the outputs; if En = 0, then none of the
decoder outputs is asserted. If En= 1, the valuation of wn−1 · · ·w1w0 determines which of
the outputs is asserted. An n-bit binary code in which exactly one of the bits is set to 1 at a
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Figure 6.15 An n-to-2n binary decoder.

time is referred to as one-hot encoded, meaning that the single bit that is set to 1 is deemed
to be “hot.” The outputs of a binary decoder are one-hot encoded.

A 2-to-4 decoder is given in Figure 6.16. The two data inputs are w1 and w0. They
represent a two-bit number that causes the decoder to assert one of the outputs y0, . . . , y3.
Although a decoder can be designed to have either active-high or active-low outputs, in
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Figure 6.16 A 2-to-4 decoder.
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Figure 6.17 A 3-to-8 decoder using two 2-to-4 decoders.

Figure 6.16 active-high outputs are assumed. Setting the inputs w1w0 to 00, 01, 10, or 11
causes the output y0, y1, y2, or y3 to be set to 1, respectively. A graphical symbol for the
decoder is given in part (b) of the figure, and a logic circuit is shown in part (c).

Larger decoders can be built using the sum-of-products structure in Figure 6.16c, or
else they can be constructed from smaller decoders. Figure 6.17 shows how a 3-to-8 decoder
is built with two 2-to-4 decoders. The w2 input drives the enable inputs of the two decoders.
The top decoder is enabled if w2 = 0, and the bottom decoder is enabled if w2 = 1. This
concept can be applied for decoders of any size. Figure 6.18 shows how five 2-to-4 decoders
can be used to construct a 4-to-16 decoder. Because of its treelike structure, this type of
circuit is often referred to as a decoder tree.

Example 6.9Decoders are useful for many practical purposes. In Figure 6.2c we showed the sum-of-
products implementation of the 4-to-1 multiplexer, which requiresAND gates to distinguish
the four different valuations of the select inputs s1 and s0. Since a decoder evaluates the
values on its inputs, it can be used to build a multiplexer as illustrated in Figure 6.19. The
enable input of the decoder is not needed in this case, and it is set to 1. The four outputs of
the decoder represent the four valuations of the select inputs.

Example 6.10In Figure 3.59 we showed how a 2-to-1 multiplexer can be constructed using two tri-state
buffers. This concept can be applied to any size of multiplexer, with the addition of a
decoder. An example is shown in Figure 6.20. The decoder enables one of the tri-state
buffers for each valuation of the select lines, and that tri-state buffer drives the output, f ,
with the selected data input. We have now seen that multiplexers can be implemented in
various ways. The choice of whether to employ the sum-of-products form, transmission
gates, or tri-state buffers depends on the resources available in the chip being used. For
instance, most FPGAs that use lookup tables for their logic blocks do not contain tri-state



March 13, 2007 12:06 vra80334_ch06 Sheet number 18 Page number 338 black

338 C H A P T E R 6 • Combinational-Circuit Building Blocks

w
0

En

y
0

w
1

y
1

y
2

y
3

y
8

y
9

y
10

y
11

w
2

w
0

y
0

y
1

y
2

y
3

w
0

En

y
0

w
1

y
1

y
2

y
3

w
0

En

y
0

w
1

y
1

y
2

y
3

y
4

y
5

y
6

y
7

w
1

w
0

En

y
0

w
1

y
1

y
2

y
3

y
12

y
13

y
14

y
15

w
0

En

y
0

w
1

y
1

y
2

y
3

w
3

En

Figure 6.18 A 4-to-16 decoder built using a decoder tree.
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Figure 6.20 A 4-to-1 multiplexer built using a decoder and tri-state
buffers.

buffers. Hence multiplexers must be implemented in the sum-of-products form using the
lookup tables (see Example 6.33).

6.2.1 Demultiplexers

We showed in section 6.1 that a multiplexer has one output, n data inputs, and � log2n �
select inputs. The purpose of the multiplexer circuit is to multiplex the n data inputs onto
the single data output under control of the select inputs. A circuit that performs the opposite
function, namely, placing the value of a single data input onto multiple data outputs, is
called a demultiplexer. The demultiplexer can be implemented using a decoder circuit. For
example, the 2-to-4 decoder in Figure 6.16 can be used as a 1-to-4 demultiplexer. In this
case the En input serves as the data input for the demultiplexer, and the y0 to y3 outputs
are the data outputs. The valuation of w1w0 determines which of the outputs is set to the
value of En. To see how the circuit works, consider the truth table in Figure 6.16a. When
En = 0, all the outputs are set to 0, including the one selected by the valuation of w1w0.
When En = 1, the valuation of w1w0 sets the appropriate output to 1.

In general, an n-to-2n decoder circuit can be used as a 1-to-n demultiplexer. However, in
practice decoder circuits are used much more often as decoders rather than as demultiplexers.
In many applications the decoder’s En input is not actually needed; hence it can be omitted.
In this case the decoder always asserts one of its data outputs, y0, . . . , y2n−1, according to
the valuation of the data inputs, wn−1 · · ·w0. Example 6.11 uses a decoder that does not
have the En input.
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Example 6.11 One of the most important applications of decoders is in memory blocks, which are used to
store information. Such memory blocks are included in digital systems, such as computers,
where there is a need to store large amounts of information electronically. One type of
memory block is called a read-only memory (ROM). A ROM consists of a collection of
storage cells, where each cell permanently stores a single logic value, either 0 or 1. Figure
6.21 shows an example of a ROM block. The storage cells are arranged in 2m rows with n
cells per row. Thus each row stores n bits of information. The location of each row in the
ROM is identified by its address. In the figure the row at the top of the ROM has address
0, and the row at the bottom has address 2m − 1. The information stored in the rows can
be accessed by asserting the select lines, Sel0 to Sel2m−1. As shown in the figure, a decoder
with m inputs and 2m outputs is used to generate the signals on the select lines. Since
the inputs to the decoder choose the particular address (row) selected, they are called the
address lines. The information stored in the row appears on the data outputs of the ROM,
dn−1, . . . , d0, which are called the data lines. Figure 6.21 shows that each data line has
an associated tri-state buffer that is enabled by the ROM input named Read. To access, or
read, data from the ROM, the address of the desired row is placed on the address lines and
Read is set to 1.
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Figure 6.21 A 2m × n read-only memory (ROM) block.
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Many different types of memory blocks exist. In a ROM the stored information can
be read out of the storage cells, but it cannot be changed (see problem 6.31). Another
type of ROM allows information to be both read out of the storage cells and stored, or
written, into them. Reading its contents is the normal operation, whereas writing requires
a special procedure. Such a memory block is called a programmable ROM (PROM). The
storage cells in a PROM are usually implemented using EEPROM transistors. We discussed
EEPROM transistors in section 3.10 to show how they are used in PLDs. Other types of
memory blocks are discussed in section 10.1.

6.3 Encoders

An encoder performs the opposite function of a decoder. It encodes given information into
a more compact form.

6.3.1 Binary Encoders

A binary encoder encodes information from 2n inputs into an n-bit code, as indicated in
Figure 6.22. Exactly one of the input signals should have a value of 1, and the outputs
present the binary number that identifies which input is equal to 1. The truth table for a
4-to-2 encoder is provided in Figure 6.23a. Observe that the output y0 is 1 when either
input w1 or w3 is 1, and output y1 is 1 when input w2 or w3 is 1. Hence these outputs can be
generated by the circuit in Figure 6.23b. Note that we assume that the inputs are one-hot
encoded. All input patterns that have multiple inputs set to 1 are not shown in the truth
table, and they are treated as don’t-care conditions.

Encoders are used to reduce the number of bits needed to represent given information.
A practical use of encoders is for transmitting information in a digital system. Encoding
the information allows the transmission link to be built using fewer wires. Encoding is also
useful if information is to be stored for later use because fewer bits need to be stored.
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y
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Figure 6.22 A 2n-to-n binary encoder.
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Figure 6.23 A 4-to-2 binary encoder.

6.3.2 Priority Encoders

Another useful class of encoders is based on the priority of input signals. In a priority
encoder each input has a priority level associated with it. The encoder outputs indicate the
active input that has the highest priority. When an input with a high priority is asserted, the
other inputs with lower priority are ignored. The truth table for a 4-to-2 priority encoder is
shown in Figure 6.24. It assumes that w0 has the lowest priority and w3 the highest. The
outputs y1 and y0 represent the binary number that identifies the highest priority input set
to 1. Since it is possible that none of the inputs is equal to 1, an output, z, is provided to
indicate this condition. It is set to 1 when at least one of the inputs is equal to 1. It is set to
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Figure 6.24 Truth table for a 4-to-2 priority encoder.
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0 when all inputs are equal to 0. The outputs y1 and y0 are not meaningful in this case, and
hence the first row of the truth table can be treated as a don’t-care condition for y1 and y0.

The behavior of the priority encoder is most easily understood by first considering
the last row in the truth table. It specifies that if input w3 is 1, then the outputs are set to
y1y0 = 11. Because w3 has the highest priority level, the values of inputs w2, w1, and w0

do not matter. To reflect the fact that their values are irrelevant, w2, w1, and w0 are denoted
by the symbol x in the truth table. The second-last row in the truth table stipulates that if
w2 = 1, then the outputs are set to y1y0 = 10, but only if w3 = 0. Similarly, input w1

causes the outputs to be set to y1y0 = 01 only if both w3 and w2 are 0. Input w0 produces
the outputs y1y0 = 00 only if w0 is the only input that is asserted.

Alogic circuit that implements the truth table can be synthesized by using the techniques
developed in Chapter 4. However, a more convenient way to derive the circuit is to define
a set of intermediate signals, i0, . . . , i3, based on the observations above. Each signal, ik ,
is equal to 1 only if the input with the same index, wk , represents the highest-priority input
that is set to 1. The logic expressions for i0, . . . , i3 are

i0 = w3w2w1w0

i1 = w3w2w1

i2 = w3w2

i3 = w3

Using the intermediate signals, the rest of the circuit for the priority encoder has the same
structure as the binary encoder in Figure 6.23, namely

y0 = i1 + i3

y1 = i2 + i3

The output z is given by

z = i0 + i1 + i2 + i3

6.4 Code Converters

The purpose of the decoder and encoder circuits is to convert from one type of input
encoding to a different output encoding. For example, a 3-to-8 binary decoder converts
from a binary number on the input to a one-hot encoding at the output. An 8-to-3 binary
encoder performs the opposite conversion. There are many other possible types of code
converters. One common example is a BCD-to-7-segment decoder, which converts one
binary-coded decimal (BCD) digit into information suitable for driving a digit-oriented
display. As illustrated in Figure 6.25a, the circuit converts the BCD digit into seven signals
that are used to drive the segments in the display. Each segment is a small light-emitting
diode (LED), which glows when driven by an electrical signal. The segments are labeled
from a to g in the figure. The truth table for the BCD-to-7-segment decoder is given in
Figure 6.25c. For each valuation of the inputs w3, . . . , w0, the seven outputs are set to
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Figure 6.25 A BCD-to-7-segment display code converter.

display the appropriate BCD digit. Note that the last 6 rows of a complete 16-row truth
table are not shown. They represent don’t-care conditions because they are not legal BCD
codes and will never occur in a circuit that deals with BCD data. A circuit that implements
the truth table can be derived using the synthesis techniques discussed in Chapter 4. Finally,
we should note that although the word decoder is traditionally used for this circuit, a more
appropriate term is code converter. The term decoder is more appropriate for circuits that
produce one-hot encoded outputs.

6.5 Arithmetic Comparison Circuits

Chapter 5 presented arithmetic circuits that perform addition, subtraction, and multiplication
of binary numbers. Another useful type of arithmetic circuit compares the relative sizes
of two binary numbers. Such a circuit is called a comparator. This section considers the
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design of a comparator that has two n-bit inputs, A and B, which represent unsigned binary
numbers. The comparator produces three outputs, called AeqB, AgtB, and AltB. The AeqB
output is set to 1 if A and B are equal. The AgtB output is 1 if A is greater than B, and the
AltB output is 1 if A is less than B.

The desired comparator can be designed by creating a truth table that specifies the three
outputs as functions of A and B. However, even for moderate values of n, the truth table is
large. A better approach is to derive the comparator circuit by considering the bits of A and
B in pairs. We can illustrate this by a small example, where n = 4.

Let A = a3a2a1a0 and B = b3b2b1b0. Define a set of intermediate signals called
i3, i2, i1, and i0. Each signal, ik , is 1 if the bits of A and B with the same index are equal.
That is, ik = ak ⊕ bk . The comparator’s AeqB output is then given by

AeqB = i3i2i1i0

An expression for the AgtB output can be derived by considering the bits of A and B in the
order from the most-significant bit to the least-significant bit. The first bit-position, k, at
which ak and bk differ determines whether A is less than or greater than B. If ak = 0 and
bk = 1, then A < B. But if ak = 1 and bk = 0, then A > B. The AgtB output is defined by

AgtB = a3b3 + i3a2b2 + i3i2a1b1 + i3i2i1a0b0

The ik signals ensure that only the first digits, considered from the left to the right, of A and
B that differ determine the value of AgtB.

The AltB output can be derived by using the other two outputs as

AltB = AeqB+ AgtB

A logic circuit that implements the four-bit comparator circuit is shown in Figure 6.26. This
approach can be used to design a comparator for any value of n.

Comparator circuits, like most logic circuits, can be designed in different ways. Another
approach for designing a comparator circuit is presented in Example 5.10 in Chapter 5.

6.6 Verilog for Combinational Circuits

Having presented a number of useful building block circuits, we will now consider how
such circuits can be described in Verilog. Rather than using gates or logic expressions,
we will specify the circuits in terms of their behavior. We will also give a more rigorous
description of previously used behavioral Verilog constructs and introduce some new ones.

6.6.1 The Conditional Operator

In a logic circuit it is often necessary to choose between several possible signals or values
based on the state of some condition. A typical example is a multiplexer circuit in which
the output is equal to the data input signal chosen by the valuation of the select inputs. For
simple implementation of such choices Verilog provides a conditional operator (?:) which
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Figure 6.26 A four-bit comparator circuit.

assigns one of two values depending on a conditional expression. It involves three operands
used in the syntax

conditional_expression ? true_expression : false_expression

If the conditional expression evaluates to 1 (true), then the value of true_expression is
chosen; otherwise, the value of false_expression is chosen. For example, the statement

A = (B < C) ? (D + 5) : (D + 2);

means that if B is less than C, the value of A will be D + 5 or else A will have the value
D+2. We used parentheses in the expression to improve readability; they are not necessary.
The conditional operator can be used both in continuous assignment statements and in
procedural statements inside an always block.
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Example 6.12A 2-to-1 multiplexer can be defined using the conditional operator in an assign statement
as shown in Figure 6.27. The module, named mux2to1, has the inputs w0, w1, and s, and
the output f . The signal s is used for the selection criterion. The output f is equal to w1 if
the select input s has the value 1; otherwise, f is equal to w0. Figure 6.28 shows how the
same multiplexer can be defined by using the conditional operator inside an always block.

The same approach can be used to define a 4-to-1 multiplexer by nesting the conditional
operators as indicated in Figure 6.29. The module is named mux4to1. Its two select inputs,
which are called s1 and s0 in Figure 6.2, are represented by the two-bit vector S. The first
conditional expression tests the value of bit s1. If s1 = 1, then s0 is tested and f is set to w3

module mux2to1 (w0, w1, s, f);
input w0, w1, s;
output f;

assign f = s ? w1 : w0;

endmodule

Figure 6.27 A 2-to-1 multiplexer specified using the
conditional operator.

module mux2to1 (w0, w1, s, f);
input w0, w1, s;
output reg f;

always @(w0, w1, s)
f = s ? w1 : w0;

endmodule

Figure 6.28 An alternative specification of a 2-to-1
multiplexer using the conditional operator.

module mux4to1 (w0, w1, w2, w3, S, f);
input w0, w1, w2, w3;
input [1:0] S;
output f;

assign f = S[1] ? (S[0] ? w3 : w2) : (S[0] ? w1 : w0);

endmodule

Figure 6.29 A 4-to-1 multiplexer specified using the conditional operator.
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if s0 = 1 and f is set to w2 if s0 = 0. This corresponds to the third and fourth rows of the
truth table in Figure 6.2b. Similarly, if s1 = 0 the conditional operator on the right chooses
f = w1 if s0 = 1 and f = w0 if s0 = 0, thus realizing the first two rows of the truth table.

6.6.2 The If-Else Statement

We have already used the if-else statement in previous chapters. It has the syntax

if (conditional_expression) statement;
else statement;

The conditional expression may use the operators given in Table A.1. If the expression
is evaluated to true then the first statement (or a block of statements delineated by begin
and end keywords) is executed or else the second statement (or a block of statements) is
executed.

Example 6.13 Figure 6.30 shows how the if-else statement can be used to describe a 2-to-1 multiplexer.
The if clause states that f is assigned the value of w0 when s = 0. Else, f is assigned the
value of w1.

The if-else statement can be used to implement larger multiplexers. A4-to-1 multiplexer
is shown in Figure 6.31. The if-else clauses set f to the value of one of the inputs w0, . . . , w3,
depending on the valuation of S. Compiling the code results in the circuit shown in Figure
6.2c.

Another way of defining the same circuit is presented in Figure 6.32. In this case, a
four-bit vector W is defined instead of single-bit signals w0, w1, w2, and w3. Also, the four
different values of S are specified as decimal rather than binary numbers.

Example 6.14 Figure 6.4 shows how a 16-to-1 multiplexer is built using five 4-to-1 multiplexers. Figure
6.33 presents Verilog code for this circuit using five instantiations of the mux4to1 module.

module mux2to1 (w0, w1, s, f);
input w0, w1, s;
output reg f;

always @(w0, w1, s)
if (s == 0)

f = w0;
else

f = w1;

endmodule

Figure 6.30 Code for a 2-to-1 multiplexer using the
if-else statement.
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module mux4to1 (w0, w1, w2, w3, S, f);
input w0, w1, w2, w3;
input [1:0] S;
output reg f;

always @(*)
if (S == 2’b00)

f = w0;
else if (S == 2’b01)

f = w1;
else if (S == 2’b10)

f = w2;
else

f = w3;

endmodule

Figure 6.31 Code for a 4-to-1 multiplexer using the if-else
statement.

module mux4to1 (W, S, f);
input [0:3] W;
input [1:0] S;
output reg f;

always @(W, S)
if (S == 0)

f = W[0];
else if (S == 1)

f = W[1];
else if (S == 2)

f = W[2];
else

f = W[3];

endmodule

Figure 6.32 Alternative specification of a 4-to-1
multiplexer.

The data inputs to the mux16to1 module are the 16-bit vector W , and the select inputs are
the four-bit vector S16. In the Verilog code signal names are needed for the outputs of the
four 4-to-1 multiplexers on the left of Figure 6.4. A four-bit signal named M is used for
this purpose. The first multiplexer instantiated, Mux1, corresponds to the multiplexer at
the top left of Figure 6.4. Its first four ports, which correspond to w0, . . . , w3 in Figure
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module mux16to1 (W, S16, f);
input [0:15] W;
input [3:0] S16;
output f;
wire [0:3] M;

mux4to1 Mux1 (W[0:3], S16[1:0], M[0]);
mux4to1 Mux2 (W[4:7], S16[1:0], M[1]);
mux4to1 Mux3 (W[8:11], S16[1:0], M[2]);
mux4to1 Mux4 (W[12:15], S16[1:0], M[3]);
mux4to1 Mux5 (M[0:3], S16[3:2], f);

endmodule

Figure 6.33 Hierarchical code for a 16-to-1 multiplexer.

6.31, are driven by the signals W [0], . . . , W [3]. The syntax S16[1:0] is used to attach
the signals S16[1] and S16[0] to the two-bit S port of the mux4to1 module. The M [0]
signal is connected to the multiplexer’s output port. Similarly, Mux2, Mux3, and Mux4 are
instantiations of the next three multiplexers on the left. The multiplexer on the right of
Figure 6.4 is instantiated as Mux5. The signals M [0], . . . , M [3] are connected to its data
inputs, and bits S16[3] and S16[2], which are specified by the syntax S16[3:2], are attached
to the select inputs. The output port generates the mux16to1 output f . Compiling the code
results in the multiplexer function

f = s3s2s1s0w0 + s3s2s1s0w1 + s3s2s1s0w2 + · · · + s3s2s1s0w14 + s3s2s1s0w15

Since the mux4to1 module is being instantiated in the code of Figure 6.33, it is necessary
to either include the code of Figure 6.32 in the same file as the mux16to1 module or place
the mux4to1 module in a separate file in the same directory, or a directory with a specified
path so that the Verilog compiler can find it. Observe that if the code in Figure 6.31 were
used as the required mux4to1 module, then we would have to list the ports separately, as in
W [0], W [1], W [2], W [3], rather than as the vector W [0:3].

6.6.3 The Case Statement

The if-else statement provides the means for choosing an alternative based on the value of
an expression. When there are many possible alternatives, the code based on this statement
may become awkward to read. Instead, it is often possible to use the Verilog case statement
which is defined as
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case (expression)
alternative1: statement;
alternative2: statement;
·
·
·
alternativej: statement;
[default: statement;]

endcase

The controlling expression and each alternative are compared bit by bit. When there is
one or more matching alternative, the statement(s) associated with the first match (only)
is executed. When the specified alternatives do not cover all possible valuations of the
controlling expression, the optional default clause should be included. Otherwise, the
Verilog compiler will synthesize memory elements to deal with the unspecified possibilities;
we will discuss this issue in Chapter 7.

Example 6.15The case statement can be used to define a 4-to-1 multiplexer as shown in Figure 6.34. The
four values that the select vector S can have are given as decimal numbers, but they could
also be given as binary numbers.

module mux4to1 (W, S, f);
input [0:3] W;
input [1:0] S;
output reg f;

always @(W, S)
case (S)

0: f = W[0];
1: f = W[1];
2: f = W[2];
3: f = W[3];

endcase

endmodule

Figure 6.34 A 4-to-1 multiplexer defined using the
case statement.
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Example 6.16 Figure 6.35 shows how a case statement can be used to describe the truth table for a 2-to-4
binary decoder. The module is called dec2to4. The data inputs are the two-bit vector W ,
and the enable input is En. The four outputs are represented by the four-bit vector Y .

In the truth table for the decoder in Figure 6.16a, the inputs are listed in the order
En w1 w0. To represent these three signals in the controlling expression, the Verilog code
uses the concatenate operator to combine the En and W signals into a three-bit vector. The
four alternatives in the case statement correspond to the truth table in Figure 6.16a where
En = 1, and the decoder outputs have the same patterns as in the first four rows of the
truth table. The last clause uses the default keyword and sets the decoder outputs to 0000,
because it represents all other cases, namely those where En = 0.

Example 6.17 The 2-to-4 decoder can be specified using a combination of if-else and case statements as
given in Figure 6.36. The case alternatives are evaluated if En = 1; otherwise, all four bits
of the output Y are set to the value 0.

Example 6.18 The tree structure of the 4-to-16 decoder in Figure 6.18 can be defined as shown in Figure
6.37. The inputs are a four-bit vector W and an enable signal En. The outputs are represented
by the 16-bit vector Y . The circuit uses five instances of the 2-to-4 decoder defined in either
Figure 6.35 or 6.36. The outputs of the leftmost decoder in Figure 6.18 are denoted as the
four-bit vector M in Figure 6.37.

module dec2to4 (W, Y, En);
input [1:0] W;
input En;
output reg [0:3] Y;

always @(W, En)
case ({En, W})

3’b100: Y = 4’b1000;
3’b101: Y = 4’b0100;
3’b110: Y = 4’b0010;
3’b111: Y = 4’b0001;
default: Y = 4’b0000;

endcase

endmodule

Figure 6.35 Verilog code for a 2-to-4 binary decoder.
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module dec2to4 (W, Y, En);
input [1:0] W;
input En;
output reg [0:3] Y;

always @(W, En)
begin

if (En == 0)
Y = 4’b0000;

else
case (W)

0: Y = 4’b1000;
1: Y = 4’b0100;
2: Y = 4’b0010;
3: Y = 4’b0001;

endcase
end

endmodule

Figure 6.36 Alternative code for a 2-to-4 binary
decoder.

module dec4to16 (W, Y, En);
input [3:0] W;
input En;
output [0:15] Y;
wire [0:3] M;

dec2to4 Dec1 (W[3:2], M[0:3], En);
dec2to4 Dec2 (W[1:0], Y[0:3], M[0]);
dec2to4 Dec3 (W[1:0], Y[4:7], M[1]);
dec2to4 Dec4 (W[1:0], Y[8:11], M[2]);
dec2to4 Dec5 (W[1:0], Y[12:15], M[3]);

endmodule

Figure 6.37 Verilog code for a 4-to-16 decoder.

Example 6.19Another example of a case statement is given in Figure 6.38. The module, seg7, represents
the BCD-to-7-segment decoder in Figure 6.25. The BCD input is the four-bit vector named
bcd, and the seven outputs are the seven-bit vector named leds. The case alternatives are
listed so that they resemble the truth table in Figure 6.25c. Note that there is a comment
to the right of the case statement, which labels the seven outputs with the letters from a
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module seg7 (bcd, leds);
input [3:0] bcd;
output reg [1:7] leds;

always @(bcd)
case (bcd) //abcdefg

0: leds = 7’b1111110;
1: leds = 7’b0110000;
2: leds = 7’b1101101;
3: leds = 7’b1111001;
4: leds = 7’b0110011;
5: leds = 7’b1011011;
6: leds = 7’b1011111;
7: leds = 7’b1110000;
8: leds = 7’b1111111;
9: leds = 7’b1111011;
default: leds = 7’bx;

endcase

endmodule

Figure 6.38 Code for a BCD-to-7-segment decoder.

to g. These labels indicate to the reader the correlation between the bits of the leds vector
in the Verilog code and the seven segments in Figure 6.25b. The final case alternative sets
all seven bits of leds to x. Recall that x is used in Verilog to denote a don’t-care condition.
This alternative represents the don’t-care conditions discussed for Figure 6.25, which are
the cases where the bcd input does not represent a valid BCD digit.

Example 6.20 An arithmetic logic unit (ALU) is a logic circuit that performs various Boolean and arithmetic
operations on n-bit operands. In section 3.5 we discussed a family of standard chips called
the 7400-series chips. We said that some of these chips contain basic logic gates, and
others provide commonly used logic circuits. One example of an ALU is the chip called
the 74381. Table 6.1 specifies the functionality of this chip. It has 2 four-bit data inputs, A
and B, a three-bit select input, S, and a four-bit output, F . As the table shows, F is defined
by various arithmetic or Boolean operations on the inputs A and B. In this table + means
arithmetic addition, and−means arithmetic subtraction. To avoid confusion, the table uses
the words XOR, OR, and AND for the Boolean operations. Each Boolean operation is done
in a bitwise fashion. For example, F = A AND B produces the four-bit result f0 = a0b0,
f1 = a1b1, f2 = a2b2, and f3 = a3b3.

Figure 6.39 shows how the functionality of the 74381 ALU can be described in Verilog
code. The case statement shown corresponds directly to Table 6.1. To check the function-
ality of the code, we synthesized a circuit for implementation in a PLD, and show a timing
simulation in Figure 6.40. For each valuation of s, the circuit generates the appropriate
Boolean or arithmetic operation.



March 13, 2007 12:06 vra80334_ch06 Sheet number 35 Page number 355 black

6.6 Verilog for Combinational Circuits 355

Table 6.1 The functionality
of the 74381
ALU.

Inputs Outputs
Operation s2 s1 s0 F

Clear 0 0 0 0 0 0 0

B−A 0 0 1 B− A

A−B 0 1 0 A− B

ADD 0 1 1 A+ B

XOR 1 0 0 A XOR B

OR 1 0 1 A OR B

AND 1 1 0 A AND B

Preset 1 1 1 1 1 1 1

// 74381 ALU
module alu (s, A, B, F);

input [2:0] s;
input [3:0] A, B;
output reg [3:0] F;

always @(s, A, B)
case (s)

0: F = 4’b0000;
1: F = B – A;
2: F = A – B;
3: F = A + B;
4: F = A B;
5: F = A B;
6: F = A & B;
7: F = 4’b1111;

endcase

endmodule

Figure 6.39 Code that represents the functionality of
the 74381 ALU chip.

The Casex and Casez Statements
In the case statement it is possible to use the logic values 0, 1, z, and x in the case

alternatives. Abit-by-bit comparison is used to determine the match between the expression
and one of the alternatives.

Verilog provides two variants of the case statement that treat the z and x values in
a different way. The casez statement treats all z values in the case alternatives and the
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Figure 6.40 Timing simulation for the code in Figure 6.39.

controlling expression as don’t cares. The casex statement treats all z and x values as don’t
cares.

Example 6.21 Figure 6.41 gives Verilog code for the priority encoder defined in Figure 6.24. The desired
priority scheme is realized by using a casex statement. The first alternative specifies that,
if the input w3 is 1, then the output is set to y1y0 = 3. This assignment does not depend on
the values of inputs w2, w1, or w0; hence their values do not matter. The other alternatives
in the casex statement are evaluated only if w3 = 0. The second alternative states that if
w2 is 1, then y1y0 = 2. If w2 = 0, then the next alternative results in y1y0 = 1 if w1 = 1. If
w3 = w2 = w1 = 0 and w0 = 1, then the fourth alternative results in y1y0 = 0.

module priority (W, Y, z);
input [3:0] W;
output reg [1:0] Y;
output reg z;

always @(W)
begin

z = 1;
casex (W)

4’b1xxx: Y = 3;
4’b01xx: Y = 2;
4’b001x: Y = 1;
4’b0001: Y = 0;
default: begin

z = 0;
Y = 2’bx;

end
endcase

end

endmodule

Figure 6.41 Verilog code for a priority encoder.
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The priority encoder’s output z must be set to 1 whenever at least one of the data inputs
is 1. This output is set to 1 at the start of the always block. If none of the four alternatives
matches the value of W , then the default clause is executed. It consists of a two-statement
block that resets z to 0 and indicates that the Y output can be set to any pattern because it
will be ignored.

6.6.4 The For Loop

If the structure of a desired circuit exhibits a certain regularity, it may be possible to define
the circuit using a for loop. We introduced the for loop in section 5.5.4, where it was useful
in a generic specification of a ripple-carry adder. The for loop has the syntax

for (initial_index; terminal_index; increment) statement;

A loop control variable, which has to be of type integer, is set to the value given as the
initial index. It is used in the statement or a block of statements delineated by begin and end
keywords. After each iteration, the control variable is changed as defined in the increment.
The iterations end after the control variable has reached the terminal index.

Unlike for loops in high-level programming languages, the Verilog for loop does not
specify changes that take place in time through successive loop iterations. Instead, during
each iteration it specifies a different subcircuit. In Figure 5.28 the for loop was used to
define a cascade of full-adder subcircuits to form an n-bit ripple-carry adder. The for loop
can be used to define many other structures as illustrated by the next two examples.

Example 6.22Figure 6.42 shows how the for loop can be used to specify a 2-to-4 decoder circuit. The
effect of the loop is to repeat the if-else statement four times, for k = 0, . . . , 3. The first

module dec2to4 (W, Y, En);
input [1:0] W;
input En;
output reg [0:3] Y;
integer k;

always @(W, En)
for (k = 0; k < = 3; k = k+1)

if ((W == k) && (En == 1))
Y[k] = 1;

else
Y[k] = 0;

endmodule

Figure 6.42 A 2-to-4 binary decoder specified using the for
loop.
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loop iteration sets y0 = 1 if W = 0 and En = 1. Similarly, the other three iterations set the
values of y1, y2, and y3 according to the values of W and En.

This arrangement can be used to specify a large n-to-2n decoder simply by increasing
the sizes of vectors W and Y accordingly, and making n − 1 be the terminal index value
of k.

Example 6.23 The priority encoder of Figure 6.24 can be defined by the Verilog code in Figure 6.43. In
the always block, the output bits y1 and y0 are first set to the don’t-care state and z is cleared
to 0. Then, if one or more of the four inputs w3, . . . , w0 is equal to 1, the for loop will set
the valuation of y1y0 to match the index of the highest priority input that has the value 1.
Note that each successive iteration through the loop corresponds to a higher priority. Verilog
semantics specify that a signal that receives multiple assignments in an always block retains
the last assignment. Thus the iteration that corresponds to the highest priority input that is
equal to 1 will override any setting of Y established during the previous iterations.

6.6.5 Verilog Operators

In this section we discuss the Verilog operators that are useful for synthesizing logic circuits.
Table 6.2 lists these operators in groups that reflect the type of operation performed. A more
complete listing of the operators is given in Table A.1.

module priority (W, Y, z);
input [3:0] W;
output reg [1:0] Y;
output reg z;
integer k;

always @(W)
begin

Y = 2’bx;
z = 0;
for (k = 0; k < 4; k = k+1)

if (W[k])
begin

Y = k;
z = 1;

end
end

endmodule

Figure 6.43 A priority encoder specified using the for
loop.
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Table 6.2 Verilog operators.

Operator type Operator symbols Operation performed Number of operands

Bitwise ∼ 1’s complement 1
& Bitwise AND 2
| Bitwise OR 2
∧ Bitwise XOR 2

∼ ∧ or ∧ ∼ Bitwise XNOR 2

Logical ! NOT 1
&& AND 2
‖ OR 2

Reduction & Reduction AND 1
∼& Reduction NAND 1
| Reduction OR 1
∼ | Reduction NOR 1
∧ Reduction XOR 1

∼∧ or ∧ ∼ Reduction XNOR 1

Arithmetic + Addition 2
− Subtraction 2
− 2’s complement 1
∗ Multiplication 2
/ Division 2

Relational > Greater than 2
< Less than 2

>= Greater than or equal to 2
<= Less than or equal to 2

Equality == Logical equality 2
! = Logical inequality 2

Shift >> Right shift 2
<< Left shift 2

Concatenation {,} Concatenation Any number

Replication {{}} Replication Any number

Conditional ?: Conditional 3

To illustrate the results produced by the various operators, we will use three-bit vectors
A[2:0], B[2:0] and C[2:0], as well as scalars f and w.

Bitwise Operators
Bitwise operators operate on individual bits of operands. The∼ operator forms the 1’s

complement of the operand such that the statement

C = ∼A;

produces the result c2 = a2, c1 = a1, and c0 = a0, where ai and ci are the bits of the vectors
A and C.
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Other bitwise operators operate on pairs of bits. The statement

C =A & B;

generates c2 = a2 · b2, c1 = a1 · b1, and c0 = a0 · b0. Similarly, the | and ∧ operators
perform bitwise OR and XOR operations. The ∧∼ operator, which can also be written as
∼∧, produces the XNOR such that

C =A∼∧ B;

gives c2 = a2 ⊕ b2, c1 = a1 ⊕ b1, and c0 = a0 ⊕ b0. If the operands are of unequal size,
then the shorter operand is extended by padding 0s to the left.

A scalar function may be assigned a value as a result of a bitwise operation on two
vector operands. In this case, it is only the least-significant bits of the operands that are
involved in the operation. Hence the statement

f =A ∧ B;

yields f = a0 ⊕ b0.
The bitwise operations may involve operands that include the unknown logic value x.

Then the operations are performed according to the truth tables in Figure 6.44. For example,
if P= 4’b101x and Q = 4’b1001, then P & Q = 4’b100x while P | Q = 4’b1011.

Logical Operators
The ! operator has the same effect on a scalar operand as the ∼ operator. Thus, f =

!w = ∼w. But the effect on a vector operand is different, namely if

f = !A;

then f = a2 + a1 + a0.

& 0 1 x | 0 1 x

0 0 0 0 0 0 1 x

1 0 1 x 1 1 1 1

x 0 x x x x 1 x

∧ 0 1 x ∧ 0 1 x

0 0 1 x 0 1 0 x

1 1 0 x 1 0 1 x

x x x x x x x x

Figure 6.44 Truth tables for bitwise operators.
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The && operator implements the AND operation such that

f =A && B;

produces f = (a2 + a1 + a0) · (b2 + b1 + b0). Similarly, using the || operator in

f =A || B;

gives f = (a2 + a1 + a0)+ (b2 + b1 + b0).

Reduction Operators
The reduction operators perform an operation on the bits of a single vector operand

and produce a one-bit result. Using the & operator in

f = &A;

produces f = a2 · a1 · a0. Similarly,

f = ∧A;

gives f = a2 ⊕ a1 ⊕ a0, and so on. As an example of reduction operator use, consider the
parity function discussed in section 5.8. The XOR circuit that computes the parity bit, p,
of an n-bit vector X can be defined with the statement

p = ∧X;

Arithmetic Operators
We have already encountered the arithmetic operators in Chapter 5. They perform

standard arithmetic operations. Thus

C =A+ B;

puts the three-bit sum of A plus B into C, while

C =A− B;

puts the difference of A and B into C. The operation

C = −A;

places the 2’s complement of A into C.
The addition, subtraction, and multiplication operations are supported by most CAD

synthesis tools. However, the division operation is often not supported. When the Verilog
compiler encounters an arithmetic operator, it usually synthesizes it by using an appropriate
module from a library.

Relational Operators
The relational operators are typically used as conditions in if-else and for statements.

These operators function in the same way as the corresponding operators in the C program-
ming language. An expression that uses the relational operators returns the value 1 if it is
evaluated as true, and the value 0 if evaluated as false. If there are any x (unknown) or z
bits in the operands, then the expression takes the value x.
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module compare (A, B, AeqB, AgtB, AltB);
input [3:0] A, B;
output reg AeqB, AgtB, AltB;

always @(A, B)
begin

AeqB = 0;
AgtB = 0;
AltB = 0;
if (A == B)

AeqB = 1;
else if (A > B)

AgtB = 1;
else

AltB = 1;
end

endmodule

Figure 6.45 Verilog code for a four-bit comparator.

Example 6.24 The use of relational operators in the if-else statement is illustrated in Figure 6.45. The
defined circuit is the four-bit comparator described in section 6.5.

Equality Operators
The expression (A==B) is evaluated as true if A is equal to B and false otherwise. The

!= operator has the opposite effect. The result is ambiguous (x) if either operand contains
x or z values.

Shift Operators
A vector operand can be shifted to the right or left by a number of bits specified as a

constant. When bits are shifted, the vacant bit positions are filled with 0s. For example,

B =A << 1;

results in b2 = a1, b1 = a0, and b0 = 0. Similarly,

B =A >> 2;

yields b2 = b1 = 0 and b0 = a2.

Concatenate Operator
This operator concatenates two or more vectors to create a larger vector. For example,

D = {A, B};
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defines the six-bit vector D = a2a1a0b2b1b0. Similarly, the concatenation

E = {3’b111, A, 2’b00};

produces the eight-bit vector E = 111a2a1a000.

Replication Operator
This operator allows repetitive concatenation of the same vector, which is replicated the

number of times indicated in the replication constant. For example, {3{A}} is equivalent to
writing {A, A, A}. The specification {4{2’b10}} produces the eight-bit vector 10101010.

The replication operator may be used in conjunction with the concatenate operator. For
instance, {2{A}, 3{B}} is equivalent to {A, A, B, B, B}. We introduced the concatenate
and replication operators in section 5.5.6 and illustrated their use in specifying the adder
circuits.

Conditional Operator
The conditional operator is discussed fully in section 6.6.1.

Operator Precedence
The Verilog operators are assumed to have the precedence indicated in Table 6.3.

The order of precedence is from top to bottom; operators in the top row have the highest
precedence and those in the bottom row have the lowest precedence. The operators listed
in the same row have the same precedence.

Table 6.3 Precedence of Verilog operators.

Operator type Operator symbols Precedence

Complement ! ∼ − Highest procedence

Arithmetic ∗ /
+ −

Shift << >>

Relational < <= > >=
Equality == ! =
Reduction & ∼&

∧ ∼∧
| ∼ |

Logical &&
‖

Conditional ?: Lowest precedence

The designer can use parentheses to change the precedence of operators in Verilog code
or remove any possible misinterpretation. It is a good practice to use parentheses to make
the code unambiguous and easy to read.
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6.6.6 The Generate Construct

In section 5.5.4 we introduced the generate loop capability which can be used to create
multiple instances of subcircuits. A subcircuit may be defined in a block of statements
delineated by the generate and endgenerate keywords. The subcircuit is instantiated
multiple times using a generate-index variable. This variable is defined using the genvar
keyword and it can have only positive integer values. It is not possible to use an index
declared as a normal integer variable.

Example 6.25 Figure 6.46 shows how the generate construct can be used to specify an n-bit ripple-carry
adder. The subcircuit is a full-adder defined structurally in terms of primitive gates as
introduced in Figure 5.22. The for loop causes the full-adder block to be instantiated n
times.

In this example, the for statement is used in the generate block to control the selection
of the generated objects. The generate block can also contain if-else and case statements
to determine which objects are generated.

module addern (carryin, X, Y, S, carryout);
parameter n = 32;
input carryin;
input [n –1:0] X, Y;
output [n –1:0] S;
output carryout;
wire [n:0] C;

genvar k;
assign C[0] = carryin;
assign carryout = C[n];
generate

for (k = 0; k < n; k = k+1)
begin: fulladd_stage

wire z1, z2, z3; //wires within full-adder
xor (S[k], X[k], Y[k], C[k]);
and (z1, X[k], Y[k]);
and (z2, X[k], C[k]);
and (z3, Y[k], C[k]);
or (C[k+1], z1, z2, z3);

end
endgenerate

endmodule

Figure 6.46 Using the generate loop to define an n-bit
ripple-carry adder.
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6.6.7 Tasks and Functions

In high-level programming languages it is possible to use subroutines and functions to
avoid replicating specific routines that may be needed in several places of a given program.
Verilog provides similar capabilities, known as tasks and functions. They can be used to
modularize large designs and make the Verilog code easier to understand.

Verilog Task
A task is declared by the keyword task and it comprises a block of statements that ends

with the keyword endtask. The task must be included in the module that calls it. It may
have input and output ports. These are not the ports of the module that contains the task,
which are used to make external connections to the module. The task ports are used only
to pass values between the module and the task.

Example 6.26In Figure 6.33 we showed the Verilog code for a 16-to-1 multiplexer that instantiates five
copies of a 4-to-1 multiplexer circuit given in a separate module named mux4to1. The same
circuit can be specified using the task approach as shown in Figure 6.47. Observe the key
differences. The task mux4to1 is included in the module mux16to1. It is called from an
always block by means of an appropriate case statement. The output of a task must be a
variable, hence g is of reg type.

Verilog Function
A function is declared by the keyword function and it comprises a block of statements

that ends with the keyword endfunction. The function must have at least one input and it
returns a single value that is placed where the function is invoked.

Example 6.27Figure 6.48 shows how the code in Figure 6.47 can be written to use a function. The Verilog
compiler essentially inserts the body of the function at each place where it is called. Hence
the clause

0: f = mux4to1 (W[0:3], S16[1:0]);

becomes

0: case (S16[1:0])
0: f =W[0];
1: f =W[1];
2: f =W[2];
3: f =W[3];

endcase
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module mux16to1 (W, S16, f);
input [0:15] W;
input [3:0] S16;
output reg f;

always @(W, S16)
case (S16[3:2])

0: mux4to1 (W[0:3], S16[1:0], f);
1: mux4to1 (W[4:7], S16[1:0], f);
2: mux4to1 (W[8:11], S16[1:0], f);
3: mux4to1 (W[12:15], S16[1:0], f);

endcase

// Task that specifies a 4-to-1 multiplexer
task mux4to1;

input [0:3] X;
input [1:0] S4;
output reg g;

case (S4)
0: g = X[0];
1: g = X[1];
2: g = X[2];
3: g = X[3];

endcase
endtask

endmodule

Figure 6.47 Use of a task in Verilog code.

The function serves as a convenience that makes the mux16to1 module compact and easier
to read.

A Verilog function can invoke another function but it cannot call a Verilog task. A task
may call another task and it may invoke a function. In Figure 6.47 we defined the task after
the always block that calls it. In contrast, in Figure 6.48 we defined the function before
the always block that invokes it. Both possibilities are allowed in the Verilog standard for
both tasks and functions. However, some tools require functions to be defined before the
statements that invoke them.
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module mux16to1 (W, S16, f);
input [0:15] W;
input [3:0] S16;
output reg f;

// Function that specifies a 4-to-1 multiplexer
function mux4to1;

input [0:3] X;
input [1:0] S4;

case (S4)
0: mux4to1 = X[0];
1: mux4to1 = X[1];
2: mux4to1 = X[2];
3: mux4to1 = X[3];

endcase
endfunction

always @(W, S16)
case (S16[3:2])

0: f = mux4to1 (W[0:3], S16[1:0]);
1: f = mux4to1 (W[4:7], S16[1:0]);
2: f = mux4to1 (W[8:11], S16[1:0]);
3: f = mux4to1 (W[12:15], S16[1:0]);

endcase

endmodule

Figure 6.48 The code from Figure 6.47 using a function.

6.7 Concluding Remarks

This chapter has introduced a number of circuit building blocks. Examples using these
blocks to construct larger circuits will be presented in Chapters 7 and 10. To describe the
building block circuits efficiently, several Verilog constructs have been introduced. In many
cases a given circuit can be described in various ways, using different constructs. A circuit
that can be described using an if-else statement can also be described using a case statement
or perhaps a for loop. In general, there are no strict rules that dictate when one style should
be preferred over another. With experience the user develops a sense for which types of
statements work well in a particular design situation. Personal preference also influences
how the code is written.

Verilog is not a programming language, and Verilog code should not be written as if it
were a computer program. The statements discussed in this chapter can be used to create
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large, complex circuits. A good way to design such circuits is to construct them using well-
defined modules, in the manner that we illustrated for the multiplexers, decoders, encoders,
and so on. Additional examples using the Verilog statements introduced in this chapter are
given in Chapters 7 and 8. In Chapter 10 we provide a number of examples of using Verilog
code to describe larger digital systems. For more information on Verilog, the reader can
consult more specialized books [5–11].

In the next chapter we introduce logic circuits that include the ability to store logic
signal values in memory elements.

6.8 Examples of Solved Problems

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

Example 6.28 Problem: Implement the function f (w1, w2, w3) =∑
m(0, 1, 3, 4, 6, 7) by using a 3-to-8

binary decoder and an OR gate.

Solution: The decoder generates a separate output for each minterm of the required function.
These outputs are then combined in the OR gate, giving the circuit in Figure 6.49.

Example 6.29 Problem: Derive a circuit that implements an 8-to-3 binary encoder.

Solution: The truth table for the encoder is shown in Figure 6.50. Only those rows for
which a single input variable is equal to 1 are shown; the other rows can be treated as don’t
care cases. From the truth table it is seen that the desired circuit is defined by the equations

y2 = w4 + w5 + w6 + w7

y1 = w2 + w3 + w6 + w7

y0 = w1 + w3 + w5 + w7
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Figure 6.49 Circuit for Example 6.28.
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Figure 6.50 Truth table for an 8-to-3 binary encoder.

Example 6.30Problem: Implement the function

f (w1, w2, w3, w4) = w1w2w4w5 + w1w2 + w1w3 + w1w4 + w3w4w5

by using a 4-to-1 multiplexer and as few other gates as possible. Assume that only the
uncomplemented inputs w1, w2, w3, and w4 are available.

Solution: Since variables w1 and w4 appear in more product terms in the expression for
f than the other three variables, let us perform Shannon’s expansion with respect to these
two variables. The expansion gives

f = w1w4fw1w4 + w1w4fw1w4 + w1w4fw1w4 + w1w4fw1w4

= w1w4(w2w5)+ w1w4(w3w5)+ w1w4(w2 + w3)+ w1w2(1)

We can use a NOR gate to implement w2w5 = w2 + w5. We also need an AND gate and
an OR gate. The complete circuit is presented in Figure 6.51.

Example 6.31Problem: In Chapter 4 we pointed out that the rows and columns of a Karnaugh map
are labeled using Gray code. This is a code in which consecutive valuations differ in one
variable only. Figure 6.52 depicts the conversion between three-bit binary and Gray codes.
Design a circuit that can convert a binary code into Gray code according to the figure.

Solution: From the figure it follows that

g2 = b2

g1 = b1b2 + b1b2

= b1 ⊕ b2

g0 = b0b1 + b0b1

= b0 ⊕ b1
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Figure 6.51 Circuit for Example 6.30.
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Figure 6.52 Binary to Gray code coversion.

Example 6.32 Problem: In section 6.1.2 we showed that any logic function can be decomposed using
Shannon’s expansion theorem. For a four-variable function, f (w1, . . . , w4), the expansion
with respect to w1 is

f (w1, . . . , w4) = w1fw1 + w1fw1

A circuit that implements this expression is given in Figure 6.53a.
(a) If the decomposition yields fw1 = 0, then the multiplexer in the figure can be replaced
by a single logic gate. Show this circuit.
(b) Repeat part (a) for the case where fw1 = 1.

Solution: The desired circuits are shown in parts (b) and (c) of Figure 6.53.
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Figure 6.53 Circuits for Example 6.32.

Example 6.33Problem: In several commercial FPGAs the logic blocks are 4-LUTs. What is the minimum
number of 4-LUTs needed to construct a 4-to-1 multiplexer with select inputs s1 and s0 and
data inputs w3, w2, w1, and w0?

Solution: A straightforward attempt is to use directly the expression that defines the 4-to-1
multiplexer

f = s1s0w0 + s1s0w1 + s1s0w2 + s1s0w3

Let g = s1s0w0 + s1s0w1 and h = s1s0w2 + s1s0w3, so that f = g + h. This decomposition
leads to the circuit in Figure 6.54a, which requires three LUTs.

When designing logic circuits, one can sometimes come up with a clever idea which
leads to a superior implementation. Figure 6.54b shows how it is possible to implement
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Figure 6.54 Circuits for Example 6.33.

the multiplexer with just two LUTs, based on the following observation. The truth table in
Figure 6.2b indicates that when s1 = 0 the output must be either w0 or w1, as determined
by the value of s0. This can be generated by the first LUT. The second LUT must make the
choice between w2 and w3 when s1 = 1. But, the choice can be made only by knowing the
value of s0. Since it is impossible to have five inputs in the LUT, more information has to
be passed from the first to the second LUT. Observe that when s1 = 1 the output f will be
equal to either w2 or w3, in which case it is not necessary to know the values of w0 and w1.
Hence, in this case we can pass on the value of s0 through the first LUT, rather than w0 or
w1. This can be done by making the function of this LUT

k = s1s0w0 + s1s0w1 + s1s0

Then, the second LUT performs the function

f = s1k + s1kw3 + s1kw4
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Figure 6.55 A shifter circuit.

Example 6.34Problem: In digital systems it is often necessary to have circuits that can shift the bits of
a vector by one or more bit positions to the left or right. Design a circuit that can shift a
four-bit vector W = w3w2w1w0 one bit position to the right when a control signal Shift is
equal to 1. Let the outputs of the circuit be a four-bit vector Y = y3y2y1y0 and a signal k,
such that if Shift = 1 then y3 = 0, y2 = w3, y1 = w2, y0 = w1, and k = w0. If Shift = 0
then Y = W and k = 0.

Solution: The required circuit can be implemented with five 2-to-1 multiplexers as shown
in Figure 6.55. The Shift signal is used as the select input to each multiplexer.

Example 6.35Problem: The shifter circuit in Example 6.34 shifts the bits of an input vector by one bit
position to the right. It fills the vacated bit on the left side with 0. A more versatile shifter
circuit may be able to shift by more bit positions at a time. If the bits that are shifted out are
placed into the vacated positions on the left, then the circuit effectively rotates the bits of
the input vector by a specified number of bit positions. Such a circuit is often called a barrel
shifter. Design a four-bit barrel shifter that rotates the bits by 0, 1, 2, or 3 bit positions as
determined by the valuation of two control signals s1 and s0.

Solution: The required action is given in Figure 6.56a. The barrel shifter can be imple-
mented with four 4-to-1 multiplexers as shown in Figure 6.56b. The control signals s1 and
s0 are used as the select inputs to the multiplexers.

Example 6.36Problem: Write Verilog code that represents the circuit in Figure 6.19. Use the dec2to4
module in Figure 6.35 as a subcircuit in your code.

Solution: The code is shown in Figure 6.57. Note that the dec2to4 module can be included
in the same file as we have done in the figure, but it can also be in a separate file in the
project directory.
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Figure 6.56 A barrel shifter circuit.

Example 6.37 Problem: Write Verilog code that represents the shifter circuit in Figure 6.55.

Solution: One possibility is to specify the structure of this circuit as shown in Figure 6.58.
The if-else construct is used to define the desired shifting of individual bits. A typical
Verilog compiler will implement this code with 2-to-1 multiplexers as depicted in Figure
6.55.

An alternative is to make use of the shift operator defined in section 6.6.5, as indicated
in Figure 6.59.

Example 6.38 Problem: Write Verilog code that defines the barrel shifter in Figure 6.56.

Solution: The code in Figure 6.60 is a possible solution. The rotate function is accomplished
by concatenating two copies of the input vector W and shifting the obtained 8-bit vector to
the right by the number of bit positions specified as the input S. The four least-significant
bits of the resulting 8-bit vector are the desired output Y.
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module mux4to1 (W, S, f);
input [0:3] W;
input [1:0] S;
output f;
wire [0:3] Y;

dec2to4 decoder (S, Y, 1);
assign f = (W & Y);

endmodule

module dec2to4 (W, Y, En);
input [1:0] W;
input En;
output reg [0:3] Y;

always @(W, En)
case ({En, W})

3’b100: Y = 4’b1000;
3’b101: Y = 4’b0100;
3’b110: Y = 4’b0010;
3’b111: Y = 4’b0001;
default: Y = 4’b0000;

endcase

endmodule

Figure 6.57 Verilog code for Example 6.36.

Problems

Answers to problems marked by an asterisk are given at the back of the book.

6.1 Show how the function f (w1, w2, w3) =∑
m(0, 2, 3, 4, 5, 7) can be implemented using a

3-to-8 binary decoder and an OR gate.

6.2 Show how the function f (w1, w2, w3) = ∑
m(1, 2, 3, 5, 6) can be implemented using a

3-to-8 binary decoder and an OR gate.

*6.3 Consider the function f = w1w3+w2w3+w1w2. Use the truth table to derive a circuit for
f that uses a 2-to-1 multiplexer.

6.4 Repeat problem 6.3 for the function f = w2w3 + w1w2.

*6.5 For the function f (w1, w2, w3) = ∑
m(0, 2, 3, 6), use Shannon’s expansion to derive an

implementation using a 2-to-1 multiplexer and any other necessary gates.
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module shifter (W, Shift, Y, k);
input [3:0] W;
input Shift;
output reg [3:0] Y;
output reg k;

always @(W, Shift)
begin

if (Shift)
begin

Y[3] = 0;
Y[2:0] = W[3:1];
k = W[0];

end
else
begin

Y = W;
k = 0;

end
end

endmodule

Figure 6.58 Verilog code for the circuit in Figure 6.55.

6.6 Repeat problem 6.5 for the function f (w1, w2, w3) =∑
m(0, 4, 6, 7).

6.7 Consider the function f = w2+w1w3+w1w3. Show how repeated application of Shannon’s
expansion can be used to derive the minterms of f .

6.8 Repeat problem 6.7 for f = w2 + w1w3.

6.9 Prove Shannon’s expansion theorem presented in section 6.1.2.

*6.10 Section 6.1.2 shows Shannon’s expansion in sum-of-products form. Using the principle of
duality, derive the equivalent expression in product-of-sums form.

6.11 Consider the function f = w1w2+w2w3+w1w2w3. Give a circuit that implements f using
the minimal number of two-input LUTs. Show the truth table implemented inside each
LUT.

*6.12 For the function in problem 6.11, the cost of the minimal sum-of-products expression is 14,
which includes four gates and 10 inputs to the gates. Use Shannon’s expansion to derive a
multilevel circuit that has a lower cost and give the cost of your circuit.

6.13 Consider the function f (w1, w2, w3, w4) =∑
m(0, 1, 3, 6, 8, 9, 14, 15). Derive an imple-

mentation using the minimum possible number of three-input LUTs.

*6.14 Give two examples of logic functions with five inputs, w1, . . . , w5, that can be realized
using 2 four-input LUTs.
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module shifter (W, Shift, Y, k);
input [3:0] W;
input Shift;
output reg [3:0] Y;
output reg k;

always @(W, Shift)
begin

if (Shift)
begin

Y = W >  > 1;
k = W[0];

end
else
begin

Y = W;
k = 0;

end
end

endmodule

Figure 6.59 Alternative Verilog code for the circuit in
Figure 6.55.

module barrel (W, S, Y);
input [3:0] W;
input [1:0] S;
output [3:0] Y;
wire [3:0] T;

assign {T, Y} = {W, W} >> S;

endmodule

Figure 6.60 Verilog code for the barrel shifter.

6.15 For the function, f , in Example 6.30 perform Shannon’s expansion with respect to variables
w1 and w2, rather than w1 and w4. How does the resulting circuit compare with the circuit
in Figure 6.51?

6.16 Actel Corporation manufactures an FPGA family called Act 1, which has the multiplexer-
based logic block illustrated in Figure P6.1. Show how the function f = w2w3 + w1w3 +
w2w3 can be implemented using only one Act 1 logic block.
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Figure P6.1 The Actel Act 1 logic block.

6.17 Show how the function f = w1w3+w1w3+w2w3+w1w2 can be realized using Act 1 logic
blocks. Note that there are no NOT gates in the chip; hence complements of signals have
to be generated using the multiplexers in the logic block.

*6.18 Consider the Verilog code in Figure P6.2. What type of circuit does the code represent?
Comment on whether or not the style of code used is a good choice for the circuit that it
represents.

module problem6_18 (W, En, y0, y1, y2, y3);
input [1:0] W;
input En;
output reg y0, y1, y2, y3;

always @(W, En)
begin

y0 = 0;
y1 = 0;
y2 = 0;
y3 = 0;
if (En)

if (W == 0) y0 = 1;
else if (W == 1) y1 = 1;
else if (W == 2) y2 = 1;
else y3 = 1;

end

endmodule

Figure P6.2 Code for problem 6.18.
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6.19 Write Verilog code that represents the function in problem 6.2, using a case statement.

6.20 Write Verilog code for a 4-to-2 binary encoder.

6.21 Write Verilog code for an 8-to-3 binary encoder.

6.22 Figure P6.3 shows a modified version of the code for a 2-to-4 decoder in Figure 6.42. This
code is almost correct but contains one error. What is the error?

module dec2to4 (W, Y, En);
input [1:0] W;
input En;
output reg [0:3] Y;
integer k;

always @(W, En)
for (k = 0; k < = 3; k = k+1)

if (W == k)
Y[k] = En;

endmodule

Figure P6.3 Code for problem 6.22.

6.23 Derive the circuit for an 8-to-3 priority encoder.

6.24 Using a casex statement, write Verilog code for an 8-to-3 priority encoder.

6.25 Repeat problem 6.24, using a for loop.

6.26 Create a Verilog module named if2to4 that represents a 2-to-4 binary decoder using an
if-else statement. Create a second module named h3to8 that represents the 3-to-8 binary
decoder in Figure 6.17 using two instances of the if2to4 module.

6.27 Create a Verilog module named h6to64 that represents a 6-to-64 binary decoder. Use the
treelike structure in Figure 6.18, in which the 6-to-64 decoder is built using nine instances
of the h3to8 decoder created in problem 6.26.

6.28 Write Verilog code that represents the circuit in Figure 6.19. Use the dec2to4 module in
Figure 6.35 as a subcircuit in your code.

*6.29 Derive minimal sum-of-products expressions for the outputs a, b, and c of the 7-segment
display in Figure 6.25.

6.30 Derive minimal sum-of-products expressions for the outputs d , e, f , and g of the 7-segment
display in Figure 6.25.

6.31 Figure 6.21 shows a block diagram of a ROM. A circuit that implements a small ROM, with
four rows and four columns, is depicted in Figure P6.4. Each X in the figure represents a
switch that determines whether the ROM produces a 1 or 0 when that location is read.
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(a) Show how a switch (X) can be realized using a single NMOS transistor.
(b) Draw the complete 4×4 ROM circuit, using your switches from part (a). The ROM
should be programmed to store the bits 0101 in row 0 (the top row), 1010 in row 1, 1100 in
row 2, and 0011 in row 3 (the bottom row).
(c) Show how each (X) can be implemented as a programmable switch (as opposed to
providing either a 1 or 0 permanently), using an EEPROM cell as shown in Figure 3.64.
Briefly describe how the storage cell is used.

d3 d2 d1 d0

VDD

2-
to

-4
 d

ec
od

er

a0

a1

Figure P6.4 A 4× 4 ROM circuit.

6.32 Show the complete circuit for a ROM using the storage cells designed in Part (a) of problem
6.31 that realizes the logic functions

d3 = a0 ⊕ a1

d2 = a0 ⊕ a1

d1 = a0a1

d0 = a0 + a1
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In previous chapters we considered combinational circuits where the value of each output depends solely on
the values of signals applied to the inputs. There exists another class of logic circuits in which the values of the
outputs depend not only on the present values of the inputs but also on the past behavior of the circuit. Such
circuits include storage elements that store the values of logic signals. The contents of the storage elements
are said to represent the state of the circuit. When the circuit’s inputs change values, the new input values
either leave the circuit in the same state or cause it to change into a new state. Over time the circuit changes
through a sequence of states as a result of changes in the inputs. Circuits that behave in this way are referred
to as sequential circuits.

In this chapter we will introduce circuits that can be used as storage elements. But first, we
will motivate the need for such circuits by means of a simple example. Suppose that we wish
to control an alarm system, as shown in Figure 7.1. The alarm mechanism responds to the
control input On/Off . It is turned on when On/Off = 1, and it is off when On/Off = 0. The
desired operation is that the alarm turns on when the sensor generates a positive voltage
signal, Set, in response to some undesirable event. Once the alarm is triggered, it must
remain active even if the sensor output goes back to zero. The alarm is turned off manually
by means of a Reset input. The circuit requires a memory element to remember that the
alarm has to be active until the Reset signal arrives.

Figure 7.2 gives a rudimentary memory element, consisting of a loop that has two
inverters. If we assume that A = 0, then B = 1. The circuit will maintain these values
indefinitely. We say that the circuit is in the state defined by these values. If we assume
that A = 1, then B = 0, and the circuit will remain in this second state indefinitely. Thus
the circuit has two possible states. This circuit is not useful, because it lacks some practical
means for changing its state.

A more useful circuit is shown in Figure 7.3. It includes a mechanism for changing
the state of the circuit in Figure 7.2, using two transmission gates of the type discussed in
section 3.9. One transmission gate, TG1, is used to connect the Data input terminal to point

Memory
element Alarm

Sensor

Reset

Set

On Off⁄

Figure 7.1 Control of an alarm system.

A B

Figure 7.2 A simple memory element.
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A B
OutputData

Load

TG1

TG2

Figure 7.3 A controlled memory element.

A in the circuit. The second, TG2, is used as a switch in the feedback loop that maintains the
state of the circuit. The transmission gates are controlled by the Load signal. If Load = 1,
then TG1 is on and the point A will have the same value as the Data input. Since the value
presently stored at Output may not be the same value as Data, the feedback loop is broken
by having TG2 turned off when Load = 1. When Load changes to zero, then TG1 turns
off and TG2 turns on. The feedback path is closed and the memory element will retain its
state as long as Load = 0. This memory element cannot be applied directly to the system
in Figure 7.1, but it is useful for many other applications, as we will see later.

7.1 Basic Latch

Instead of using the transmission gates, we can construct a similar circuit using ordinary
logic gates. Figure 7.4 presents a memory element built with NOR gates. Its inputs, Set
and Reset, provide the means for changing the state, Q, of the circuit. A more usual way
of drawing this circuit is given in Figure 7.5a, where the two NOR gates are said to be
connected in cross-coupled style. The circuit is referred to as a basic latch. Its behavior is
described by the truth table in Figure 7.5b. When both inputs, R and S, are equal to 0 the
latch maintains its existing state. This state may be either Qa = 0 and Qb = 1, or Qa = 1
and Qb = 0, which is indicated in the truth table by stating that the Qa and Qb outputs have
values 0/1 and 1/0, respectively. Observe that Qa and Qb are complements of each other in
this case. When R = 0 and S = 1, the latch is set into a state where Qa = 1 and Qb = 0.
When R = 1 and S = 0, the latch is reset into a state where Qa = 0 and Qb = 1. The fourth
possibility is to have R = S = 1. In this case both Qa and Qb will be 0.

Figure 7.5c gives a timing diagram for the latch, assuming that the propagation de-
lay through the NOR gates is negligible. Of course, in a real circuit the changes in the
waveforms would be delayed according to the propagation delays of the gates. We assume
that initially Qa = 0 and Qb = 1. The state of the latch remains unchanged until time t2,
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Figure 7.4 A memory element with NOR gates.
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(c) Timing diagram
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Figure 7.5 A basic latch built with NOR gates.
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when S becomes equal to 1, causing Qb to change to 0, which in turn causes Qa to change
to 1. The causality relationship is indicated by the arrows in the diagram. When S goes to
0 at t3, there is no change in the state because both S and R are then equal to 0. At t4 we
have R = 1, which causes Qa to go to 0, which in turn causes Qb to go to 1. At t5 both S
and R are equal to 1, which forces both Qa and Qb to be equal to 0. As soon as S returns to
0, at t6, Qb becomes equal to 1 again. At t8 we have S = 1 and R = 0, which causes Qb = 0
and Qa = 1. An interesting situation occurs at t10. From t9 to t10 we have Qa = Qb = 0
because R = S = 1. Now if both R and S change to 0 at t10, both Qa and Qb will go to 1.
But having both Qa and Qb equal to 1 will immediately force Qa = Qb = 0. There will
be an oscillation between Qa = Qb = 0 and Qa = Qb = 1. If the delays through the two
NOR gates are exactly the same, the oscillation will continue indefinitely. In a real circuit
there will invariably be some difference in the delays through these gates, and the latch will
eventually settle into one of its two stable states, but we don’t know which state it will be.
This uncertainty is indicated in the waveforms by dashed lines.

The oscillations discussed above illustrate that even though the basic latch is a simple
circuit, careful analysis has to be done to fully appreciate its behavior. In general, any
circuit that contains one or more feedback paths, such that the state of the circuit depends
on the propagation delays through logic gates, has to be designed carefully. We discuss
timing issues in detail in Chapter 9.

The latch in Figure 7.5a can perform the functions needed for the memory element in
Figure 7.1, by connecting the Set signal to the S input and Reset to the R input. The Qa

output provides the desired On/Off signal. To initialize the operation of the alarm system,
the latch is reset. Thus the alarm is off. When the sensor generates the logic value 1, the
latch is set and Qa becomes equal to 1. This turns on the alarm mechanism. If the sensor
output returns to 0, the latch retains its state where Qa = 1; hence the alarm remains turned
on. The only way to turn off the alarm is by resetting the latch, which is accomplished by
making the Reset input equal to 1.

7.2 Gated SR Latch

In section 7.1 we saw that the basic SR latch can serve as a useful memory element. It
remembers its state when both the S and R inputs are 0. It changes its state in response
to changes in the signals on these inputs. The state changes occur at the time when the
changes in the signals occur. If we cannot control the time of such changes, then we don’t
know when the latch may change its state.

In the alarm system of Figure 7.1, it may be desirable to be able to enable or disable
the entire system by means of a control input, Enable. Thus when enabled, the system
would function as described above. In the disabled mode, changing the Set input from 0 to
1 would not cause the alarm to turn on. The latch in Figure 7.5a cannot provide the desired
operation. But the latch circuit can be modified to respond to the input signals S and R only
when Enable = 1. Otherwise, it would maintain its state.

The modified circuit is depicted in Figure 7.6a. It includes two AND gates that provide
the desired control. When the control signal Clk is equal to 0, the S ′ and R′ inputs to the
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Figure 7.6 Gated SR latch.

latch will be 0, regardless of the values of signals S and R. Hence the latch will maintain its
existing state as long as Clk = 0. When Clk changes to 1, the S ′ and R′ signals will be the
same as the S and R signals, respectively. Therefore, in this mode the latch will behave as
we described in section 7.1. Note that we have used the name Clk for the control signal that
allows the latch to be set or reset, rather than call it the Enable signal. The reason is that
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such circuits are often used in digital systems where it is desirable to allow the changes in
the states of memory elements to occur only at well-defined time intervals, as if they were
controlled by a clock. The control signal that defines these time intervals is usually called
the clock signal. The name Clk is meant to reflect this nature of the signal.

Circuits of this type, which use a control signal, are called gated latches. Because our
circuit exhibits set and reset capability, it is called a gated SR latch. Figure 7.6b describes
its behavior. It defines the state of the Q output at time t+1, namely, Q(t+1), as a function
of the inputs S, R, and Clk. When Clk= 0, the latch will remain in the state it is in at time t,
that is, Q(t), regardless of the values of inputs S and R. This is indicated by specifying S = x
and R = x, where x means that the signal value can be either 0 or 1. (Recall that we already
used this notation in Chapter 4.) When Clk = 1, the circuit behaves as the basic latch in
Figure 7.5. It is set by S = 1 and reset by R = 1. The last row of the truth table, where
S = R = 1, shows that the state Q(t + 1) is undefined because we don’t know whether it
will be 0 or 1. This corresponds to the situation described in section 7.1 in conjunction with
the timing diagram in Figure 7.5 at time t10. At this time both S and R inputs go from 1
to 0, which causes the oscillatory behavior that we discussed. If S = R = 1, this situation
will occur as soon as Clk goes from 1 to 0. To ensure a meaningful operation of the gated
SR latch, it is essential to avoid the possibility of having both the S and R inputs equal to 1
when Clk changes from 1 to 0.

A timing diagram for the gated SR latch is given in Figure 7.6c. It shows Clk as a
periodic signal that is equal to 1 at regular time intervals to suggest that this is how the
clock signal usually appears in a real system. The diagram presents the effect of several
combinations of signal values. Observe that we have labeled one output as Q and the other
as its complement Q, rather than Qa and Qb as in Figure 7.5. Since the undefined mode,
where S = R = 1, must be avoided in practice, the normal operation of the latch will have
the outputs as complements of each other. Moreover, we will often say that the latch is set
when Q = 1, and it is reset when Q = 0. A graphical symbol for the gated SR latch is
given in Figure 7.6d .

7.2.1 Gated SR Latch with NAND Gates

So far we have implemented the basic latch with cross-coupled NOR gates. We can also
construct the latch with NAND gates. Using this approach, we can implement the gated SR
latch as depicted in Figure 7.7. The behavior of this circuit is described by the truth table

S

R

Clk

Q

Q

Figure 7.7 Gated SR latch with NAND gates.



June 18, 2002 15:56 vra23151_ch07 Sheet number 8 Page number 356 black

356 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

in Figure 7.6b. Note that in this circuit, the clock is gated by NAND gates, rather than by
AND gates. Note also that the S and R inputs are reversed in comparison with the circuit in
Figure 7.6a. The circuit with NAND gates requires fewer transistors than the circuit with
AND gates. We will use the circuit in Figure 7.7, in preference to the circuit in Figure 7.6a.

7.3 Gated D Latch

In section 7.2 we presented the gated SR latch and showed how it can be used as the memory
element in the alarm system of Figure 7.1. This latch is useful for many other applications.
In this section we describe another gated latch that is even more useful in practice. It has a
single data input, called D, and it stores the value on this input, under the control of a clock
signal. It is called a gated D latch.

To motivate the need for a gated D latch, consider the adder/subtractor unit discussed
in Chapter 5 (Figure 5.13). When we described how that circuit is used to add numbers, we
did not discuss what is likely to happen with the sum bits that are produced by the adder.
Adder/subtractor units are often used as part of a computer. The result of an addition or
subtraction operation is often used as an operand in a subsequent operation. Therefore, it
is necessary to be able to remember the values of the sum bits generated by the adder until
they are needed again. We might think of using the basic latches to remember these bits,
one bit per latch. In this context, instead of saying that a latch remembers the value of a
bit, it is more illuminating to say that the latch stores the value of the bit or simply “stores
the bit.” We should think of the latch as a storage element.

But can we obtain the desired operation using the basic latches? We can certainly reset
all latches before the addition operation begins. Then we would expect that by connecting
a sum bit to the S input of a latch, the latch would be set to 1 if the sum bit has the value 1;
otherwise, the latch would remain in the 0 state. This would work fine if all sum bits are 0 at
the start of the addition operation and, after some propagation delay through the adder, some
of these bits become equal to 1 to give the desired sum. Unfortunately, the propagation
delays that exist in the adder circuit cause a big problem in this arrangement. Suppose that
we use a ripple-carry adder. When the X and Y inputs are applied to the adder, the sum
outputs may alternate between 0 and 1 a number of times as the carries ripple through the
circuit. This situation was illustrated in the timing diagram in Figure 5.21. The problem is
that if we connect a sum bit to the S input of a latch, then if the sum bit is temporarily a 1
and then settles to 0 in the final result, the latch will remain set to 1 erroneously.

The problem caused by the alternating values of the sum bits in the adder could be
solved by using the gated SR latches, instead of the basic latches. Then we could arrange
that the clock signal is 0 during the time needed by the adder to produce a correct sum.
After allowing for the maximum propagation delay in the adder circuit, the clock should
go to 1 to store the values of the sum bits in the gated latches. As soon as the values have
been stored, the clock can return to 0, which ensures that the stored values will be retained
until the next time the clock goes to 1. To achieve the desired operation, we would also
have to reset all latches to 0 prior to loading the sum-bit values into these latches. This is
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an awkward way of dealing with the problem, and it is preferable to use the gated D latches
instead.

Figure 7.8a shows the circuit for a gated D latch. It is based on the gated SR latch, but
instead of using the S and R inputs separately, it has just one data input, D. For convenience
we have labeled the points in the circuit that are equivalent to the S and R inputs. If D = 1,
then S = 1 and R = 0, which forces the latch into the state Q = 1. If D = 0, then S = 0
and R = 1, which causes Q = 0. Of course, the changes in state occur only when Clk = 1.

Q

S

R

Clk

D
(Data)

D Q

QClk

Clk D

0
1
1

x
0
1

0
1

Q t 1+( )

Q t( )

(a) Circuit

(b) Truth table (c) Graphical symbol

t1 t2 t3 t4

Time

Clk

D

Q

(d) Timing diagram

Q

Figure 7.8 Gated D latch.
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It is important to observe that in this circuit it is impossible to have the troublesome
situation where S = R = 1. In the gated D latch, the output Q merely tracks the value of
the input D while Clk= 1. As soon as Clk goes to 0, the state of the latch is frozen until the
next time the clock signal goes to 1. Therefore, the gated D latch stores the value of the D
input seen at the time the clock changes from 1 to 0. Figure 7.8 also gives the truth table,
the graphical symbol, and the timing diagram for the gated D latch.

The timing diagram illustrates what happens if the D signal changes while Clk = 1.
During the third clock pulse, starting at t3, the output Q changes to 1 because D = 1. But
midway through the pulse D goes to 0, which causes Q to go to 0. This value of Q is stored
when Clk changes to 0. Now no further change in the state of the latch occurs until the next
clock pulse, at t4. The key point to observe is that as long as the clock has the value 1, the Q
output follows the D input. But when the clock has the value 0, the Q output cannot change.
In Chapter 3 we saw that the logic values are implemented as low and high voltage levels.
Since the output of the gated D latch is controlled by the level of the clock input, the latch
is said to be level sensitive. The circuits in Figures 7.6 through 7.8 are level sensitive. We
will show in section 7.4 that it is possible to design storage elements for which the output
changes only at the point in time when the clock changes from one value to the other. Such
circuits are said to be edge triggered.

At this point we should reconsider the circuit in Figure 7.3. Careful examination of
that circuit shows that it behaves in exactly the same way as the circuit in Figure 7.8a. The
Data and Load inputs correspond to the D and Clk inputs, respectively. The Output, which
has the same signal value as point A, corresponds to the Q output. Point B corresponds to
Q. Therefore, the circuit in Figure 7.3 is also a gated D latch. An advantage of this circuit
is that it can be implemented using fewer transistors than the circuit in Figure 7.8a.

7.3.1 Effects of Propagation Delays

In the previous discussion we ignored the effects of propagation delays. In practical circuits
it is essential to take these delays into account. Consider the gated D latch in Figure 7.8a.
It stores the value of the D input that is present at the time the clock signal changes from
1 to 0. It operates properly if the D signal is stable (that is, not changing) at the time Clk
goes from 1 to 0. But it may lead to unpredictable results if the D signal also changes at
this time. Therefore, the designer of a logic circuit that generates the D signal must ensure
that this signal is stable when the critical change in the clock signal takes place.

Figure 7.9 illustrates the critical timing region. The minimum time that the D signal
must be stable prior to the negative edge of the Clk signal is called the setup time, tsu, of
the latch. The minimum time that the D signal must remain stable after the negative edge
of the Clk signal is called the hold time, th, of the latch. The values of tsu and th depend on
the technology used. Manufacturers of integrated circuit chips provide this information on
the data sheets that describe their chips. Typical values for CMOS technology are tsu = 3
ns and th = 2 ns. We will give examples of how setup and hold times affect the speed of
operation of circuits in section 7.13. The behavior of storage elements when setup or hold
times are violated is discussed in section 10.3.3.
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Figure 7.9 Setup and hold times.

7.4 Master-Slave and Edge-Triggered D Flip-Flops

In the level-sensitive latches, the state of the latch keeps changing according to the values of
input signals during the period when the clock signal is active (equal to 1 in our examples).
As we will see in sections 7.8 and 7.9, there is also a need for storage elements that can
change their states no more than once during one clock cycle. We will discuss two types
of circuits that exhibit such behavior.

7.4.1 Master-Slave D Flip-Flop

Consider the circuit given in Figure 7.10a, which consists of two gated D latches. The first,
called master, changes its state while Clock= 1. The second, called slave, changes its state
while Clock= 0. The operation of the circuit is such that when the clock is high, the master
tracks the value of the D input signal and the slave does not change. Thus the value of Qm

follows any changes in D, and the value of Qs remains constant. When the clock signal
changes to 0, the master stage stops following the changes in the D input. At the same time,
the slave stage responds to the value of the signal Qm and changes state accordingly. Since
Qm does not change while Clock = 0, the slave stage can undergo at most one change of
state during a clock cycle. From the external observer’s point of view, namely, the circuit
connected to the output of the slave stage, the master-slave circuit changes its state at the
negative-going edge of the clock. The negative edge is the edge where the clock signal
changes from 1 to 0. Regardless of the number of changes in the D input to the master
stage during one clock cycle, the observer of the Qs signal will see only the change that
corresponds to the D input at the negative edge of the clock.

The circuit in Figure 7.10 is called a master-slave D flip-flop. The term flip-flop denotes
a storage element that changes its output state at the edge of a controlling clock signal. The
timing diagram for this flip-flop is shown in Figure 7.10b. A graphical symbol is given in
Figure 7.10c. In the symbol we use the > mark to denote that the flip-flop responds to the
“active edge” of the clock. We place a bubble on the clock input to indicate that the active
edge for this particular circuit is the negative edge.
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ClkClk

Figure 7.10 Master-slave D flip-flop.

7.4.2 Edge-Triggered D Flip-Flop

The output of the master-slave D flip-flop in Figure 7.10a responds on the negative edge
of the clock signal. The circuit can be changed to respond to the positive clock edge by
connecting the slave stage directly to the clock and the master stage to the complement of
the clock. A different circuit that accomplishes the same task is presented in Figure 7.11a.
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Figure 7.11 A positive-edge-triggered D flip-flop.

It requires only six NAND gates and, hence, fewer transistors. The operation of the circuit
is as follows. When Clock = 0, the outputs of gates 2 and 3 are high. Thus P1 = P2 = 1,
which maintains the output latch, comprising gates 5 and 6, in its present state. At the same
time, the signal P3 is equal to D, and P4 is equal to its complement D. When Clock changes
to 1, the following changes take place. The values of P3 and P4 are transmitted through
gates 2 and 3 to cause P1 = D and P2 = D, which sets Q = D and Q = D. To operate
reliably, P3 and P4 must be stable when Clock changes from 0 to 1. Hence the setup time
of the flip-flop is equal to the delay from the D input through gates 4 and 1 to P3. The hold
time is given by the delay through gate 3 because once P2 is stable, the changes in D no
longer matter.

For proper operation it is necessary to show that, after Clock changes to 1, any further
changes in D will not affect the output latch as long as Clock= 1. We have to consider two
cases. Suppose first that D = 0 at the positive edge of the clock. Then P2 = 0, which will
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keep the output of gate 4 equal to 1 as long as Clock = 1, regardless of the value of the D
input. The second case is if D = 1 at the positive edge of the clock. Then P1 = 0, which
forces the outputs of gates 1 and 3 to be equal to 1, regardless of the D input. Therefore,
the flip-flop ignores changes in the D input while Clock = 1.

Figure 7.11b gives a graphical symbol for this flip-flop. The clock input indicates that
the positive edge of the clock is the active edge. A similar circuit, constructed with NOR
gates, can be used as a negative-edge-triggered flip-flop.

Level-Sensitive versus Edge-Triggered Storage Elements
Figure 7.12 shows three different types of storage elements that are driven by the same

data and clock inputs. The first element is a gated D latch, which is level sensitive. The
second one is a positive-edge-triggered D flip-flop, and the third one is a negative-edge-
triggered D flip-flop. To accentuate the differences between these storage elements, the
D input changes its values more than once during each half of the clock cycle. Observe
that the gated D latch follows the D input as long as the clock is high. The positive-edge-
triggered flip-flop responds only to the value of D when the clock changes from 0 to 1. The
negative-edge-triggered flip-flop responds only to the value of D when the clock changes
from 1 to 0.

7.4.3 D Flip-Flops with Clear and Preset

Flip-flops are often used for implementation of circuits that can have many possible states,
where the response of the circuit depends not only on the present values of the circuit’s
inputs but also on the particular state that the circuit is in at that time. We will discuss
a general form of such circuits in Chapter 8. A simple example is a counter circuit that
counts the number of occurrences of some event, perhaps passage of time. We will discuss
counters in detail in section 7.9. A counter comprises a number of flip-flops, whose outputs
are interpreted as a number. The counter circuit has to be able to increment or decrement the
number. It is also important to be able to force the counter into a known initial state (count).
Obviously, it must be possible to clear the count to zero, which means that all flip-flops
must have Q = 0. It is equally useful to be able to preset each flip-flop to Q = 1, to insert
some specific count as the initial value in the counter. These features can be incorporated
into the circuits of Figures 7.10 and 7.11 as follows.

Figure 7.13a shows an implementation of the circuit in Figure 7.10a using NAND
gates. The master stage is just the gated D latch of Figure 7.8a. Instead of using another
latch of the same type for the slave stage, we can use the slightly simpler gated SR latch of
Figure 7.7. This eliminates one NOT gate from the circuit.

A simple way of providing the clear and preset capability is to add an extra input to
each NAND gate in the cross-coupled latches, as indicated in blue. Placing a 0 on the Clear
input will force the flip-flop into the state Q = 0. If Clear = 1, then this input will have no
effect on the NAND gates. Similarly, Preset = 0 forces the flip-flop into the state Q = 1,
while Preset = 1 has no effect. To denote that the Clear and Preset inputs are active when
their value is 0, we placed an overbar on the names in the figure. We should note that the
circuit that uses this flip-flop should not try to force both Clear and Preset to 0 at the same
time. A graphical symbol for this flip-flop is shown in Figure 7.13b.
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Figure 7.12 Comparison of level-sensitive and edge-triggered D storage elements.

A similar modification can be done on the edge-triggered flip-flop of Figure 7.11a, as
indicated in Figure 7.14a. Again, both Clear and Preset inputs are active low. They do not
disturb the flip-flop when they are equal to 1.

In the circuits in Figures 7.13a and 7.14a, the effect of a low signal on either the Clear
or Preset input is immediate. For example, if Clear = 0 then the flip-flop goes into the state
Q = 0 immediately, regardless of the value of the clock signal. In such a circuit, where the
Clear signal is used to clear a flip-flop without regard to the clock signal, we say that the
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Figure 7.13 Master-slave D flip-flop with Clear and Preset.

flip-flop has an asynchronous clear. In practice, it is often preferable to clear the flip-flops
on the active edge of the clock. Such synchronous clear can be accomplished as shown
in Figure 7.15. The flip-flop operates normally when the Clear input is equal to 1. But if
Clear goes to 0, then on the next positive edge of the clock the flip-flop will be cleared to
0. We will examine the clearing of flip-flops in more detail in section 7.10.

7.5 T Flip-Flop

The D flip-flop is a versatile storage element that can be used for many purposes. By in-
cluding some simple logic circuitry to drive its input, the D flip-flop may appear to be a
different type of storage element. An interesting modification is presented in Figure 7.16a.
This circuit uses a positive-edge-triggered D flip-flop. The feedback connections make the
input signal D equal to either the value of Q or Q under the control of the signal that is
labeled T . On each positive edge of the clock, the flip-flop may change its state Q(t). If
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Figure 7.15 Synchronous reset for a D flip-flop.
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Figure 7.16 T flip-flop.

T = 0, then D = Q and the state will remain the same, that is, Q(t + 1) = Q(t). But if
T = 1, then D = Q and the new state will be Q(t + 1) = Q(t). Therefore, the overall
operation of the circuit is that it retains its present state if T = 0, and it reverses its present
state if T = 1.

The operation of the circuit is specified in the form of a truth table in Figure 7.16b.
Any circuit that implements this truth table is called a T flip-flop. The name T flip-flop
derives from the behavior of the circuit, which “toggles” its state when T = 1. The toggle
feature makes the T flip-flop a useful element for building counter circuits, as we will see
in section 7.9.
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7.5.1 Configurable Flip-Flops

For some circuits one type of flip-flop may lead to a more efficient implementation than a
different type of flip-flop. In general purpose chips like PLDs, the flip-flops that are provided
are sometimes configurable, which means that a flip-flop circuit can be configured to be
either D, T, or some other type. For example, in some PLDs the flip-flops can be configured
as either D or T types (see problems 7.6 and 7.8).

7.6 JK Flip-Flop

Another interesting circuit can be derived from Figure 7.16a. Instead of using a single
control input, T , we can use two inputs, J and K , as indicated in Figure 7.17a. For this
circuit the input D is defined as

D = J Q+ KQ

A corresponding truth table is given in Figure 7.17b. The circuit is called a JK flip-flop. It
combines the behaviors of SR and T flip-flops in a useful way. It behaves as the SR flip-flop,
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Figure 7.17 JK flip-flop.
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where J = S and K = R, for all input values except J = K = 1. For the latter case, which
has to be avoided in the SR flip-flop, the JK flip-flop toggles its state like the T flip-flop.

The JK flip-flop is a versatile circuit. It can be used for straight storage purposes, just
like the D and SR flip-flops. But it can also serve as a T flip-flop by connecting the J and
K inputs together.

7.7 Summary of Terminology

We have used the terminology that is quite common. But the reader should be aware that
different interpretations of the terms latch and flip-flop can be found in the literature. Our
terminology can be summarized as follows:

Basic latch is a feedback connection of two NOR gates or two NAND gates, which
can store one bit of information. It can be set to 1 using the S input and reset to 0
using the R input.

Gated latch is a basic latch that includes input gating and a control input signal. The
latch retains its existing state when the control input is equal to 0. Its state may be
changed when the control signal is equal to 1. In our discussion we referred to the
control input as the clock. We considered two types of gated latches:

• Gated SR latch uses the S and R inputs to set the latch to 1 or reset it to 0,
respectively.

• Gated D latch uses the D input to force the latch into a state that has the same
logic value as the D input.

A flip-flop is a storage element based on the gated latch principle, which can have its
output state changed only on the edge of the controlling clock signal. We considered
two types:

• Edge-triggered flip-flop is affected only by the input values present when the
active edge of the clock occurs.

• Master-slave flip-flop is built with two gated latches. The master stage is active
during half of the clock cycle, and the slave stage is active during the other half.
The output value of the flip-flop changes on the edge of the clock that activates
the transfer into the slave stage. Master-slave flip-flops can be edge-triggered or
level sensitive. If the master stage is a gated D latch, then it behaves as an
edge-triggered flip-flop. If the master stage is a gated SR latch, then the flip-flop
is level sensitive (see problem 7.19).

7.8 Registers

A flip-flop stores one bit of information. When a set of n flip-flops is used to store n bits of
information, such as an n-bit number, we refer to these flip-flops as a register. A common
clock is used for each flip-flop in a register, and each flip-flop operates as described in the
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previous sections. The term register is merely a convenience for referring to n-bit structures
consisting of flip-flops.

7.8.1 Shift Register

In section 5.6 we explained that a given number is multiplied by 2 if its bits are shifted
one bit position to the left and a 0 is inserted as the new least-significant bit. Similarly, the
number is divided by 2 if the bits are shifted one bit-position to the right. A register that
provides the ability to shift its contents is called a shift register.

Figure 7.18a shows a four-bit shift register that is used to shift its contents one bit-
position to the right. The data bits are loaded into the shift register in a serial fashion using
the In input. The contents of each flip-flop are transferred to the next flip-flop at each
positive edge of the clock. An illustration of the transfer is given in Figure 7.18b, which
shows what happens when the signal values at In during eight consecutive clock cycles are
1, 0, 1, 1, 1, 0, 0, and 0, assuming that the initial state of all flip-flops is 0.
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Figure 7.18 A simple shift register.
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To implement a shift register, it is necessary to use either edge-triggered or master-slave
flip-flops. The level-sensitive gated latches are not suitable, because a change in the value
of In would propagate through more than one latch during the time when the clock is equal
to 1.

7.8.2 Parallel-Access Shift Register

In computer systems it is often necessary to transfer n-bit data items. This may be done by
transmitting all bits at once using n separate wires, in which case we say that the transfer
is performed in parallel. But it is also possible to transfer all bits using a single wire, by
performing the transfer one bit at a time, in n consecutive clock cycles. We refer to this
scheme as serial transfer. To transfer an n-bit data item serially, we can use a shift register
that can be loaded with all n bits in parallel (in one clock cycle). Then during the next n
clock cycles, the contents of the register can be shifted out for serial transfer. The reverse
operation is also needed. If bits are received serially, then after n clock cycles the contents
of the register can be accessed in parallel as an n-bit item.

Figure 7.19 shows a four-bit shift register that allows the parallel access. Instead of
using the normal shift register connection, the D input of each flip-flop is connected to

Q3 Q2 Q1 Q0

Clock
Parallel input

Parallel output

Shift/LoadSerial
input

D Q

Q

D Q

Q

D Q

Q

D Q

Q

Figure 7.19 Parallel-access shift register.
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two different sources. One source is the preceding flip-flop, which is needed for the shift-
register operation. The other source is the external input that corresponds to the bit that is
to be loaded into the flip-flop as a part of the parallel-load operation. The control signal
Shift/Load is used to select the mode of operation. If Shift/Load = 0, then the circuit
operates as a shift register. If Shift/Load = 1, then the parallel input data are loaded into
the register. In both cases the action takes place on the positive edge of the clock.

In Figure 7.19 we have chosen to label the flip-flops outputs as Q3, . . . , Q0 because
shift registers are often used to hold binary numbers. The contents of the register can be
accessed in parallel by observing the outputs of all flip-flops. The flip-flops can also be
accessed serially, by observing the values of Q0 during consecutive clock cycles while the
contents are being shifted. A circuit in which data can be loaded in series and then accessed
in parallel is called a series-to-parallel converter. Similarly, the opposite type of circuit is a
parallel-to-series converter. The circuit in Figure 7.19 can perform both of these functions.

7.9 Counters

In Chapter 5 we dealt with circuits that perform arithmetic operations. We showed how
adder/subtractor circuits can be designed, either using a simple cascaded (ripple-carry)
structure that is inexpensive but slow or using a more complex carry-lookahead structure
that is both more expensive and faster. In this section we examine special types of addition
and subtraction operations, which are used for the purpose of counting. In particular, we
want to design circuits that can increment or decrement a count by 1. Counter circuits are
used in digital systems for many purposes. They may count the number of occurrences of
certain events, generate timing intervals for control of various tasks in a system, keep track
of time elapsed between specific events, and so on.

Counters can be implemented using the adder/subtractor circuits discussed in Chap-
ter 5 and the registers discussed in section 7.8. However, since we only need to change the
contents of a counter by 1, it is not necessary to use such elaborate circuits. Instead, we
can use much simpler circuits that have a significantly lower cost. We will show how the
counter circuits can be designed using T and D flip-flops.

7.9.1 Asynchronous Counters

The simplest counter circuits can be built using T flip-flops because the toggle feature is
naturally suited for the implementation of the counting operation.

Up-Counter with T Flip-Flops
Figure 7.20a gives a three-bit counter capable of counting from 0 to 7. The clock inputs

of the three flip-flops are connected in cascade. The T input of each flip-flop is connected
to a constant 1, which means that the state of the flip-flop will be reversed (toggled) at each
positive edge of its clock. We are assuming that the purpose of this circuit is to count the
number of pulses that occur on the primary input called Clock. Thus the clock input of
the first flip-flop is connected to the Clock line. The other two flip-flops have their clock
inputs driven by the Q output of the preceding flip-flop. Therefore, they toggle their state
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Figure 7.20 A three-bit up-counter.

whenever the preceding flip-flop changes its state from Q = 1 to Q = 0, which results in a
positive edge of the Q signal.

Figure 7.20b shows a timing diagram for the counter. The value of Q0 toggles once each
clock cycle. The change takes place shortly after the positive edge of the Clock signal. The
delay is caused by the propagation delay through the flip-flop. Since the second flip-flop
is clocked by Q0, the value of Q1 changes shortly after the negative edge of the Q0 signal.
Similarly, the value of Q2 changes shortly after the negative edge of the Q1 signal. If we
look at the values Q2Q1Q0 as the count, then the timing diagram indicates that the counting
sequence is 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, and so on. This circuit is a modulo-8 counter. Because
it counts in the upward direction, we call it an up-counter.

The counter in Figure 7.20a has three stages, each comprising a single flip-flop. Only
the first stage responds directly to the Clock signal; we say that this stage is synchronized
to the clock. The other two stages respond after an additional delay. For example, when
Count= 3, the next clock pulse will cause the Count to go to 4. As indicated by the arrows
in the timing diagram in Figure 7.20b, this change requires the toggling of the states of
all three flip-flops. The change in Q0 is observed only after a propagation delay from the
positive edge of Clock. The Q1 and Q2 flip-flops have not yet changed; hence for a brief
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time the count is Q2Q1Q0 = 010. The change in Q1 appears after a second propagation
delay, at which point the count is 000. Finally, the change in Q2 occurs after a third delay,
at which point the stable state of the circuit is reached and the count is 100. This behavior is
similar to the rippling of carries in the ripple-carry adder circuit of Figure 5.6. The circuit
in Figure 7.20a is an asynchronous counter, or a ripple counter.

Down-Counter with T Flip-Flops
A slight modification of the circuit in Figure 7.20a is presented in Figure 7.21a. The

only difference is that in Figure 7.21a the clock inputs of the second and third flip-flops are
driven by the Q outputs of the preceding stages, rather than by the Q outputs. The timing
diagram, given in Figure 7.21b, shows that this circuit counts in the sequence 0, 7, 6, 5, 4,
3, 2, 1, 0, 7, and so on. Because it counts in the downward direction, we say that it is a
down-counter.

It is possible to combine the functionality of the circuits in Figures 7.20a and 7.21a
to form a counter that can count either up or down. Such a counter is called an up/down-
counter. We leave the derivation of this counter as an exercise for the reader (problem
7.16).

T Q

QClock

T Q

Q

T Q

Q

1

Q0 Q1 Q2

(a) Circuit

Clock

Q0

Q1

Q2

Count 0 7 6 5 4 3 2 1 0

(b) Timing diagram

Figure 7.21 A three-bit down-counter.
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7.9.2 Synchronous Counters

The asynchronous counters in Figures 7.20a and 7.21a are simple, but not very fast. If a
counter with a larger number of bits is constructed in this manner, then the delays caused
by the cascaded clocking scheme may become too long to meet the desired performance
requirements. We can build a faster counter by clocking all flip-flops at the same time,
using the approach described below.

Synchronous Counter with T Flip-Flops
Table 7.1 shows the contents of a three-bit up-counter for eight consecutive clock

cycles, assuming that the count is initially 0. Observing the pattern of bits in each row of
the table, it is apparent that bit Q0 changes on each clock cycle. Bit Q1 changes only when
Q0 = 1. Bit Q2 changes only when both Q1 and Q0 are equal to 1. In general, for an n-bit
up-counter, a given flip-flop changes its state only when all the preceding flip-flops are in
the state Q = 1. Therefore, if we use T flip-flops to realize the counter, then the T inputs
are defined as

T0 = 1

T1 = Q0

T2 = Q0Q1

T3 = Q0Q1Q2

·
·
·

Tn = Q0Q1 · · ·Qn−1

An example of a four-bit counter based on these expressions is given in Figure 7.22a.
Instead of using AND gates of increased size for each stage, which may lead to fan-in
problems, we use a factored arrangement, as shown in the figure. This arrangement does
not slow down the response of the counter, because all flip-flops change their states after a

Table 7.1 Derivation of the synchronous
up-counter.

0
0
1
1

0
1
0
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0
1
2
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0
0
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0
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Figure 7.22 A four-bit synchronous up-counter.

propagation delay from the positive edge of the clock. Note that a change in the value of
Q0 may have to propagate through several AND gates to reach the flip-flops in the higher
stages of the counter, which requires a certain amount of time. This time must not exceed
the clock period. Actually, it must be less than the clock period minus the setup time for
the flip-flops.

Figure 7.22b gives a timing diagram. It shows that the circuit behaves as a modulo-16
up-counter. Because all changes take place with the same delay after the active edge of the
Clock signal, the circuit is called a synchronous counter.

Enable and Clear Capability
The counters in Figures 7.20 through 7.22 change their contents in response to each

clock pulse. Often it is desirable to be able to inhibit counting, so that the count remains
in its present state. This may be accomplished by including an Enable control signal, as
indicated in Figure 7.23. The circuit is the counter of Figure 7.22, where the Enable signal
controls directly the T input of the first flip-flop. Connecting the Enable also to the AND-
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Figure 7.23 Inclusion of Enable and Clear capability.

gate chain means that if Enable = 0, then all T inputs will be equal to 0. If Enable = 1,
then the counter operates as explained previously.

In many applications it is necessary to start with the count equal to zero. This is easily
achieved if the flip-flops can be cleared, as explained in section 7.4.3. The clear inputs on
all flip-flops can be tied together and driven by a Clear control input.

Synchronous Counter with D Flip-Flops
While the toggle feature makes T flip-flops a natural choice for the implementation

of counters, it is also possible to build counters using other types of flip-flops. The JK
flip-flops can be used in exactly the same way as the T flip-flops because if the J and K
inputs are tied together, a JK flip-flop becomes a T flip-flop. We will now consider using D
flip-flops for this purpose.

It is not obvious how D flip-flops can be used to implement a counter. We will present
a formal method for deriving such circuits in Chapter 8. Here we will present a circuit
structure that meets the requirements but will leave the derivation for Chapter 8. Fig-
ure 7.24 gives a four-bit up-counter that counts in the sequence 0, 1, 2, . . . , 14, 15, 0, 1,
and so on. The count is indicated by the flip-flop outputs Q3Q2Q1Q0. If we assume that
Enable = 1, then the D inputs of the flip-flops are defined by the expressions

D0 = Q0 = 1⊕ Q0

D1 = Q1 ⊕ Q0

D2 = Q2 ⊕ Q1Q0

D3 = Q3 ⊕ Q2Q1Q0

For a larger counter the ith stage is defined by

Di = Qi ⊕ Qi−1Qi−2 · · ·Q1Q0

We will show how to derive these equations in Chapter 8.
We have included the Enable control signal so that the counter counts the clock pulses

only if Enable = 1. In effect, the above equations are modified to implement the circuit in
the figure as follows

D0 = Q0 ⊕ Enable

D1 = Q1 ⊕ Q0 · Enable
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Figure 7.24 A four-bit counter with D flip-flops.

D2 = Q2 ⊕ Q1 · Q0 · Enable

D3 = Q3 ⊕ Q2 · Q1 · Q0 · Enable

The operation of the counter is based on our observation for Table 7.1 that the state of the
flip-flop in stage i changes only if all preceding flip-flops are in the state Q = 1. This
makes the output of the AND gate that feeds stage i equal to 1, which causes the output of
the XOR gate connected to Di to be equal to Qi. Otherwise, the output of the XOR gate
provides Di = Qi, and the flip-flop remains in the same state. This resembles the carry
propagation in a carry-lookahead adder circuit (see section 5.4); hence the AND-gate chain
can be thought of as the carry chain. Even though the circuit is only a four-bit counter, we
have included an extra AND that produces the “output carry.” This signal makes it easy to
concatenate two such four-bit counters to create an eight-bit counter.



June 18, 2002 15:56 vra23151_ch07 Sheet number 30 Page number 378 black

378 C H A P T E R 7 • Flip-Flops, Registers, Counters, and a Simple Processor

Finally, the reader should note that the counter in Figure 7.24 is essentially the same
as the circuit in Figure 7.23. We showed in Figure 7.16a that a T flip-flop can be formed
from a D flip-flop by providing the extra gating that gives

D = QT + QT

= Q⊕ T

Thus in each stage in Figure 7.24, the D flip-flop and the associated XOR gate implement
the functionality of a T flip-flop.

7.9.3 Counters with Parallel Load

Often it is necessary to start counting with the initial count being equal to 0. This state can
be achieved by using the capability to clear the flip-flops as indicated in Figure 7.23. But
sometimes it is desirable to start with a different count. To allow this mode of operation,
a counter circuit must have some inputs through which the initial count can be loaded.
Using the Clear and Preset inputs for this purpose is a possibility, but a better approach is
discussed below.

The circuit of Figure 7.24 can be modified to provide the parallel-load capability as
shown in Figure 7.25. A two-input multiplexer is inserted before each D input. One input to
the multiplexer is used to provide the normal counting operation. The other input is a data
bit that can be loaded directly into the flip-flop. A control input, Load, is used to choose the
mode of operation. The circuit counts when Load = 0. A new initial value, D3D2D1D0, is
loaded into the counter when Load = 1.

7.10 Reset Synchronization

We have already mentioned that it is important to be able to clear, or reset, the contents
of a counter prior to commencing a counting operation. This can be done using the clear
capability of the individual flip-flops. But we may also be interested in resetting the count to
0 during the normal counting process. An n-bit up-counter functions naturally as a modulo-
2n counter. Suppose that we wish to have a counter that counts modulo some base that is
not a power of 2. For example, we may want to design a modulo-6 counter, for which the
counting sequence is 0, 1, 2, 3, 4, 5, 0, 1, and so on.

The most straightforward approach is to recognize when the count reaches 5 and then
reset the counter. An AND gate can be used to detect the occurrence of the count of 5.
Actually, it is sufficient to ascertain that Q2 = Q0 = 1, which is true only for 5 in our
desired counting sequence. A circuit based on this approach is given in Figure 7.26a. It
uses a three-bit synchronous counter of the type depicted in Figure 7.25. The parallel-load
feature of the counter is used to reset its contents when the count reaches 5. The resetting
action takes place at the positive clock edge after the count has reached 5. It involves
loading D2D1D0 = 000 into the flip-flops. As seen in the timing diagram in Figure 7.26b,
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Figure 7.25 A counter with parallel-load capability.
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Figure 7.26 A modulo-6 counter with synchronous reset.

the desired counting sequence is achieved, with each value of the count being established
for one full clock cycle. Because the counter is reset on the active edge of the clock, we
say that this type of counter has a synchronous reset.

Consider now the possibility of using the clear feature of individual flip-flops, rather
than the parallel-load approach. The circuit in Figure 7.27a illustrates one possibility. It
uses the counter structure of Figure 7.22a. Since the clear inputs are active when low, a
NAND gate is used to detect the occurrence of the count of 5 and cause the clearing of all
three flip-flops. Conceptually, this seems to work fine, but closer examination reveals a
potential problem. The timing diagram for this circuit is given in Figure 7.27b. It shows a
difficulty that arises when the count is equal to 5. As soon as the count reaches this value,
the NAND gate triggers the resetting action. The flip-flops are cleared to 0 a short time after
the NAND gate has detected the count of 5. This time depends on the gate delays in the



June 18, 2002 15:56 vra23151_ch07 Sheet number 33 Page number 381 black

7.10 Reset Synchronization 381

T Q

QClock

T Q

Q

T Q

Q

1
Q0 Q1 Q2

(a) Circuit

Clock

Q0

Q1

Q2

Count

(b) Timing diagram

0 1 2 3 4 5 0 1 2

Figure 7.27 A modulo-6 counter with asynchronous reset.

circuit, but not on the clock. Therefore, signal values Q2Q1Q0 = 101 are maintained for a
time that is much less than a clock cycle. Depending on a particular application of such a
counter, this may be adequate, but it may also be completely unacceptable. For example, if
the counter is used in a digital system where all operations in the system are synchronized
by the same clock, then this narrow pulse denoting Count = 5 would not be seen by the
rest of the system. To solve this problem, we could try to use a modulo-7 counter instead,
assuming that the system would ignore the short pulse that denotes the count of 6. This is
not a good way of designing circuits, because undesirable pulses often cause unforeseen
difficulties in practice. The approach employed in Figure 7.27a is said to use asynchronous
reset.

The timing diagrams in Figures 7.26b and 7.27b suggest that synchronous reset is a
better choice than asynchronous reset. The same observation is true if the natural counting
sequence has to be broken by loading some value other than zero. The new value of the
count can be established cleanly using the parallel-load feature. The alternative of using
the clear and preset capability of individual flip-flops to set their states to reflect the desired
count has the same problems as discussed in conjunction with the asynchronous reset.
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7.11 Other Types of Counters

In this section we discuss three other types of counters that can be found in practical
applications. The first uses the decimal counting sequence, and the other two generate
sequences of codes that do not represent binary numbers.

7.11.1 BCD Counter

Binary-coded-decimal (BCD) counters can be designed using the approach explained in
section 7.10. A two-digit BCD counter is presented in Figure 7.28. It consists of two
modulo-10 counters, one for each BCD digit, which we implemented using the parallel-
load four-bit counter of Figure 7.25. Note that in a modulo-10 counter it is necessary to
reset the four flip-flops after the count of 9 has been obtained. Thus the Load input to each
stage is equal to 1 when Q3 = Q0 = 1, which causes 0s to be loaded into the flip-flops at
the next positive edge of the clock signal. Whenever the count in stage 0, BCD0, reaches 9
it is necessary to enable the second stage so that it will be incremented when the next clock

Enable

Q0

Q1

Q2

D0

D1

D2

Load

Clock

1

0

0

0

Clock

Q30 D3

Enable

Q0

Q1

Q2

D0

D1

D2

Load

Clock

0

0

0

Q30 D3

BCD0

BCD1

Clear

Figure 7.28 A two-digit BCD counter.
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pulse arrives. This is accomplished by keeping the Enable signal for BCD1 low at all times
except when BCD0 = 9.

In practice, it has to be possible to clear the contents of the counter by activating some
control signal. Two OR gates are included in the circuit for this purpose. The control input
Clear can be used to load 0s into the counter. Observe that in this case Clear is active when
high. Verilog code for a two-digit BCD counter is given in Figure 7.81.

In any digital system there is usually one or more clock signals used to drive all
synchronous circuitry. In the preceding counter, as well as in all counters presented in the
previous figures, we have assumed that the objective is to count the number of clock pulses.
Of course, these counters can be used to count the number of pulses in any signal that may
be used in place of the clock signal.

7.11.2 Ring Counter

In the preceding counters the count is indicated by the state of the flip-flops in the counter.
In all cases the count is a binary number. Using such counters, if an action is to be taken
as a result of a particular count, then it is necessary to detect the occurrence of this count.
This may be done using AND gates, as illustrated in Figures 7.26 through 7.28.

It is possible to devise a counterlike circuit in which each flip-flop reaches the state
Qi = 1 for exactly one count, while for all other counts Qi = 0. Then Qi indicates directly
an occurrence of the corresponding count. Actually, since this does not represent binary
numbers, it is better to say that the outputs of the flips-flops represent a code. Such a circuit
can be constructed from a simple shift register, as indicated in Figure 7.29a. The Q output
of the last stage in the shift register is fed back as the input to the first stage, which creates
a ringlike structure. If a single 1 is injected into the ring, this 1 will be shifted through
the ring at successive clock cycles. For example, in a four-bit structure, the possible codes
Q0Q1Q2Q3 will be 1000, 0100, 0010, and 0001. As we said in section 6.2, such encoding,
where there is a single 1 and the rest of the code variables are 0, is called a one-hot code.

The circuit in Figure 7.29a is referred to as a ring counter. Its operation has to be
initialized by injecting a 1 into the first stage. This is achieved by using the Start control
signal, which presets the left-most flip-flop to 1 and clears the others to 0. We assume that
all changes in the value of the Start signal occur shortly after an active clock edge so that
the flip-flop timing parameters are not violated.

The circuit in Figure 7.29a can be used to build a ring counter with any number of
bits, n. For the specific case of n = 4, part (b) of the figure shows how a ring counter
can be constructed using a two-bit up-counter and a decoder. When Start is set to 1, the
counter is reset to 00. After Start changes back to 0, the counter increments its value in the
normal way. The 2-to-4 decoder, described in section 6.2, changes the counter output into
a one-hot code. For the count values 00, 01, 10, 11, 00, and so on, the decoder produces
Q0Q1Q2Q3 = 1000, 0100, 0010, 0001, 1000, and so on. This circuit structure can be used
for larger ring counters, as long as the number of bits is a power of two. We will give
an example of a larger circuit that uses the ring counter in Figure 7.29b as a subcircuit in
section 7.14.
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Figure 7.29 Ring counter.

7.11.3 Johnson Counter

An interesting variation of the ring counter is obtained if, instead of the Q output, we take
the Q output of the last stage and feed it back to the first stage, as shown in Figure 7.30. This
circuit is known as a Johnson counter. An n-bit counter of this type generates a counting
sequence of length 2n. For example, a four-bit counter produces the sequence 0000, 1000,
1100, 1110, 1111, 0111, 0011, 0001, 0000, and so on. Note that in this sequence, only a
single bit has a different value for two consecutive codes.
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Figure 7.30 Johnson counter.

To initialize the operation of the Johnson counter, it is necessary to reset all flip-flops,
as shown in the figure. Observe that neither the Johnson nor the ring counter will generate
the desired counting sequence if not initialized properly.

7.11.4 Remarks on Counter Design

The sequential circuits presented in this chapter, namely, registers and counters, have a
regular structure that allows the circuits to be designed using an intuitive approach. In
Chapter 8 we will present a more formal approach to design of sequential circuits and show
how the circuits presented in this chapter can be derived using this approach.

7.12 Using Storage Elements with CAD Tools

This section shows how circuits with storage elements can be designed using either schema-
tic capture or Verilog code.

7.12.1 Including Storage Elements in Schematics

One way to create a circuit is to draw a schematic that builds latches and flip-flops from
logic gates. Because these storage elements are used in many applications, most CAD
systems provide them as prebuilt modules. Figure 7.31 shows a schematic created with
a schematic capture tool, which includes three types of flip-flops that are imported from
a library provided as part of the CAD system. The top element is a gated D latch, the
middle element is a positive-edge-triggered D flip-flop, and the bottom one is a positive-
edge-triggered T flip-flop. The D and T flip-flops have asynchronous, active-low clear and
preset inputs. If these inputs are not connected in a schematic, then the CAD tool makes
them inactive by assigning the default value of 1 to them.
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Figure 7.31 Three types of storage elements in a schematic.

When the gated D latch is synthesized for implementation in a chip, the CAD tool may
not generate the cross-coupled NOR or NAND gates shown in section 7.2. In some chips,
such as a CPLD, theAND-OR circuit depicted in Figure 7.32 may be preferable. This circuit
is functionally equivalent to the cross-coupled version in section 7.2. The sum-of-products
circuit is used because it is more suitable for implementation in a CPLD macrocell. One
aspect of this circuit should be mentioned. From the functional point of view, it appears
that the circuit can be simplified by removing the AND gate with the inputs Data and Latch.
Without this gate, the top AND gate sets the value stored in the latch when the clock is 1,
and the bottom AND gate maintains the stored value when the clock is 0. But without this
gate, the circuit has a timing problem known as a static hazard. A detailed explanation of
hazards will be given in section 9.6.

Data

Clock

Latch

Figure 7.32 Gated D latch generated by CAD tools.
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The circuit in Figure 7.31 can be implemented in a CPLD as shown in Figure 7.33.
The D and T flip-flops are realized using the flip-flops on the chip that are configurable as
either D or T types. The figure depicts in blue the gates and wires needed to implement the
circuit in Figure 7.31.

The results of a timing simulation for the implementation in Figure 7.33 are given in
Figure 7.34. The Latch signal, which is the output of the gated D latch, implemented as
indicated in Figure 7.32, follows the Data input whenever the Clock signal is 1. Because
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Figure 7.33 Implementation of the schematic in Figure 7.31 in a CPLD.
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Figure 7.34 Timing simulation for the storage elements in Figure 7.31.

of propagation delays in the chip, the Latch signal is delayed in time with respect to the
Data signal. Since the Flipflop signal is the output of the D flip-flop, it changes only after
a positive clock edge. Similarly, the output of the T flip-flop, called Toggle in the figure,
toggles when Data = 1 and a positive clock edge occurs. The timing diagram illustrates
the delay from when the positive clock edge occurs at the input pin of the chip until a
change in the flip-flop output appears at the output pin of the chip. This time is called the
clock-to-output time, tco.

7.12.2 Using Verilog Constructs for Storage Elements

In section 6.6 we described a number of Verilog constructs. We now show how these con-
structs can be used to describe storage elements.

Asimple way of specifying a storage element is by using the if-else statement to describe
the desired behavior responding to changes in the levels of data and clock inputs. Consider
the always block

always @(Control or B)
if (Control)

A = B;

where A is a variable of reg type. This code specifies that the value of A should be made
equal to the value of B when Control = 1. But the statement does not indicate an action that
should occur when Control = 0. In the absence of an assigned value, the Verilog compiler
assumes that the value of A caused by the if statement must be maintained until the next time
this if statement is evaluated. This notion of implied memory is realized by instantiating a
latch in the circuit.

Example 7.1 CODE FOR A GATED D LATCH The code in Figure 7.35 defines a module named D_latch,
which has the inputs D and Clk and the output Q. The if clause defines that the Q output
must take the value of D when Clk = 1. Since no else clause is given, a latch will be
synthesized to maintain the value of Q when Clk= 0. Therefore, the code describes a gated
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module D latch (D, Clk, Q);
input D, Clk;
output Q;
reg Q;

always @(D or Clk)
if (Clk)

Q = D;

endmodule

Figure 7.35 Code for a gated D latch.

D latch. The sensitivity list includes Clk and D because both of these signals can cause a
change in the value of the Q output.

An always construct is used to define a circuit that responds to changes in the signals
that appear in the sensitivity list. While in the examples presented so far the always blocks
are sensitive to the levels of signals, it is also possible to specify that a response should take
place only at a particular edge of a signal. The desired edge is specified by using the Verilog
keywords posedge and negedge, which are used to implement edge-triggered circuits.

Example 7.2CODE FOR A D FLIP-FLOP Figure 7.36 defines a module named flipflop, which is a
positive-edge-triggered D flip-flop. The sensitivity list contains only the clock signal be-
cause it is the only signal that can cause a change in the Q output. The keyword posedge
specifies that a change may occur only on the positive edge of Clock. At this time the output

module flipflop (D, Clock, Q);
input D, Clock;
output Q;
reg Q;

always @(posedge Clock)
Q = D;

endmodule

Figure 7.36 Code for a D flip-flop.
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Q is set to the value of the input D. Since Q is of reg type it will maintain its value between
the positive edges of the clock.

7.12.3 Blocking and Non-Blocking Assignments

In all our Verilog examples presented so far we have used the equal sign for assignments,
as in

f = x1 & x2;

or

C = A + B;

or

Q = D;

This notation is called a blocking assignment. A Verilog compiler evaluates the statements
in an always block in the order in which they are written. If a variable is given a value by
a blocking assignment statement, then this new value is used in evaluating all subsequent
statements in the block.

Example 7.3 Consider the code in Figure 7.37. Since the always block is sensitive to the positive clock
edge, both Q1 and Q2 will be implemented as the outputs of D flip-flops. However, because
blocking assignments are involved, these two flip-flops will not be connected in cascade,
as the reader might expect. The first statement

Q1 = D;

sets Q1 to the value of D. This new value is used in evaluating the subsequent statement

module example7 3 (D, Clock, Q1, Q2);
input D, Clock;
output Q1, Q2;
reg Q1, Q2;

always @(posedge Clock)
begin

Q1 = D;
Q2 = Q1;

end

endmodule

Figure 7.37 Incorrect code for two cascaded flip-flops.
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Q2 = Q1;

which results in Q2 = Q1 = D. The synthesized circuit has two parallel flip-flops, as illustrated
in Figure 7.38. A synthesis tool will likely delete one of these redundant flip-flops as an
optimization step.

Verilog also provides a non-blocking assignment, denoted with <=. All non-blocking
assignment statements in an always block are evaluated using the values that the variables
have when the always block is entered. Thus, a given variable has the same value for all
statements in the block. The meaning of non-blocking is that the result of each assignment
is not seen until the end of the always block.

Example 7.4Figure 7.39 gives the same code as in Figure 7.37, but using non-blocking assignments. In
the two statements

Q1 <= D;
Q2 <= Q1;

the variables Q1 and Q2 have some value at the start of evaluating the always block, and
then they change to a new value concurrently at the end of the always block. This code
generates a cascaded connection between flip-flops, which implements the shift register
depicted in Figure 7.40.

The differences between blocking and non-blocking assignments are illustrated further
by the following two examples.

D Q

Q

D Q

Q

D

Clock

Q2

Q1

Figure 7.38 Circuit for Example 7.3.
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module example7 4 (D, Clock, Q1, Q2);
input D, Clock;
output Q1, Q2;
reg Q1, Q2;

always @(posedge Clock)
begin

Q1 <= D;
Q2 <= Q1;

end

endmodule

Figure 7.39 Code for two cascaded flip-flops.

D Q

QClock

D Q

Q

D
Q1 Q2

Figure 7.40 Circuit defined in Figure 7.39.

Example 7.5 Code that involves some gates in addition to flip-flops is defined in Figure 7.41 using
blocking assignment statements. The resulting circuit is given in Figure 7.42. Both f and
g are implemented as the outputs of D flip-flops, because the sensitivity list of the always
block specifies the event posedge Clock. Since blocking assignments are used, the updated
value of f generated by the statement f = x1 & x2 has to be seen immediately by the
following statement g = f | x3. Thus, the AND gate that produces x1 & x2 is connected to
the OR gate that feeds the g flip-flop, as shown in Figure 7.42.

Example 7.6 If non-blocking assignments are used, as given in Figure 7.43, then both f and g are updated
simultaneously. Hence, the previous value of f is used in updating the value of g, which
means that the output of the flip-flop that generates f is connected to the OR gate that feeds
the g flip-flop. This gives rise to the circuit in Figure 7.44.

It is interesting to consider what circuit would be synthesized if the statements that
specify f and g were reversed. For the code in Figure 7.41 the impact would be significant.
If g is evaluated first, then the second statement does not depend on the first one, because
f does not depend on g. The resulting circuit would be the same as the one in Figure 7.44.
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module example7 5 (x1, x2, x3, Clock, f, g);
input x1, x2, x3, Clock;
output f, g;
reg f, g;

always @(posedge Clock)
begin

f = x1 & x2;
g = f | x3;

end

endmodule

Figure 7.41 Code for Example 7.5.

Clock

D Q

Q

D Q

Q

g

f

x3

x1

x2

Figure 7.42 Circuit for Example 7.5.

module example7 6 (x1, x2, x3, Clock, f, g);
input x1, x2, x3, Clock;
output f, g;
reg f, g;

always @(posedge Clock)
begin

f <= x1 & x2;
g <= f | x3;

end

endmodule

Figure 7.43 Code for Example 7.6.
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Clock

D Q

Q

D Q

Q

g

f

x3

x1

x2

Figure 7.44 Circuit for Example 7.6.

Reversing the statement order would make no difference for the code in Figure 7.43, in
which the non-blocking assignment is used.

The use of blocking assignments for sequential circuits can easily lead to wrong results,
as demonstrated in Figure 7.38. The dependence on ordering of blocking assignments is
dangerous, as shown in the previous example. It is better to use non-blocking assignments
to describe sequential circuits.

7.12.4 Non-Blocking Assignments for Combinational
Circuits

A natural question at this point is whether non-blocking assignments can be used for combi-
national circuits. The answer is that they can be used in most situations, but when subsequent
assignments in an always block depend on the results of previous assignments, the non-
blocking assignments can generate nonsensical circuits. As an example, assume that we
have a three-bit vector A = a2a1a0, and we wish to generate a combinational function f
that is equal to 1 when there are two adjacent bits in A that have the value 1. One way to
specify this function with blocking assignments is

always @(A)
begin

f = A[1] & A[0];
f = f | (A[2] & A[1]);

end

These statements produce the desired logic function, which is f = a1a0 + a2a1. Consider
now changing the code to use the non-blocking assignments

f <= A[1] & A[0];
f <= f | (A[2] & A[1]);
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There are two key aspects of the Verilog semantics relevant to this code:

1. The results of non-blocking assignments are visible only after all of the statements in
the always block have been evaluated.

2. When there are multiple assignments to the same variable inside an always block, the
result of the last assignment is maintained.

In this example, f has an unspecified initial value when we enter the always block. The
first statement assigns f = a1a0, but this result is not visible to the second statement. It still
sees the original unspecified value of f . The second assignment overrides (deletes!) the
first assignment and produces the logic function f = f + a2a1. This expression does not
correspond to a combinational circuit, because it represents an AND-OR circuit in which
the OR-gate is fed back to itself. It is best to use blocking assignments when describing
combinational circuits, so as to avoid accidentally creating a sequential circuit.

7.12.5 Flip-Flops with Clear Capability

By using a particular sensitivity list and a specific style of if-else statement, it is possible
to include clear (or preset) signals on flip-flops.

Example 7.7ASYNCHRONOUS CLEAR Figure 7.45 gives a module that defines a D flip-flop with
an asynchronous active-low reset (clear) input. When Resetn, the reset input, is equal to
0, the flip-flop’s Q output is set to 0. Note that the sensitivity list specifies the negative
edge of Resetn as an event trigger along with the positive edge of the clock. We cannot
omit the keyword negedge because the sensitivity list cannot have both edge-triggered and
level-sensitive signals.

module flipflop (D, Clock, Resetn, Q);
input D, Clock, Resetn;
output Q;
reg Q;

always @(negedge Resetn or posedge Clock)
if (!Resetn)

Q <= 0;
else

Q <= D;

endmodule

Figure 7.45 D flip-flop with asynchronous reset.
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module flipflop (D, Clock, Resetn, Q);
input D, Clock, Resetn;
output Q;
reg Q;

always @(posedge Clock)
if (!Resetn)

Q <= 0;
else

Q <= D;

endmodule

Figure 7.46 D flip-flop with synchronous reset.

Example 7.8 SYNCHRONOUS CLEAR Figure 7.46 shows how a D flip-flop with a synchronous reset
input can be described. In this case the reset signal is acted upon only when a positive
clock edge arrives. This code generates the circuit in Figure 7.15, which has an AND gate
connected to the flip-flop’s D input.

7.13 Using Registers and Counters with CADTools

In this section we show how registers and counters can be included in circuits designed
with the aid of CAD tools. Examples are given using both schematic capture and Verilog
code.

7.13.1 Including Registers and Counters in Schematics

In section 5.5.1 we explained that a CAD system usually includes libraries of prebuilt
subcircuits. We introduced the library of parameterized modules (LPM) and used the
adder/subtractor module, lpm_add_sub, as an example. The LPM includes modules that
constitute flip-flops, registers, counters, and many other useful circuits. Figure 7.47 shows
a symbol that represents the lpm_ ff module. This module is a register with one or more
positive-edge-triggered flip-flops that can be of either D or T type. The module has param-
eters that allow the number of flip-flops and flip-flop type to be chosen. In this case we
chose to have four D flip-flops. The tutorial in Appendix D explains how the configuration
of the module is done.

The D inputs to the four flip-flops, called data on the graphical symbol, are connected
to the four-bit input signal Data[3..0]. The module’s asynchronous active-high reset (clear)
input, aclr, is shown in the schematic. The flip-flop outputs, q, are attached to the output
symbol labeled Q[3..0].
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Figure 7.47 The lpm_ff parameterized flip-flop module.

In section 7.3 we said that a useful application of D flip-flops is to hold the results of an
arithmetic computation, such as the output from an adder circuit. An example is given in
Figure 7.48, which uses two LPM modules, lpm_add_sub and lpm_ ff. The lpm_add_sub
module was described in section 5.5.1. Its parameters, which are not shown in Figure 7.48,
are set to configure the module as a four-bit adder circuit. The adder’s four-bit data input
dataa is driven by the Data[3..0] input signal. The sum bits, result, are connected to the
data inputs of the lpm_ ff, which is configured as a four-bit D register with asynchronous
clear. The register generates the output of the circuit, Q[3..0], which appears on the left
side of the schematic. This signal is fed back to the datab input of the adder. The sum bits

Figure 7.48 An adder with registered feedback.
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from the adder are also provided as an output of the circuit, Sum[3..0], for ease of reference
in the discussion that follows. If the register is first cleared to 0000, then the circuit can be
used to add the binary numbers on the Data[3..0] input to a sum that is being accumulated
in the register, if a new number is applied to the input during each clock cycle. A circuit
that performs this function is referred to as an accumulator circuit.

We synthesized a circuit from the schematic and implemented the four-bit adder using
the carry-lookahead structure. A timing simulation for the circuit appears in Figure 7.49.
After resetting the circuit, the Data input is set to 0001. The adder produces the sum
0000 + 0001 = 0001, which is then clocked into the register at the 60 ns point in time.
After the tco delay, Q[3..0] becomes 0001, and this causes the adder to produce the new sum
0001+0001 = 0010. The time needed to generate the new sum is determined by the speed
of the adder circuit, which produces the sum after 12.5 ns in this case. The new sum does
not appear at the Q output until after the next positive clock edge, at 100 ns. The adder then
produces 0011 as the next sum. When Sum changes from 0010 to 0011, some oscillations
appear in the timing diagram, caused by the propagation of carry signals through the adder
circuit. These oscillations are not seen at the Q output, because Sum is stable by the time the
next positive clock edge occurs. Moving forward to the 180 ns point in time, Sum= 0100,
and this value is clocked into the register. The adder produces the new sum 0101. Then at
200 ns Data is changed to 0010, which causes the sum to change to 0100+ 0010 = 0110.
At the next positive clock edge, Q is set to 0110; the value Sum = 0101 that was present
temporarily in the circuit is not observed at the Q output. The circuit continues to add 0010
to the Q output at each successive positive clock edge.

Having simulated the behavior of the circuit, we should consider whether or not we
can conclude with some certainty that the circuit works properly. Ideally, it is prudent to
test all possible combinations of a circuit’s inputs before declaring that it works as desired.
However, in practice, such testing is often not feasible because of the number of input
combinations that exist. For the circuit in Figure 7.48, we could verify that a correct sum
is produced by the adder, and we could also check that each of the four flip-flops in the
register properly stores either 0 or 1. We will discuss issues associated with the testing of
circuits in Chapter 11.

For the circuit in Figure 7.48 to work properly, the following timing constraints must
be met. When the register is clocked by a positive clock edge, a change of signal value

Figure 7.49 Timing simulation of the circuit from Figure 7.48.
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at the register’s output must propagate through the feedback path to the datab input of the
adder. The adder then produces a new sum, which must propagate to the data input of the
register. For the chip used to implement the circuit, the total delay incurred is 14 ns. The
delay can be broken down as follows: It takes 2 ns from when the register is clocked until
a change in its output reaches the datab input of the adder. The adder produces a new sum
in 8 ns, and it takes 4 ns for the sum to propagate to the register’s data input. In Figure 7.49
the clock period is 40 ns. Hence, after the new sum arrives at the data input of the register,
there remain 40 − 14 = 26 ns until the next positive clock edge occurs. The data input
must be stable for the amount of the setup time, tsu = 3 ns, before the clock edge. Hence
we have 26− 3 = 23 ns to spare. The clock period can be decreased by as much as 23 ns
and the circuit will still work. But if the clock period is less than 40 − 23 = 17 ns, then
the circuit will not function properly. Of course, if a different chip were used to implement
the circuit, then different timing results would be produced. CAD systems provide tools
that can automatically determine the minimum allowable clock period for which a circuit
will work correctly. The tutorial in Appendix D shows how this is done using the tools that
accompany the book.

7.13.2 Using Library Modules in Verilog Code

The predefined subcircuits in a library of modules such as the LPM library can be instantiated
in Verilog code. Figure 7.50 instantiates the lpm_shiftreg module, which is an n-bit shift
register. The module’s parameters are set using defparam statements. The number of
flip-flops in the shift register is set to 4 using the parameter lpm_width = 4. The module
can be configured to shift either left or right. The parameter lpm_direction = “RIGHT” sets
the shift direction to be from the left to the right. The code uses the module’s asynchronous
active-high clear input, aclr, and the active-high parallel-load input, load, which allows the
shift register to be loaded with the parallel data on the module’s data input. When shifting
takes place, the value on the shiftin input is shifted into the left-most flip-flop and the bit
shifted out appears on the right-most bit of the q parallel output. The code uses named

module shift (Clock, Reset, w, Load, R, Q);
input Clock, Reset, w, Load;
input [3:0] R;
output [3:0] Q ;

lpm shiftreg shift right (.data(R), .aclr(Reset), .clock(Clock),
.load(Load), .shiftin(w), .q(Q)) ;
defparam shift right.lpm width = 4;
defparam shift right.lpm direction = “RIGHT”;

endmodule

Figure 7.50 Instantiation of the lpm_shiftreg module.
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ports to connect the input and output signals of the shift module to the ports of the module.
For example, the R input signal is connected to the module’s data port. This is specified
by writing .data(R) in the instantiation statement. Similarly, .aclr(Reset) specifies that the
Reset input signal is connected to the aclr port on the module, and so on. When translated
into a circuit, the lpm_shiftreg has the structure shown in Figure 7.19.

Predefined modules also exist for the various types of counters, which are commonly
needed in logic circuits. An example is the lpm_counter module, which is a variable-width
counter with parallel-load inputs.

7.13.3 Using Verilog Constructs for Registers
and Counters

Rather than instantiating predefined subcircuits for registers, shift registers, counters, and
the like, the circuits can be described in Verilog code. Figure 7.45 gives code for a D
flip-flop. One way to describe an n-bit register is to write hierarchical code that includes
n instances of the D flip-flop subcircuit. A simpler approach is to use the same code as in
Figure 7.45 and define the D input and Q output as multibit signals.

Example 7.9 AN N-BIT REGISTER Since registers of different sizes are often needed in logic circuits, it
is advantageous to define a register module for which the number of flip-flops can be easily
changed. The code for an n-bit register is given in Figure 7.51. The parameter n specifies
the number of flip-flops in the register. By changing this parameter, the code can represent
a register of any size.

module regn (D, Clock, Resetn, Q);

input [n 1:0] D;
input Clock, Resetn;
output Q;
reg Q;

always @(negedge Resetn or posedge Clock)
if (!Resetn)

Q <= 0;
else

Q <= D;

endmodule

[n 1:0]
[n 1:0]

parameter n = 16;

Figure 7.51 Code for an n-bit register with asynchronous clear.
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Example 7.10A FOUR-BIT SHIFT REGISTER Assume that we wish to write Verilog code that represents the
four-bit parallel-access shift register in Figure 7.19. One approach is to write hierarchical
code that uses four subcircuits. Each subcircuit consists of a D flip-flop with a 2-to-1
multiplexer connected to the D input. Figure 7.52 defines the module named muxdff, which
represents this subcircuit. The two data inputs are named D0 and D1, and they are selected
using the Sel input. The if-else statement specifies that on the positive clock edge if Sel
= 0, then Q is assigned the value of D0; otherwise, Q is assigned the value of D1.

Figure 7.53 defines the four-bit shift register. The module Stage3 instantiates the left-
most flip-flop, which has the output Q3, and the module Stage0 instantiates the right-most
flip-flop, Q0. When L = 1, the register is loaded in parallel from the R input; and when
L = 0, shifting takes place in the left to right direction. Serial data is shifted into the
most-significant bit, Q3, from the w input.

module muxdff (D0, D1, Sel, Clock, Q);
input D0, D1, Sel, Clock;
output Q;
reg Q;

always @(posedge Clock)
if (!Sel)

Q <= D0;
else

Q <= D1;

endmodule

Figure 7.52 Code for a D flip-flop with a 2-to-1 multiplexer on
the D input.

module shift4 (R, L, w, Clock, Q);
input [3:0] R;
input L, w, Clock;
output [3:0] Q;
wire [3:0] Q;

muxdff Stage3 (w, R[3], L, Clock, Q[3]);
muxdff Stage2 (Q[3], R[2], L, Clock, Q[2]);
muxdff Stage1 (Q[2], R[1], L, Clock, Q[1]);
muxdff Stage0 (Q[1], R[0], L, Clock, Q[0]);

endmodule

Figure 7.53 Hierarchical code for a four-bit shift register.
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Example 7.11 ALTERNATIVE CODE FOR A FOUR-BIT SHIFT REGISTER A different style of code for the
four-bit shift register is given in Figure 7.54. Instead of using subcircuits, the shift register is
defined using the approach presented in Example 7.4. All actions take place at the positive
edge of the clock. If L = 1, the register is loaded in parallel with the four bits of input R.
If L = 0, the contents of the register are shifted to the right and the value of the input w is
loaded into the most-significant bit Q3.

Example 7.12 AN N-BIT SHIFT REGISTER Figure 7.55 shows the code that can be used to represent shift
registers of any size. The parameter n, which has the default value 16 in the figure, sets
the number of flip-flops. The code is identical to that in Figure 7.54 with two exceptions.
First, R and Q are defined in terms of n. Second, the else clause that describes the shifting
operation is generalized to work for any number of flip-flops by using a for loop.

Example 7.13 UP-COUNTER Figure 7.56 represents a four-bit up-counter with a reset input, Resetn, and
an enable input, E. The outputs of the flip-flops in the counter are represented by the vector
named Q. The if statement specifies an asynchronous reset of the counter if Resetn = 0.
The else if clause specifies that if E = 1 the count is incremented on the positive clock
edge.

module shift4 (R, L, w, Clock, Q);
input [3:0] R;
input L, w, Clock;
output [3:0] Q;
reg [3:0] Q;

always @(posedge Clock)
if (L)

Q <= R;
else
begin

Q[0] <= Q[1];
Q[1] <= Q[2];
Q[2] <= Q[3];
Q[3] <= w;

end

endmodule

Figure 7.54 Alternative code for a four-bit shift register.



June 18, 2002 15:56 vra23151_ch07 Sheet number 55 Page number 403 black

7.13 Using Registers and Counters with CAD Tools 403

module shiftn (R, L, w, Clock, Q);
parameter n = 16;
input R;
input L, w, Clock;
output Q;
reg Q;
integer k;

always @(posedge Clock)
if (L)

Q <= R;
else
begin

for (k = 0; k < n 1; k = k+1)
Q[k] <= Q[k+1];

Q[n 1] <= w;
end

endmodule

[n 1:0]

[n 1:0]
[n 1:0]

Figure 7.55 An n-bit shift register.

module upcount (Resetn, Clock, E, Q);
input Resetn, Clock, E;
output [3:0] Q;
reg [3:0] Q;

always @(negedge Resetn or posedge Clock)
if (!Resetn)

Q <= 0;
else if (E)

Q <= Q + 1;

endmodule

Figure 7.56 Code for a four-bit up-counter.

Example 7.14UP-COUNTER WITH PARALLEL LOAD The code in Figure 7.57 defines an up-counter that
has a parallel-load input in addition to a reset input. The parallel data is provided as the
input vector R. The first if statement provides the same asynchronous reset as in Figure
7.56. The else if clause specifies that if L = 1 the flip-flops in the counter are loaded in
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module upcount (R, Resetn, Clock, E, L, Q);
input [3:0] R;
input Resetn, Clock, E, L;
output [3:0] Q;
reg [3:0] Q;

always @(negedge Resetn or posedge Clock)
if (!Resetn)

Q <= 0;
else if (L)

Q <= R;
else if (E)

Q <= Q + 1;

endmodule

Figure 7.57 A four-bit up-counter with a parallel load.

parallel from the R inputs on the positive clock edge. If L = 0, the count is incremented,
under control of the enable input E.

Example 7.15 DOWN-COUNTER WITH PARALLEL LOAD Figure 7.58 shows the code for a down-counter
named downcount. A down-counter is normally used by loading it with some starting count
and then decrementing its contents. The starting count is represented in the code by the
vector R. On the positive clock edge, if L = 1 the counter is loaded with the input R, and
if L = 0 the count is decremented. The counter also includes an enable input, E. Setting

module downcount (R, Clock, E, L, Q);
parameter n = 8;
input R;
input Clock, L, E;
output Q;
reg Q;

always @(posedge Clock)
if (L)

Q <= R;
else if (E)

Q <= Q 1;

endmodule

[n 1:0]

[n 1:0]
[n 1:0]

Figure 7.58 A down-counter with a parallel load.
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module updowncount (R, Clock, L, E, up down, Q);
parameter n = 8;
input R;
input Clock, L, E, up down;
output − Q;
reg Q;
integer direction;

always @(posedge Clock)
begin

if (up down)
direction = 1;

else
direction = −1;

if (L)
Q <= R;

else if (E)
Q <= Q + direction;

end

endmodule

[n 1:0]

[n 1:0]
[n 1:0]

Figure 7.59 Code for an up/down counter.

E = 0 prevents the contents of the flip-flops from changing when an active clock edge
occurs.

Example 7.16UP/DOWN COUNTER Verilog code for an up/down counter is given in Figure 7.59.
This module combines the capabilities of the counters defined in Figures 7.57 and 7.58. It
includes a control signal up_down that governs the direction of counting. It also includes
an integer variable named direction, which is equal to 1 for up-count and equal to −1 for
down-count.

7.14 Design Examples

This section presents examples of digital systems that make use of some of the building
blocks described in this chapter and in Chapter 6.

7.14.1 Bus Structure

Digital systems often contain a set of registers used to store data. Figure 7.60 gives an
example of a system that has k n-bit registers, R1 to Rk. Each register is connected to a
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R1in Rkin

Bus

Clock

R1out R2in R2out Rkout

Control circuit
Function

R1 R2 Rk

Data

Extern

Figure 7.60 A digital system with k registers.

common set of n wires, which are used to transfer data into and out of the registers. This
common set of wires is usually called a bus. In addition to registers, in a real system other
types of circuit blocks would be connected to the bus. The figure shows how n bits of data
can be placed on the bus from another circuit block, using the control input Extern. The
data stored in any of the registers can be transferred via the bus to a different register or to
another circuit block that is connected to the bus.

It is essential to ensure that only one circuit block attempts to place data onto the bus
wires at any given time. In Figure 7.60 each register is connected to the bus through an n-bit
tri-state buffer. A control circuit is used to ensure that only one of the tri-state buffer enable
inputs, R1out, . . . , Rkout , is asserted at a given time. The control circuit also produces the
signals R1in, . . . , Rkin, which control when data is loaded into each register. In general, the
control circuit could perform a number of functions, such as transferring the data stored in
one register into another register and the like. Figure 7.60 shows an input signal named
Function that instructs the control circuit to perform a particular task. The control circuit is
synchronized by a clock input, which is the same clock signal that controls the k registers.

Figure 7.61 provides a more detailed view of how the registers from Figure 7.60 can
be connected to a bus. To keep the picture simple, 2 two-bit registers are shown, but the
same scheme can be used for larger registers. For register R1, two tri-state buffers en-
abled by R1out are used to connect each flip-flop output to a wire in the bus. The D input on
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each flip-flop is connected to a 2-to-1 multiplexer, whose select input is controlled by R1in.
If R1in = 0, the flip-flops are loaded from their Q outputs; hence the stored data does
not change. But if R1in = 1, data is loaded into the flip-flops from the bus. Instead of
using multiplexers on the flip-flop inputs, one could attempt to connect the D inputs on
the flip-flops directly to the bus. Then it is necessary to control the clock inputs on all
flip-flops to ensure that they are clocked only when new data should be loaded into the
register. This approach is not good because it may happen that different flip-flops will be
clocked at slightly different times, leading to a problem known as clock skew. A detailed
discussion of the issues related to the clocking of flip-flops is provided in section 10.3.

The system in Figure 7.60 can be used in many different ways, depending on the design
of the control circuit and on how many registers and other circuit blocks are connected to
the bus. As a simple example, consider a system that has three registers, R1, R2, and R3.
Each register is connected to the bus as indicated in Figure 7.61. We will design a control
circuit that performs a single function—it swaps the contents of registers R1 and R2, using
R3 for temporary storage.

The required swapping is done in three steps, each needing one clock cycle. In the first
step the contents of R2 are transferred into R3. Then the contents of R1 are transferred into
R2. Finally, the contents of R3, which are the original contents of R2, are transferred into
R1. Note that we say that the contents of one register, Ri, are “transferred” into another
register, Rj. This jargon is commonly used to indicate that the new contents of Rj will be
a copy of the contents of Ri. The contents of Ri are not changed as a result of the transfer.
Therefore, it would be more precise to say that the contents of Ri are “copied” into Rj.

Using a Shift Register for Control
There are many ways to design a suitable control circuit for the swap operation. One

possibility is to use the left-to-right shift register shown in Figure 7.62. Assume that the
reset input is used to clear the flip-flops to 0. Hence the control signals R1in, R1out , and so
on are not asserted, because the shift register outputs have the value 0. The serial input w
normally has the value 0. We assume that changes in the value of w are synchronized to
occur shortly after the active clock edge. This assumption is reasonable because w would
normally be generated as the output of some circuit that is controlled by the same clock
signal. When the desired swap should be performed, w is set to 1 for one clock cycle, and
then w returns to 0. After the next active clock edge, the output of the left-most flip-flop

D Q

QClock

D Q

Q

D Q

Q

w

R2out R3in,

Reset

R1out R2in, R3out R1in,

Figure 7.62 A shift-register control circuit.
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becomes equal to 1, which asserts both R2out and R3in. The contents of register R2 are
placed onto the bus wires and are loaded into register R3 on the next active clock edge.
This clock edge also shifts the contents of the shift register, resulting in R1out = R2in = 1.
Note that since w is now 0, the first flip-flop is cleared, causing R2out = R3in = 0. The
contents of R1 are now on the bus and are loaded into R2 on the next clock edge. After this
clock edge the shift register contains 001 and thus asserts R3out and R1in. The contents of
R3 are now on the bus and are loaded into R1 on the next clock edge.

Using the control circuit in Figure 7.62, when w changes to 1 the swap operation does
not begin until after the next active clock edge. We can modify the control circuit so that
it starts the swap operation in the same clock cycle in which w changes to 1. One possible
approach is illustrated in Figure 7.63. The reset signal is used to set the shift-register
contents to 100, by presetting the left-most flip-flop to 1 and clearing the other two flip-
flops. As long as w = 0, the output control signals are not asserted. When w changes to 1,
the signals R2out and R3in are immediately asserted and the contents of R2 are placed onto
the bus. The next active clock edge loads this data into R3 and also shifts the shift register
contents to 010. Since the signal R1out is now asserted, the contents of R1 appear on the
bus. The next clock edge loads this data into R2 and changes the shift register contents to
001. The contents of R3 are now on the bus; this data is loaded into R1 at the next clock
edge, which also changes the shift register contents to 100. We assume that w had the value
1 for only one clock cycle; hence the output control signals are not asserted at this point.
It may not be obvious to the reader how to design a circuit such as the one in Figure 7.63,
because we have presented the design in an ad hoc fashion. In section 8.3 we will show
how this circuit can be designed using a more formal approach.

The circuit in Figure 7.63 assumes that a preset input is available on the left-most
flip-flop. If the flip-flop has only a clear input, then we can use the equivalent circuit
shown in Figure 7.64. In this circuit we use the Q output of the left-most flip-flop and also
complement the input to this flip-flop by using a NOR gate instead of an OR gate.

D Q

QClock

D Q

Q

D Q

Q

w

R2out R3in, R1out R2in, R3out R1in,

P

Reset

Figure 7.63 A modified control circuit.
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D Q

QClock

D Q

Q

D Q

Q

w

R2out R3in, R1out R2in, R3out R1in,

Reset

Figure 7.64 A modified version of the circuit in Figure 7.63.

Using Multiplexers to Implement a Bus
In Figure 7.60 we used tri-state buffers to control access to the bus. An alternative

approach is to use multiplexers, as depicted in Figure 7.65. The outputs of each register
are connected to a multiplexer. This multiplexer’s output is connected to the inputs of the
registers, thus realizing the bus. The multiplexer select inputs determine which register’s
contents appear on the bus. Although the figure shows just one multiplexer symbol, we
actually need one multiplexer for each bit in the registers. For example, assume that
there are 4 eight-bit registers, R1 to R4, plus the externally-supplied eight-bit Data. To

Data

R1in

Multiplexers

R2in Rkin

Bus

Clock

S j 1–

S0

R1 R2 Rk

Figure 7.65 Using multiplexers to implement a bus.
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interconnect them, we need eight 5-to-1 multiplexers. In Figure 7.62 we used a shift
register to implement the control circuit. A similar approach can be used with multiplexers.
The signals that control when data is loaded into a register, like R1in, can still be connected
directly to the shift-register outputs. However, instead of using control signals like R1out

to place the contents of a register onto the bus, we have to generate the select inputs for the
multiplexers. One way to do so is to connect the shift-register outputs to an encoder circuit
that produces the select inputs for the multiplexer. We discussed encoder circuits in section
6.3.

The tri-state buffer and multiplexer approaches for implementing a bus are both equally
valid. However, some types of chips, such as most PLDs, do not contain a sufficient number
of tri-state buffers to realize even moderately large buses. In such chips the multiplexer-
based approach is the only practical alternative. In practice, circuits are designed with CAD
tools. If the designer describes the circuit using tri-state buffers, but there are not enough
such buffers in the target device, then the CAD tools automatically produce an equivalent
circuit that uses multiplexers.

Verilog Code
This section presents Verilog code for our circuit example that swaps the contents of

two registers. We first give the code for the style of circuit in Figure 7.60 that uses tri-state
buffers to implement the bus and then give the code for the style of circuit in Figure 7.65
that uses multiplexers. The code is written in a hierarchical fashion, using subcircuits for
the registers, tri-state buffers, and the shift register. Figure 7.66 gives the code for an n-bit
register of the type in Figure 7.61. The number of bits in the register is set by the parameter
n, which has the default value of 8. The register is specified such that if the input Rin = 1,
then the flip-flops are loaded from the n-bit input R. Otherwise, the flip-flops retain their
presently stored values.

Figure 7.67 gives the code for a subcircuit that represents n tri-state buffers, each
enabled by the input E. The inputs to the buffers are the n-bit signal Y , and the outputs
are the n-bit signal F . The conditional assignment statement specifies that the output of

module regn (R, Rin, Clock, Q);
parameter n = 8;
input R;
input Rin, Clock;
output Q;
reg Q;

always @(posedge Clock)
if (Rin)

Q <= R;

endmodule

[n 1:0]

[n 1:0]
[n 1:0]

Figure 7.66 Code for an n-bit register of the type in Figure
7.61.
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module trin (Y, E, F);
parameter n = 8;
input Y;
input E;
output F;
wire F;

assign F = E ? Y : ’bz;

endmodule

[n 1:0]

[n 1:0]
[n 1:0]

Figure 7.67 Code for an n-bit tri-state module.

each buffer is set to F = Y if E = 1; otherwise, the output is set to the high impedance
value z. The conditional assignment statement uses an unsized number to define the high
impedance case. The Verilog compiler will make the size of this number the same as the
size of vector Y , namely n. We cannot define the number as n’bz because the size of a sized
number cannot be given as a parameter.

Figure 7.68 defines a shift register that can be used to implement the control circuit
in Figure 7.62. The number of flip-flops is set by the generic parameter m, which has the
default value of 4. The shift register has an active-low asynchronous reset input. The shift
operation is defined with a for loop in the style used in Example 7.12.

module shiftr (Resetn, w, Clock, Q);
parameter m = 4;
input Resetn, w, Clock;
output [1:m] Q;
reg [1:m] Q;
integer k;

always @(negedge Resetn or posedge Clock)
if (!Resetn)

Q <= 0;
else
begin

for (k = m; k > 1 ; k = k 1)
Q[k] <= Q[k 1];

Q[1] <= w;
end

endmodule

Figure 7.68 Code for the shift register in Figure 7.62.
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The code in Figure 7.69 represents a digital system like the one in Figure 7.60, with 3
eight-bit registers, R1, R2, and R3. The circuit in Figure 7.60 includes tri-state buffers that
are used to place n bits of externally supplied data on the bus. In Figure 7.69, these buffers
are instantiated in the module tri_ext. Each of the eight buffers is enabled by the input
signal Extern, and the data inputs on the buffers are attached to the eight-bit signal Data.
When Extern = 1, the value of Data is placed on the bus, which is represented by the signal
BusWires. The BusWires vector represents the circuit’s output as well as the internal bus
wiring. We declared this vector to be of tri type rather than of wire type. The keyword tri
is treated in the same way as the keyword wire by the Verilog compiler. The designation tri
makes it obvious to a reader that the synthesized connections will have tri-state capability.

We assume that a three-bit control signal named RinExt exists, which allows the ex-
ternally supplied data to be loaded from the bus into register R1, R2, or R3. The RinExt

module swap (Data, Resetn, w, Clock, Extern, RinExt, BusWires);
input [7:0] Data;
input Resetn, w, Clock, Extern;
input [1:3] RinExt;
output [7:0] BusWires;
tri [7:0] BusWires;
wire [1:3] Rin, Rout, Q;
wire [7:0] R1, R2, R3;

shiftr control (Resetn, w, Clock, Q);
defparam control.m = 3;

assign Rin[1] = RinExt[1] | Q[3];
assign Rin[2] = RinExt[2] | Q[2];
assign Rin[3] = RinExt[3] | Q[1];
assign Rout[1] = Q[2];
assign Rout[2] = Q[1];
assign Rout[3] = Q[3];

regn reg 1 (BusWires, Rin[1], Clock, R1);
regn reg 2 (BusWires, Rin[2], Clock, R2);
regn reg 3 (BusWires, Rin[3], Clock, R3);

trin tri ext (Data, Extern, BusWires);
trin tri 1 (R1, Rout[1], BusWires);
trin tri 2 (R2, Rout[2], BusWires);
trin tri 3 (R3, Rout[3], BusWires);

endmodule

Figure 7.69 A digital system like the one in Figure 7.60.
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input is not shown in Figure 7.60, to keep the figure simple, but it would be generated by
the same external circuit block that produces Extern and Data. When RinExt[1] = 1, the
data on the bus is loaded into register R1; when RinExt[2] = 1, the data is loaded into R2;
and when RinExt[3] = 1, the data is loaded into R3.

In Figure 7.69 the three-bit shift register is instantiated using the shiftr module under
the instance name control. The outputs of the shift register are the three-bit signal Q. The
parameter that defines the number of flip-flops in the shiftr module, m, has the default value
of 4. Since we need to instantiate only a three-bit shift register, we have to change the value
of parameter m. The parameter is set with the statement

defparam control.m = 3;

The defparam statement defines the values of the parameters indicated. The intended
module instance is identified using the syntax instance_name.parameter_name. In our
example, the instance name is control and the parameter name is m.

The next three statements in Figure 7.69 connect Q to the control signals that determine
when data is loaded into each register, which are represented by the three-bit signal Rin.
The signals Rin[1], Rin[2], and Rin[3] in the code correspond to the signals R1in, R2in, and
R3in in Figure 7.60. As specified in Figure 7.62, the left-most shift-register output, Q[1],
controls when data is loaded into register R3. Similarly, Q[2] controls register R2, and Q[3]
controls R1. Each bit in Rin is ORed with the corresponding bit in RinExt so that externally
supplied data can be stored in the registers as discussed above. The code also connects the
shift-register outputs to the enable inputs, Rout, on the tri-state buffers. Figure 7.62 shows
that Q[1] is used to put the contents of R2 onto the bus; hence Rout[2] is assigned the value
of Q[1]. Similarly, Rout[1] is assigned the value of Q[2], and Rout[3] is assigned the value
of Q[3]. The remaining statements in the code instantiate the registers and tri-state buffers
in the system.

Verilog Code Using Multiplexers
Figure 7.70 shows how the code in Figure 7.69 can be modified to use multiplexers

instead of tri-state buffers. Using the circuit structure shown in Figure 7.65, the bus is
implemented with eight 4-to-1 multiplexers. Three of the data inputs on each 4-to-1 mul-
tiplexer are connected to one bit from registers R1, R2, and R3. The fourth data input is
connected to one bit of the Data input signal to allow externally supplied data to be written
into the registers. When the shift register’s contents are 000, the multiplexers select Data
to be placed on the bus. This data is loaded into the register selected by RinExt. It is loaded
into R1 if RinExt[1] = 1, R2 if RinExt[2] = 1, and R3 if RinExt[3] = 1.

The Rout signal in Figure 7.69, which enables the tri-state buffers connected to the bus,
is not needed for the multiplexer implementation. Instead, we have to provide the select
inputs on the multiplexers. In Figure 7.70, the shift-register outputs are called Q. These
signals generate the Rin control signals for the registers in the same way as shown in Figure
7.69. We said in the discussion concerning Figure 7.65 that an encoder is needed between
the shift-register outputs and the multiplexer select inputs. A suitable encoder is described
in the first if-else statement in Figure 7.70. It produces the multiplexer select inputs, which
are named S. It sets S = 00 when the shift register contains 000, S = 10 when the shift
register contains 100, and so on, as given in the code. The multiplexers are described by
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module swapmux (Data, Resetn, w, Clock, RinExt, BusWires);
input [7:0] Data;
input Resetn, w, Clock;
input [1:3] RinExt;
output [7:0] BusWires;
reg [7:0] BusWires;
wire [1:3] Rin, Q;
wire [7:0] R1, R2, R3;
reg [1:0] S;

shiftr control (Resetn, w, Clock, Q);
defparam control.m = 3;

assign Rin[1] = RinExt[1] | Q[3];
assign Rin[2] = RinExt[2] | Q[2];
assign Rin[3] = RinExt[3] | Q[1];
regn reg 1 (BusWires, Rin[1], Clock, R1);
regn reg 2 (BusWires, Rin[2], Clock, R2);
regn reg 3 (BusWires, Rin[3], Clock, R3);

always @(Q or Data or R1 or R2 or R3 or S)
begin

// Encoder
if (Q == 3’b000) S = 2’b00;
else if (Q == 3’b100) S = 2’b10;
else if (Q == 3’b010) S = 2’b01;
else S = 2’b11;

// Multiplexers
if (S == 2’b00) BusWires = Data;
else if (S == 2’b01) BusWires = R1;
else if (S == 2’b10) BusWires = R2;
else BusWires = R3;

end

endmodule

Figure 7.70 Using multiplexers to implement a bus.

the second if-else statement, which places the value of Data onto the bus (BusWires) if
S = 00, the contents of register R1 if S = 01, and so on. Using this scheme, when the swap
operation is not active, the multiplexers place the bits from the Data input on the bus.

As described above, Figure 7.70 uses two if-else statements, one to describe an encoder
and the other to describe the bus multiplexers. A simpler approach is to write a single if-else
statement as shown in Figure 7.71. Here, each clause specifies directly which signal should
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module swapmux (Data, Resetn, w, Clock, RinExt, BusWires);
input [7:0] Data;
input Resetn, w, Clock;
input [1:3] RinExt;
output [7:0] BusWires;
reg [7:0] BusWires;
wire [1:3] Rin, Q;
wire [7:0] R1, R2, R3;

shiftr control (Resetn, w, Clock, Q);
defparam control.m = 3;

assign Rin[1] = RinExt[1] | Q[3];
assign Rin[2] = RinExt[2] | Q[2];
assign Rin[3] = RinExt[3] | Q[1];

regn reg 1 (BusWires, Rin[1], Clock, R1);
regn reg 2 (BusWires, Rin[2], Clock, R2);
regn reg 3 (BusWires, Rin[3], Clock, R3);

always @(Q or Data or R1 or R2 or R3)
begin

if (Q == 3’b000) BusWires = Data;
else if (Q == 3’b100) BusWires = R2;
else if (Q == 3’b010) BusWires = R1;
else BusWires = R3;

end

endmodule

Figure 7.71 A simplified version of the specification in Figure 7.70.

appear on BusWires for each pattern of the shift-register outputs. The circuit generated from
the code in Figure 7.71 is equivalent to the one generated from the code in Figure 7.70.

Figure 7.72 gives an example of a timing simulation for a circuit synthesized from the
code in Figure 7.71. In the first half of the simulation, the circuit is reset, and the contents
of registers R1 and R2 are initialized. The hex value 55 is loaded into R1, and the value AA
is loaded into R2. The clock edge at 275 ns, marked by the vertical reference line in Figure
7.72, loads the value w = 1 into the shift register. The contents of R2 (AA) then appear on
the bus and are loaded into R3 by the clock edge at 325 ns. Following this clock edge, the
contents of the shift register are 010, and the data stored in R1 (55) is on the bus. The clock
edge at 375 ns loads this data into R2 and changes the shift register to 001. The contents
of R3 (AA) now appear on the bus and are loaded into R1 by the clock edge at 425 ns. The
shift register is now in state 000, and the swap is completed.
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Figure 7.72 Timing simulation for the Verilog code in Figure 7.71.

7.14.2 Simple Processor

A second example of a digital system like the one in Figure 7.60 is shown in Figure 7.73.
It has four n-bit registers, R0, . . . , R3, that are connected to the bus with tri-state buffers.
External data can be loaded into the registers from the n-bit Data input, which is connected
to the bus using tri-state buffers enabled by the Extern control signal. The system also
includes an adder/subtractor module. One of its data inputs is provided by an n-bit register,
A, that is attached to the bus, while the other data input, B, is directly connected to the bus.
If the AddSub signal has the value 0, the module generates the sum A+ B; if AddSub = 1,
the module generates the difference A − B. To perform the subtraction, we assume that
the adder/subtractor includes the required XOR gates to form the 2’s complement of B, as
discussed in section 5.3. The register G stores the output produced by the adder/subtractor.
The A and G registers are controlled by the signals Ain, Gin, and Gout .

The system in Figure 7.73 can perform various functions, depending on the design of
the control circuit. As an example, we will design a control circuit that can perform the four
operations listed in Table 7.2. The left column in the table shows the name of an operation
and its operands; the right column indicates the function performed in the operation. For
the Load operation the meaning of Rx ← Data is that the data on the external Data input
is transferred across the bus into any register, Rx, where Rx can be R0 to R3. The Move
operation copies the data stored in register Ry into register Rx. In the table the square
brackets, as in [Rx], refer to the contents of a register. Since only a single transfer across
the bus is needed, both the Load and Move operations require only one step (clock cycle)
to be completed. The Add and Sub operations require three steps, as follows: In the first step
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Table 7.2 Operations performed
in the processor.

Operation Function performed

Load Rx, Data Rx← Data

Move Rx, Ry Rx← [Ry]
Add Rx, Ry Rx← [Rx] + [Ry]
Sub Rx, Ry Rx← [Rx] − [Ry]

the contents of Rx are transferred across the bus into register A. Then in the next step, the
contents of Ry are placed onto the bus. The adder/subtractor module performs the required
function, and the results are stored in register G. Finally, in the third step the contents of G
are transferred into Rx.

A digital system that performs the types of operations listed in Table 7.2 is usually
called a processor. The specific operation to be performed at any given time is indicated
using the control circuit input named Function. The operation is initiated by setting the w
input to 1, and the control circuit asserts the Done output when the operation is completed.

In Figure 7.60 we used a shift register to implement the control circuit. It is possible
to use a similar design for the system in Figure 7.73. To illustrate a different approach,
we will base the design of the control circuit on a counter. This circuit has to generate the
required control signals in each step of each operation. Since the longest operations (Add
and Sub) need three steps (clock cycles), a two-bit counter can be used. Figure 7.74 shows
a two-bit up-counter connected to a 2-to-4 decoder. Decoders are discussed in section
6.2. The decoder is enabled at all times by setting its enable (En) input permanently to the
value 1. Each of the decoder outputs represents a step in an operation. When no operation
is currently being performed, the count value is 00; hence the T0 output of the decoder is

Clock

T 0

Reset

Up-counter
Clear

w0 En

y0

w1

y1 y2 y3

1

T 1 T 2 T 3

2-to-4 decoder

Q1 Q0

Figure 7.74 A part of the control circuit for the processor.
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asserted. In the first step of an operation, the count value is 01, and T1 is asserted. During the
second and third steps of the Add and Sub operations, T2 and T3 are asserted, respectively.

In each of steps T0 to T3, various control signal values have to be generated by the
control circuit, depending on the operation being performed. Figure 7.75 shows that the
operation is specified with six bits, which form the Function input. The two left-most bits,
F = f1 f0, are used as a two-bit number that identifies the operation. To represent Load,
Move, Add, and Sub, we use the codes f1 f0 = 00, 01, 10, and 11, respectively. The inputs
Rx1Rx0 are a binary number that identifies the Rx operand, while Ry1Ry0 identifies the Ry
operand. The Function inputs are stored in a six-bit Function Register when the FRin signal
is asserted.

Figure 7.75 also shows three 2-to-4 decoders that are used to decode the information
encoded in the F , Rx, and Ry inputs. We will see shortly that these decoders are included
as a convenience because their outputs provide simple-looking logic expressions for the
various control signals.

The circuits in Figures 7.74 and 7.75 form a part of the control circuit. Using the input
w and the signals T0, . . . , T3, I0, . . . , I3, X0, . . . , X3, and Y0, . . . , Y3, we will show how to
derive the rest of the control circuit. It has to generate the outputs Extern, Done, Ain, Gin,
Gout , AddSub, R0in, . . . , R3in, and R0out, . . . , R3out . The control circuit also has to generate
the Clear and FRin signals used in Figures 7.74 and 7.75.

Clear and FRin are defined in the same way for all operations. Clear is used to ensure
that the count value remains at 00 as long as w = 0 and no operation is being executed. Also,
it is used to clear the count value to 00 at the end of each operation. Hence an appropriate

Clock

X0

w0 En

y0

w1

y1 y2 y3

1

X1 X2 X3

2-to-4 decoder

Function Register

Y 0

w0 En

y0

w1

y1 y2 y3

1

Y 1 Y 2 Y 3

2-to-4 decoder

I0

En

y0 y1 y2 y3

1

I1 I2 I3

2-to-4 decoder

FRin

f 1 f 0 Rx1 Rx0 Ry1 Ry0

w0w1

Function

Figure 7.75 The function register and decoders.
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logic expression is

Clear = w T0 + Done

The FRin signal is used to load the values on the Function inputs into the Function Register
when w changes to 1. Hence

FRin = wT0

The rest of the outputs from the control circuit depend on the specific step being performed
in each operation. The values that have to be generated for each signal are shown in Table
7.3. Each row in the table corresponds to a specific operation, and each column represents
one time step. The Extern signal is asserted only in the first step of the Load operation.
Therefore, the logic expression that implements this signal is

Extern = I0T1

Done is asserted in the first step of Load and Move, as well as in the third step of Add and
Sub. Hence

Done = (I0 + I1)T1 + (I2 + I3)T3

The Ain, Gin, and Gout signals are asserted in the Add and Sub operations. Ain is asserted in
step T1, Gin is asserted in T2, and Gout is asserted in T3. The AddSub signal has to be set to
0 in the Add operation and to 1 in the Sub operation. This is achieved with the following
logic expressions

Ain = (I2 + I3)T1

Gin = (I2 + I3)T2

Gout = (I2 + I3)T3

AddSub = I3

The values of R0in, . . . , R3in are determined using either the X0, . . . , X3 signals or the
Y0, . . . , Y3 signals. In Table 7.3 these actions are indicated by writing either Rin = X or
Rin = Y . The meaning of Rin = X is that R0in = X0, R1in = X1, and so on. Similarly, the
values of R0out, . . . , R3out are specified using either Rout = X or Rout = Y .

Table 7.3 Control signals asserted in each operation/time step.

T1 T2 T3

(Load): I0 Extern, Rin = X ,

Done

(Move): I1 Rin = X , Rout = Y ,

Done

(Add): I2 Rout = X , Ain Rout = Y , Gin, Gout , Rin = X ,

AddSub = 0 Done

(Sub): I3 Rout = X , Ain Rout = Y , Gin, Gout , Rin = X ,

AddSub = 1 Done
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We will develop the expressions for R0in and R0out by examining Table 7.3 and then
show how to derive the expressions for the other register control signals. The table shows
that R0in is set to the value of X0 in the first step of both the Load and Move operations and
in the third step of both the Add and Sub operations, which leads to the expression

R0in = (I0 + I1)T1X0 + (I2 + I3)T3X0

Similarly, R0out is set to the value of Y0 in the first step of Move. It is set to X0 in the first
step of Add and Sub and to Y0 in the second step of these operations, which gives

R0out = I1T1Y0 + (I2 + I3)(T1X0 + T2Y0)

The expressions for R1in and R1out are the same as those for R0in and R0out except that X1

and Y1 are used in place of X0 and Y0. The expressions for R2in, R2out , R3in, and R3out are
derived in the same way.

The circuits shown in Figures 7.74 and 7.75, combined with the circuits represented
by the above expressions, implement the control circuit in Figure 7.73.

Processors are extremely useful circuits that are widely used. We have presented only
the most basic aspects of processor design. However, the techniques presented can be
extended to design realistic processors, such as modern microprocessors. The interested
reader can refer to books on computer organization for more details on processor design
[1–2].

Verilog Code
In this section we give two different styles of Verilog code for describing the system in

Figure 7.73. The first style uses tri-state buffers to represent the bus, and it gives the logic
expressions shown above for the outputs of the control circuit. The second style of code
uses multiplexers to represent the bus, and it uses case statements that correspond to Table
7.3 to describe the outputs of the control circuit.

Verilog code for an up-counter is shown in Figure 7.56. A modified version of this
counter, named upcount, is shown in the code in Figure 7.76. It has a synchronous reset
input, which is active high. Other subcircuits that we use in the Verilog code for the
processor are the dec2to4, regn, and trin modules in Figures 6.35, 7.66, and 7.67.

module upcount (Clear, Clock, Q);
input Clear, Clock;
output [1:0] Q;
reg [1:0] Q;

always @(posedge Clock)
if (Clear)

Q <= 0;
else

Q <= Q + 1;

endmodule

Figure 7.76 A two-bit up-counter with synchronous reset.
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Complete code for the processor is given in Figure 7.77. The instantiated modules
counter and decT represent the subcircuits in Figure 7.74. Note that we have assumed that
the circuit has an active-high reset input, Reset, which is used to initialize the counter to
00. The statement assign Func = {F, Rx, Ry} uses the concatenate operator to create the
six-bit signal Func, which represents the inputs to the Function Register in Figure 7.75.
The functionreg module represents the Function Register with the data inputs Func and the

module proc (Data, Reset, w, Clock, F, Rx, Ry, Done, BusWires);
input [7:0] Data;
input Reset, w, Clock;
input [1:0] F, Rx, Ry;
output [7:0] BusWires;
output Done;
wire [7:0] BusWires;
reg [0:3] Rin, Rout;
reg [7:0] Sum;
wire Clear, AddSub, Extern, Ain, Gin, Gout, FRin;
wire [1:0] Count;
wire [0:3] T, I, Xreg, Y;
wire [7:0] R0, R1, R2, R3, A, G;
wire [1:6] Func, FuncReg;
integer k;

upcount counter (Clear, Clock, Count);
dec2to4 decT (Count, 1, T);

assign Clear = Reset | Done | ( w & T[0]);
assign Func = {F, Rx, Ry};
assign FRin = w & T[0];

regn functionreg (Func, FRin, Clock, FuncReg);
defparam functionreg.n = 6;

dec2to4 decI (FuncReg[1:2], 1, I);
dec2to4 decX (FuncReg[3:4], 1, Xreg);
dec2to4 decY (FuncReg[5:6], 1, Y);

assign Extern = I[0] & T[1];
assign Done = ((I[0] | I[1]) & T[1]) | ((I[2] | I[3]) & T[3]);
assign Ain = (I[2] | I[3]) & T[1];
assign Gin = (I[2] | I[3]) & T[2];
assign Gout = (I[2] | I[3]) & T[3];
assign AddSub = I[3];

. . . continued in Part b.

Figure 7.77 Code for the prcoessor (Part a).
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// RegCntl
always @(I or T or Xreg or Y)

for (k = 0; k < 4; k = k+1)
begin

Rin[k] = ((I[0] | I[1]) & T[1] & Xreg[k]) |
((I[2] | I[3]) & T[1] & Y[k]);

Rout[k] = (I[1] & T[1] & Y[k]) | ((I[2] | I[3]) &
((T[1] & Xreg[k]) | (T[2] & Y[k])));

end

trin tri ext (Data, Extern, BusWires);
regn reg 0 (BusWires, Rin[0], Clock, R0);
regn reg 1 (BusWires, Rin[1], Clock, R1);
regn reg 2 (BusWires, Rin[2], Clock, R2);
regn reg 3 (BusWires, Rin[3], Clock, R3);

trin tri 0 (R0, Rout[0], BusWires);
trin tri 1 (R1, Rout[1], BusWires);
trin tri 2 (R2, Rout[2], BusWires);
trin tri 3 (R3, Rout[3], BusWires);
regn reg A (BusWires, Ain, Clock, A);

// alu
always @(AddSub or A or BusWires)

if (!AddSub)
Sum = A + BusWires;

else
Sum = A BusWires;

regn reg G (Sum, Gin, Clock, G);
trin tri G (G, Gout, BusWires);

endmodule

Figure 7.77 Code for the processor (Part b).

outputs FuncReg. The instantiated modules decI, decX, and decY represent the decoders in
Figure 7.75. Following these statements the previously derived logic expressions for the
outputs of the control circuit are given. For R0in, . . . , R3in and R0out, . . . , R3out , a for loop
is used to produce the expressions.

At the end of the code, the adder/subtractor module is defined and the tri-state buffers
and registers in the processor are instantiated.

Using Multiplexers and Case Statements
We showed in Figure 7.65 that a bus can be implemented with multiplexers, rather than

tri-state buffers. Verilog code that describes the processor using this approach is shown
in Figure 7.78. The code illustrates a different way of describing the control circuit in the
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module proc (Data, Reset, w, Clock, F, Rx, Ry, Done, BusWires);
input [7:0] Data;
input Reset, w, Clock;
input [1:0] F, Rx, Ry;
output [7:0] BusWires;
output Done;
reg [7:0] BusWires, Sum;
reg [0:3] Rin, Rout;
reg Extern, Done, Ain, Gin, Gout, AddSub;
wire [1:0] Count, I;
wire [0:3] Xreg, Y;
wire [7:0] R0, R1, R2, R3, A, G;
wire [1:6] Func, FuncReg, Sel;

wire Clear = Reset | Done | ( w & Count[1] & Count[0]);
upcount counter (Clear, Clock, Count);
assign Func = {F, Rx, Ry};
wire FRin = w & Count[1] & Count[0];
regn functionreg (Func, FRin, Clock, FuncReg);

defparam functionreg.n = 6;
assign I = FuncReg[1:2];
dec2to4 decX (FuncReg[3:4], 1, Xreg);
dec2to4 decY (FuncReg[5:6], 1, Y);

always @(Count or I or Xreg or Y)
begin

Extern = 1’b0; Done = 1’b0; Ain = 1’b0; Gin = 1’b0;
Gout = 1’b0; AddSub = 1’b0; Rin = 4’b0; Rout = 4’b0;
case (Count)

2’b00: ; //no signals asserted in time step T0
2’b01: //define signals in time step T1

case (I)
2’b00: begin //Load

Extern = 1’b1; Rin = Xreg; Done = 1’b1;
end

2’b01: begin //Move
Rout = Y; Rin = Xreg; Done = 1’b1;

end
default: begin //Add, Sub

Rout = Xreg; Ain = 1’b1;
end

endcase
. . . continued in Part b.

Figure 7.78 Alternative code for the processor (Part a).
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2’b10: //define signals in time step T2
case(I)

2’b10: begin //Add
Rout = Y; Gin = 1’b1;

end
2’b11: begin //Sub

Rout = Y; AddSub = 1’b1; Gin = 1’b1;
end

default: ; //Add, Sub
endcase

2’b11:
case (I)

2’b10, 2’b11: begin
Gout = 1’b1; Rin = Xreg; Done = 1’b1;

end
default: ; //Add, Sub

endcase
endcase

end

regn reg 0 (BusWires, Rin[0], Clock, R0);
regn reg 1 (BusWires, Rin[1], Clock, R1);
regn reg 2 (BusWires, Rin[2], Clock, R2);
regn reg 3 (BusWires, Rin[3], Clock, R3);
regn reg A (BusWires, Ain, Clock, A);

. . . continued in Part c.

Figure 7.78 Alternative code for the processor (Part b).

processor. It does not give logic expressions for the signals Extern, Done, and so on, as
in Figure 7.77. Instead, case statements are used to represent the information shown in
Table 7.3. Each control signal is first assigned the value 0 as a default. This is required
because the case statements specify the values of the control signals only when they should
be asserted, as we did in Table 7.3. As explained in section 7.12.2, when the value of a
signal is not specified, the signal retains its current value. This implied memory results in
a feedback connection in the synthesized circuit. We avoid this problem by providing the
default value of 0 for each of the control signals involved in the case statements.

In Figure 7.77 the decoders decT and decI are used to decode the Count signal and the
stored values of the F input, respectively. The decT decoder has the outputs T0, . . . , T3,
and decI produces I0, . . . , I3. In Figure 7.78 these two decoders are not used, because they
do not serve a useful purpose in this code. Instead, the signal I is defined as a two-bit
signal, and the two-bit signal Count is used instead of T . These signals are used in the case
statements. The code sets I to the value of the two left-most bits in the Function Register,
which correspond to the stored values of the input F .
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// alu
always @(AddSub or A or BusWires)
begin

if (!AddSub)
Sum = A + BusWires;

else
Sum = A BusWires;

end

regn reg G (Sum, Gin, Clock, G);
assign Sel = {Rout, Gout, Extern};

always @(Sel or R0 or R1 or R2 or R3 or G or Data)
begin

if (Sel == 6’b100000)
BusWires = R0;

else if (Sel == 6’b010000)
BusWires = R1;

else if (Sel == 6’b001000)
BusWires = R2;

else if (Sel == 6’b000100)
BusWires = R3;

else if (Sel == 6’b000010)
BusWires = G;

else BusWires = Data;
end

endmodule

Figure 7.78 Alternative code for the processor (Part c).

There are two nested levels of case statements. The first one enumerates the possible
values of Count. For each alternative in this case statement, which represents a column
in Table 7.3, there is a nested case statement that enumerates the four values of I . As
indicated by the comments in the code, the nested case statements correspond exactly to
the information given in Table 7.3.

At the end of Figure 7.78, the bus is described with an if-else statement which represents
multiplexers that place the appropriate data onto BusWires, depending on the values of Rout ,
Gout , and Extern.

The circuits synthesized from the code in Figures 7.77 and 7.78 are functionally equiv-
alent. The style of code in Figure 7.78 has the advantage that it does not require the manual
effort of analyzing Table 7.3 to generate the logic expressions for the control signals in
Figure 7.77. By using the style of code in Figure 7.78, these expressions are produced
automatically by the Verilog compiler as a result of analyzing the case statements. The
style of code in Figure 7.78 is less prone to careless errors. Also, using this style of code it
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would be straightforward to provide additional capabilities in the processor, such as adding
other operations.

We synthesized a circuit to implement the code in Figure 7.78 in a chip. Figure 7.79
gives an example of the results of a timing simulation. Each clock cycle in which w = 1
in this timing diagram indicates the start of an operation. In the first such operation, at 250
ns in the simulation time, the values of both inputs F and Rx are 00. Hence the operation
corresponds to “Load R0, Data.” The value of Data is 2A, which is loaded into R0 on the
next positive clock edge. The next operation loads 55 into register R1, and the subsequent
operation loads 22 into R2. At 850 ns the value of the input F is 10, while Rx = 01 and
Ry = 00. This operation is “Add R1, R0.” In the following clock cycle, the contents of
R1 (55) appear on the bus. This data is loaded into register A by the clock edge at 950 ns,
which also results in the contents of R0 (2A) being placed on the bus. The adder/subtractor
module generates the correct sum (7F), which is loaded into register G at 1050 ns. After
this clock edge the new contents of G (7F) are placed on the bus and loaded into register
R1 at 1150 ns. Two more operations are shown in the timing diagram. The one at 1250
ns (“Move R3, R1”) copies the contents of R1 (7F) into R3. Finally, the operation starting
at 1450 ns (“Sub R3, R2”) subtracts the contents of R2 (22) from the contents of R3 (7F),
producing the correct result, 7F − 22 = 5D.

Figure 7.79 Timing simulation for the Verilog code in Figure 7.78.
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7.14.3 Reaction Timer

We showed in Chapter 3 that electronic devices operate at remarkably fast speeds, with the
typical delay through a logic gate being less than 1 ns. In this example we use a logic circuit
to measure the speed of a much slower type of device—a person.

We will design a circuit that can be used to measure the reaction time of a person to
a specific event. The circuit turns on a small light, called a light-emitting diode (LED). In
response to the LED being turned on, the person attempts to press a switch as quickly as
possible. The circuit measures the elapsed time from when the LED is turned on until the
switch is pressed.

To measure the reaction time, a clock signal with an appropriate frequency is needed.
In this example we use a 100 Hz clock, which measures time at a resolution of 1/100 of a
second. The reaction time can then be displayed using two digits that represent fractions
of a second from 00/100 to 99/100.

Digital systems often include high-frequency clock signals to control various subsys-
tems. In this case assume the existence of an input clock signal with the frequency 102.4
kHz. From this signal we can derive the required 100 Hz signal by using a counter as a clock
divider. A timing diagram for a four-bit counter is given in Figure 7.22. It shows that the
least-significant bit output, Q0, of the counter is a periodic signal with half the frequency of
the clock input. Hence we can view Q0 as dividing the clock frequency by two. Similarly,
the Q1 output divides the clock frequency by four. In general, output Qi in an n-bit counter
divides the clock frequency by 2i+1. In the case of our 102.4 kHz clock signal, we can use
a 10-bit counter, as shown in Figure 7.80a. The counter output c9 has the required 100 Hz
frequency because 102400 Hz/1024 = 100 Hz.

The reaction timer circuit has to be able to turn an LED on and off. The graphical
symbol for an LED is shown in blue in Figure 7.80b. Small blue arrows in the symbol
represent the light that is emitted when the LED is turned on. The LED has two terminals:
the one on the left in the figure is the cathode, and the terminal on the right is the anode. To
turn the LED on, the cathode has to be set to a lower voltage than the anode, which causes
a current to flow through the LED. If the voltages on its two terminals are equal, the LED
is off.

Figure 7.80b shows one way to control the LED, using an inverter. If the input voltage
VLED = 0, then the voltage at the cathode is equal to VDD; hence the LED is off. But
if VLED = VDD, the cathode voltage is 0 V and the LED is on. The amount of current
that flows is limited by the value of the resistor RL. This current flows through the LED
and the NMOS transistor in the inverter. Since the current flows into the inverter, we
say that the inverter sinks the current. The maximum current that a logic gate can sink
without sustaining permanent damage is usually called IOL, which stands for the “maxi-
mum current when the output is low.” The value of RL is chosen such that the current
is less than IOL. As an example assume that the inverter is implemented inside a PLD
device. The typical value of IOL, which would be specified in the data sheet for the PLD,
is about 12 mA. For VDD = 5 V, this leads to RL ≈ 450 � because 5 V /450 � = 11
mA (there is actually a small voltage drop across the LED when it is turned on, but we
ignore this for simplicity). The amount of light emitted by the LED is proportional to
the current flow. If 11 mA is insufficient, then the inverter should be implemented in
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Figure 7.80 A reaction-timer circuit.
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a buffer chip, like those described in section 3.5, because buffers provide a higher value
of IOL.

The complete reaction-timer circuit is illustrated in Figure 7.80c, with the inverter
from part (b) shaded in grey. The graphical symbol for a push-button switch is shown in
the top left of the diagram. The switch normally makes contact with the top terminals, as
depicted in the figure. When depressed, the switch makes contact with the bottom terminals;
when released, it automatically springs back to the top position. In the figure the switch is
connected such that it normally produces a logic value of 1, and it produces a 0 pulse when
pressed.

The push-button switch is connected to the clear input on a D flip-flop. The output
of this flip-flop determines whether the LED is on or off, and it also provides the count
enable input to a two-digit BCD counter. As discussed in section 7.11, each digit in a BCD
counter has four bits that take the values 0000 to 1001. Thus the counting sequence can be
viewed as decimal numbers from 00 to 99. A circuit for the BCD counter is given in Figure
7.28. In Figure 7.80c both the flip-flop and the counter are clocked by the c9 output of the
clock divider in part (a) of the figure. The intended use of the reaction-timer circuit is to
first depress the switch to turn off the LED and disable the counter. Then the Reset input is
asserted to clear the contents of the counter to 00. The input w normally has the value 0,
which keeps the flip-flop cleared and prevents the count value from changing. The reaction
test is initiated by setting w = 1 for one c9 clock cycle. After the next positive edge of c9,
the flip-flop output becomes a 1, which turns on the LED. We assume that w returns to 0
after one clock cycle, but the flip-flop output remains at 1 because of the 2-to-1 multiplexer
connected to the D input. The counter is then incremented every 1/100 of a second. Each
digit in the counter is connected through a code converter to a 7-segment display, which
we described in the discussion for Figure 6.25. When the user depresses the switch, the
flip-flop is cleared, which turns off the LED and stops the counter. The two-digit display
shows the elapsed time to the nearest 1/100 of a second from when the LED was turned on
until the user was able to respond by depressing the switch.

Verilog Code
To describe the circuit in Figure 7.80c using Verilog code, we can make use of sub-

circuits for the BCD counter and the 7-segment code converter. The code for the latter
subcircuit is given in Figure 6.38 and is not repeated here. Code for the BCD counter,
which represents the circuit in Figure 7.28, is shown in Figure 7.81. The two-digit BCD
output is represented by the 2 four-bit signals BCD1 and BCD0. The Clear input provides
a synchronous reset for both digits in the counter. If E = 1, the count value is incremented
on the positive clock edge; and if E = 0, the count value is unchanged. Each digit can take
the values from 0000 to 1001.

Figure 7.82 gives the code for the reaction timer. The input signal Pushn represents the
value produced by the push-button switch. The output signal LEDn represents the output
of the inverter that is used to control the LED. The two 7-segment displays are controlled
by the seven-bit signals Digit1 and Digit 0.

In Figure 7.61 we showed how a register, R, can be designed with a control signal Rin.
If Rin = 1 data is loaded into the register on the active clock edge and if Rin = 0, the stored
contents of the register are not changed. The flip-flop in Figure 7.80 is used in the same
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module BCDcount (Clock, Clear, E, BCD1, BCD0);
input Clock, Clear, E;
output [3:0] BCD1, BCD0;
reg [3:0] BCD1, BCD0;

always @(posedge Clock)
begin

if (Clear)
begin

BCD1 <= 0;
BCD0 <= 0;

end
else if (E)

if (BCD0 == 4’b1001)
begin

BCD0 <= 0;
if (BCD1 == 4’b1001)

BCD1 <= 0;
else

BCD1 <= BCD1 + 1;
end
else

BCD0 <= BCD0 + 1;
end

endmodule

Figure 7.81 Code for the two-digit BCD counter in Figure 7.28.

way. If w = 1, the flip-flop is loaded with the value 1, but if w = 0 the stored value in
the flip-flop is not changed. This circuit is described by the always block in Figure 7.82,
which also includes a synchronous reset input. We have chosen to use a synchronous reset
because the flip-flop output is connected to the enable input E on the BCD counter. As
we know from the discussion in section 7.3, it is important that all signals connected to
flip-flops meet the required setup and hold times. The push-button switch can be pressed at
any time and is not synchronized to the c9 clock signal. By using a synchronous reset for
the flip-flop in Figure 7.80, we avoid possible timing problems in the counter.

The flip-flop output is named LED, which is inverted to produce the LEDn signal that
controls the LED. In the device used to implement the circuit, LEDn would be generated by
a buffer that is connected to an output pin on the chip package. If a PLD is used, this buffer
has the associated value of IOL = 12 mA that we mentioned earlier. At the end of Figure
7.82, the BCD counter and 7-segment code converters are instantiated as subcircuits.

A simulation of the reaction-timer circuit implemented in a chip is shown in Figure
7.83. Initially, Pushn is set to 0 to simulate depressing the switch to turn off the LED, and
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module reaction (c9, Reset, w, Pushn, LEDn, Digit1, Digit0);
input c9, Reset, w, Pushn;
output LEDn;
output [1:7] Digit1, Digit0;
wire LEDn;
wire [1:7] Digit1, Digit0;
reg LED;
wire [3:0] BCD1, BCD0;

always @(posedge c9)
begin

if (Pushn == 0)
LED <= 0;

else if (w)
LED <= 1;

end

assign LEDn = LED;
BCDcount counter (c9, Reset, LED, BCD1, BCD0);
seg7 seg1 (BCD1, Digit1);
seg7 seg0 (BCD0, Digit0);

endmodule

Figure 7.82 Code for the reaction timer.

then Pushn returns to 1. Also, Reset is asserted to clear the counter. When w changes to 1,
the circuit sets LEDn to 0, which represents the LED being turned on. After some amount
of time, the switch will be depressed. In the simulation we arbitrarily set Pushn to 0 after
18 c9 clock cycles. Thus this choice represents the case when the person’s reaction time is
about 0.18 seconds. In human terms this duration is a very short time; for electronic circuits
it is a very long time. An inexpensive personal computer can perform tens of millions of
operations in 0.18 seconds!

7.14.4 Register Transfer Level (RTL) Code

At this point, we have introduced most of the Verilog constructs that are needed for synthesis.
Most of our examples give behavioral code, utilizing if-else statements, case statements, for
loops, and other procedural statements. It is possible to write behavioral code in a style that
resembles a computer program, in which there is a complex flow of control with many loops
and branches. With such code, sometimes called high-level behavioral code, it is difficult to
relate the code to the final hardware implementation; it may even be difficult to predict what
circuit a high-level synthesis tool will produce. In this book we do not use the high-level
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Figure 7.83 Simulation of the reaction timer circuit.

style of code. Instead, we present Verilog code in such a way that the code can be easily
related to the circuit that is being described. Most design modules presented are fairly small,
to facilitate simple descriptions. Larger designs are built by interconnecting the smaller
modules. This approach is usually referred to as the register-transfer level (RTL) style of
code. It is the most popular design method used in practice. RTL code is characterized by a
straightforward flow of control through the code; it comprises well-understood subcircuits
that are connected together in a simple way.

7.15 Concluding Remarks

In this chapter we have presented circuits that serve as basic storage elements in digital
systems. These elements are used to build larger units such as registers, shift registers,
and counters. Many other texts that deal with this material are available [3–11]. We
have illustrated how circuits with flip-flops can be described using Verilog code. More
information on Verilog can be found in [12–19]. In the next chapter a more formal method
for designing circuits with flip-flops will be presented.

Problems

7.1 Consider the timing diagram in Figure P7.1. Assuming that the D and Clock inputs shown
are applied to the circuit in Figure 7.12, draw waveforms for the Qa, Qb, and Qc signals.

7.2 Can the circuit in Figure 7.3 be modified to implement an SR latch? Explain your answer.

7.3 Figure 7.5 shows a latch built with NOR gates. Draw a similar latch using NAND gates.
Derive its truth table and show its timing diagram.

7.4 Show a circuit that implements the gated SR latch using NAND gates only.
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D

Clock

Figure P7.1 Timing diagram for problem 7.1.

7.5 Given a 100-MHz clock signal, derive a circuit using D flip-flops to generate 50-MHz
and 25-MHz clock signals. Draw a timing diagram for all three clock signals, assuming
reasonable delays.

7.6 An SR flip-flop is a flip-flop that has set and reset inputs like a gated SR latch. Show how
an SR flip-flop can be constructed using a D flip-flop and other logic gates.

7.7 The gated SR latch in Figure 7.6a has unpredictable behavior if the S and R inputs are
both equal to 1 when the Clk changes to 0. One way to solve this problem is to create a
set-dominant gated SR latch in which the condition S = R = 1 cause the latch to be set to
1. Design a set-dominant gated SR latch and show the circuit.

7.8 Show how a JK flip-flop can be constructed using a T flip-flop and other logic gates.

7.9 Consider the circuit in Figure P7.2. Assume that the two NAND gates have much longer
(about four times) propagation delay than the other gates in the circuit. How does this
circuit compare with the circuits that we discussed in this chapter?

A

B

C

D

E

Figure P7.2 Circuit for problem 7.9.
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7.10 Write Verilog code that represents a T flip-flop with an asynchronous clear input. Use
behavioral code, rather than structural code.

7.11 Write Verilog code that represents a JK flip-flop. Use behavioral code, rather than structural
code.

7.12 Synthesize a circuit for the code written for problem 7.11 by using your CAD tools. Simulate
the circuit and show a timing diagram that verifies the desired functionality.

7.13 A four-bit barrel shifter is a combinational circuit with four data inputs, two control inputs,
and two data outputs. It allows the data inputs to be shifted onto the outputs by 0, 1, 2, or
3 bit positions, with the rightmost bits wrapping around (rotating) to the leftmost bits. For
example, if the data inputs are 1100 and the control input specifies a two-bit shift, then the
output would be 0011. If the data input is 1110, a two-bit rotation produces 1011. Design a
four-bit shift register using a barrel shifter that can shift to the right by 0, 1, 2, or 3 positions.

7.14 Write Verilog code for the shift register described in problem 7.13.

7.15 Design a four-bit synchronous counter with parallel load. Use T flip-flops, instead of the D
flip-flops used in section 7.9.3.

7.16 Design a three-bit up/down counter using T flip-flops. It should include a control input
called Up/Down. If Up/Down = 0, then the circuit should behave as an up-counter. If
Up/Down = 1, then the circuit should behave as a down-counter.

7.17 Repeat problem 7.16 using D flip-flops.

7.18 The circuit in Figure P7.3 looks like a counter. What is the sequence that this circuit counts
in?

T Q

Q

1 T Q

Q

T Q

Q

Q0 Q1 Q2

Clock

Figure P7.3 The circuit for problem 7.18.

7.19 Consider the circuit in Figure P7.4. How does this circuit compare with the circuit in Figure
7.17? Can the circuits be used for the same purposes? If not, what is the key difference
between them?

7.20 Construct a NOR-gate circuit, similar to the one in Figure 7.11a, which implements a
negative-edge-triggered D flip-flop.

7.21 Write Verilog code that represents a modulo-12 up-counter with synchronous reset.
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Clock

S Q

Q

Clk

R

S Q

Q

Clk

R

Q

Q

J

K

Figure P7.4 Circuit for problem 7.19.

7.22 For the flip-flops in the counter in Figure 7.25, assume that tsu = 3 ns, th = 1 ns, and the
propagation delay through a flip-flop is 1 ns. Assume that each AND gate, XOR gate, and
2-to-1 multiplexer has the propagation delay equal to 1 ns. What is the maximum clock
frequency for which the circuit will operate correctly?

7.23 Write Verilog code that represents an eight-bit Johnson counter. Synthesize the code with
your CAD tools and give a timing simulation that shows the counting sequence.

7.24 Write Verilog code in the style shown in Figure 7.55 that represents a ring counter. Your
code should have a parameter n that sets the number of flip-flops in the counter.

7.25 Write Verilog code that describes the functionality of the circuit shown in Figure 7.48.

7.26 Write Verilog code that instantiates the lpm_counter module from the LPM library. Con-
figure the module as a 32-bit up-counter. For the counter circuit in Figure 7.24, we said that
the AND-gate chain can be thought of as the carry-chain. The FLEX 10K FPGA contains
special-purpose logic to implement this carry-chain such that it has minimal propagation
delay. Use the MAX+plusII synthesis options to implement the lpm_counter in two ways:
with the dedicated carry-chain used and with the dedicated carry-chain not used. Use the
Timing Analyzer in MAX+plusII to determine the maximum speed of operation of the
counter in both cases. See the tutorials in Appendices B, C, and D for instructions on using
the appropriate features of the CAD tools.

7.27 Figure 7.69 gives Verilog code for a digital system that swaps the contents of two registers,
R1 and R2, using register R3 for temporary storage. Create an equivalent schematic using
your CAD tools for this system. Synthesize a circuit for this schematic and perform a timing
simulation.

7.28 Repeat problem 7.27 using the control circuit in Figure 7.63.

7.29 Modify the code in Figure 7.71 to use the control circuit in Figure 7.63. Synthesize the
code for implementation in a chip and perform a timing simulation.

7.30 In section 7.14.2 we designed a processor that performs the operations listed in Table 7.3.
Design a modified circuit that performs an additional operation Swap Rx, Ry. This operation
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swaps the contents of registers Rx and Ry. Use three bits f2 f1 f0 to represent the input F
shown in Figure 7.75 because there are now five operations, rather than four. Add a new
register, named Tmp, into the system, to be used for temporary storage during the swap
operation. Show logic expressions for the outputs of the control circuit, as was done in
section 7.14.2.

7.31 A ring oscillator is a circuit that has an odd number, n, of inverters connected in a ringlike
structure, as shown in Figure P7.5. The output of each inverter is a periodic signal with a
certain period.
(a) Assume that all the inverters are identical; hence they all have the same delay, tp. Let
the output of one of the inverters be named f . Give an equation that expresses the period
of the signal f in terms of n and tp.
(b) For this part you are to design a circuit that can be used to experimentally measure the
delay tp through one of the inverters in the ring oscillator. Assume the existence of an input
called Reset and another called Interval. The timing of these two signals is shown in Figure
P7.6. The length of time for which Interval has the value 1 is known. Assume that this
length of time is 100 ns. Design a circuit that uses the Reset and Interval signals and the
signal f from part (a) to experimentally measure tp. In your design you may use logic gates
and subcircuits such as adders, flip-flops, counters, registers, and so on.

f

Figure P7.5 A ring oscillator.

Reset

Interval

100 ns

Figure P7.6 Timing of signals for problem 7.31.

7.32 A circuit for a gated D latch is shown in Figure P7.7. Assume that the propagation delay
through either a NAND gate or an inverter is 1 ns. Complete the timing diagram given in
the figure, which shows the signal values with 1 ns resolution.

7.33 A logic circuit has two inputs, Clock and Start, and two outputs, f and g. The behavior
of the circuit is described by the timing diagram in Figure P7.8. When a pulse is re-
ceived on the Start input, the circuit produces pulses on the f and g outputs as shown in the
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Figure P7.7 Circuit and timing diagram for problem 7.32.

1
0

1
0

1
0

1
0

g

f

Start

Clock

Figure P7.8 Timing diagram for problem 7.33.

timing diagram. Design a suitable circuit using only the following components: a three-
bit resettable positive-edge-triggered synchronous counter and basic logic gates. For your
answer assume that the delays through all logic gates and the counter are negligible.
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7.34 The following code checks for adjacent ones in an n-bit vector.

always @(A)
begin

f = A[1] & A[0];
for (k = 2; k < n; k = k+1)

f = f | (A[k] & A[k−1]);
end

With blocking assignments this code produces the desired logic function, which is f =
a1a0 + · · · + an−1an−2. What logic function is produced if we change the code to use
non-blocking assignments?

7.35 The Verilog code in Figure P7.9 represents a 3-bit linear-feedback shift register (LFSR).
This type of circuit generates a counting sequence of pseudo-random numbers that repeats
after 2n − 1 clock cycles, where n is the number of flip-flops in the LFSR. Synthesize a
circuit to implement the LFSR in a chip. Draw a diagram of the circuit. Simulate the
circuit’s behavior by loading the pattern 001 into the LFSR and then enabling the register
to count. What is the counting sequence?

module lfsr (R, L, Clock, Q);
input [0:2] R;
input L, Clock;
output [0:2] Q;
reg [0:2] Q;

always @(posedge Clock)
if (L)

Q <= R;
else

Q <= {Q[2], Q[0] ∧ Q[2], Q[1]};

endmodule

Figure P7.9 Code for a linear-feedback shift register.

7.36 Repeat problem 7.35 for the Verilog code in Figure P7.10.

7.37 The Verilog code in Figure P7.11 is equivalent to the code in Figure P7.9, except that
blocking assignments are used. Draw the circuit represented by this code. What is its
counting sequence?

7.38 The Verilog code in Figure P7.12 is equivalent to the code in Figure P7.10, except that
blocking assignments are used. Draw the circuit represented by this code. What is its
counting sequence?
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module lfsr (R, L, Clock, Q);
input [0:2] R;
input L, Clock;
output [0:2] Q;
reg [0:2] Q;

always @(posedge Clock)
if (L)

Q <= R;
else

Q <= {Q[2], Q[0], Q[1] ∧ Q[2]};

endmodule

Figure P7.10 Code for a linear-feedback shift register.

module lfsr (R, L, Clock, Q);
input [0:2] R;
input L, Clock;
output [0:2] Q;
reg [0:2] Q;

always @(posedge Clock)
if (L)

Q <= R;
else
begin

Q[0] = Q[2];
Q[1] = Q[0] ∧ Q[2];
Q[2] = Q[1];

end

endmodule

Figure P7.11 Code for problem 7.37.

7.39 A universal shift register can shift in both the left-to-right and right-to-left directions, and
it has parallel-load capability. Draw a circuit for such a shift register.

7.40 Write Verilog code for a universal shift register with n bits.
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module lfsr (R, L, Clock, Q);
input [0:2] R;
input L, Clock;
output [0:2] Q;
reg [0:2] Q;

always @(posedge Clock)
if (L)

Q <= R;
else
begin

Q[0] = Q[2];
Q[1] = Q[0];
Q[2] = Q[1] ∧ Q[2];

end

endmodule

Figure P7.12 Code for problem 7.38.
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