TCAD Avalanche Models

Group meeting 19-05-2020

Preview

• Wolff:

- First theoretical explanation of charge multiplication.
- o Solved quasi-Maxwellian equation with spherically symmetric distribution function.
- Ionization coefficient valid for **high field** strengths :

$$\alpha(\epsilon) = a \exp(-b/\epsilon^2)$$

Shockley:

- A simple statistical model with three adjustable parameters
- Spike distribution function.
- Ionization coefficients valid for low field strengths :

$$\alpha(\epsilon) = (q\epsilon/rE_R)\exp(-E_i/qL_R\epsilon)$$

Preview

• Baraff:

- Distribution function corresponds to Wolff's spherically symmetric part and Shockley's spike with constant mean free path.
- Similarities in slope to Wolff's theory for higher fields and Shockley's theory for lower fields.
- Crowell & Sze : modified Baraff's results
 - o introduced parameters average phonon energy lost per scattering and temperature.

$$\langle E_R \rangle = E_R \operatorname{tgh}(E_R/2kT)$$

Later Keldysh confirmed Baraff's results.

TCAD Avalanche Models

- Van Overstraeten and de Man Model
- Okuto and Crowell Model
- Lackner Model
- UNIBO (University of Bologna) Model
- New UNIBO Model

Chynoweth Law

- Chynoweth's experimental ionization rates agreed well with measurement of ionization rates in gases : $\alpha = a \exp(-b/\epsilon)$
- Observed linearity in $\ln \alpha$ against E⁻¹ graph over wide range of fields.
- Shockley and Van Overstraeten validated this law in the electric field range from 1.75
 ×10⁵ - 6×10⁵ Vcm⁻¹ (300K).

(A & B correspond to Chynoweth law)

Van Overstraeten Model

• Used Chynoweth's law for fitting the data and extracting the model parameters :

$$\alpha(\epsilon_{ava}) = \gamma a \exp(-\gamma b/\epsilon_{ava});$$

$$\gamma = \tanh(\hbar \omega_{op}/2kT_0)/\tanh(\hbar \omega_{op}/2kT)$$

- Valid in the field range of $1.75 \times 10^5 \le \epsilon \le 6 \times 10^5 \text{ Vcm}^{-1}$
- Different values of parameters **a** & **b** in low and high range of fields.
- Almost same value of **a** & **b** for 7 different diodes used made good approximation of Chynoweth's law.

(Symbols represent particular diode)

Van Overstraeten Model

Symbol	Parameter name	Electrons	Holes	Valid range of electric field	Unit
a	a(low)	7.03×10^5	1.582×10^{6}	$1.75 \times 10^5 \mathrm{Vcm}^{-1}$ to E_0	cm ⁻¹
	a(high)	7.03×10^5	6.71×10^{5}	E_0 to $6 \times 10^5 \text{Vcm}^{-1}$	
b	b(low)	1.231×10^{6}	2.036×10^{6}	$1.75 \times 10^5 \mathrm{Vcm}^{-1}$ to E_0	V/cm
	b(high)	1.231×10^{6}	1.693×10^{6}	E_0 to $6 \times 10^5 \text{Vcm}^{-1}$	
E_0	E0	4×10^5	4×10^5		V/cm
hω _{op}	hbarOmega	0.063	0.063		eV
λ	lambda	62×10^{-8}	45×10^{-8}		cm
β	beta(low)	0.678925	0.815009	$1.75 \times 10^5 \mathrm{Vcm}^{-1}$ to E_0	1
	beta (high)	0.678925	0.677706	E_0 to $6 \times 10^5 \text{Vcm}^{-1}$	

Okuto & Crowell Model

• Empirical model based on Baraff's theoretical model:

$$\alpha(\epsilon_{ava}) = a \left[1 + c(T - T_0)\right] \epsilon_{ava}^{\gamma} \exp(-(b[1 + d(T - T_0)] / \epsilon_{ava})^{\delta}); T_0 = 300K$$

- Energy conservation conditions applied.
- Applicable in the field range of 10⁵-10⁶ Vcm⁻¹.
- Applied pseudo-local approximation and predicted the existing data with good accuracy.
- "Exact" non-localized approximation considered boundary regions (p-i-n junction).
 - Zero ionization coefficient in boundary dark spaces (p-i & i-n)
 - Constant and close to the values of previous approximation in rest of the region.

Okuto & Crowell Model

Symbol	Parameter name	Electrons	Holes	Unit
a	a	0.426	0.243	V ⁻¹
b	b	4.81×10^{5}	6.53×10^5	V/cm
c	С	3.05×10^{-4}	5.35×10^{-4}	K^{-1}
d	d	6.86×10^{-4}	5.67×10^{-4}	K^{-1}
γ	gamma	1	1	1
δ	delta	2	2	1
λ	lambda	62×10^{-8}	45×10^{-8}	cm
β	beta	0.265283	0.261395	1

Lackner Model

• New theory on pseudo-local ionization probability model for field correction of Chynoweth law:

$$\alpha_{\rm v}(\epsilon_{\rm ava}) = (\gamma a_{\rm v}/Z) \; exp(-\gamma b_{\rm v}/\epsilon_{\rm ava}) \; ; \quad \mbox{where } {\rm v} = {\rm n,p}$$

$$Z = \; 1 + (\gamma b_{\rm n}/\epsilon_{\rm ava}) \; exp(-\gamma b_{\rm n}/\epsilon_{\rm ava}) + \gamma b_{\rm p}/\epsilon_{\rm ava} \; exp(-\gamma b_{\rm p}/\epsilon_{\rm ava})$$

$$\gamma = tanh(\hbar \omega_{\rm op}/2kT_{\rm o})/ \; tanh(\hbar \omega_{\rm op}/2kT)$$

- Introduced Z parameter in Chynoweth's law.
- Valid in the field range 2×10⁵ 6×10⁵ Vcm⁻¹.
- Unlike Van Overstraeten and de Man model, same values of parameters **a** & **b** in low and high field regions.

Lackner Model

Symbol	Parameter name	Electrons	Holes	Unit
а	a	1.316×10 ⁶	1.818×10^{6}	cm ⁻¹
b	b	1.474×10^{6}	2.036×10^{6}	V/cm
hω _{op}	hbar0mega	0.063	0.063	eV
λ	lambda	62×10^{-8}	45×10^{-8}	cm
β	beta	0.812945	0.815009	1

Lackner Model

- Field correction matched well with Chynoweth's law (Z=1) for field values < 4×10⁵ Vcm⁻¹.
- Deviation ($Z\neq 1$) in higher range of fields (>4×10⁵Vcm⁻¹).
- No validation issue has been provided for field correction approximation.

Comparison of Three Models

UNIBO Model

• Compact model based on impact ionization data generated by Boltzmann solver HARM:

$$\alpha(\epsilon_{ava}, T) = \epsilon_{ava} / (a(T) + b(T) \exp[d(T) / \epsilon_{ava} + c(T)])$$

- Ionization coefficient as a function of field and lattice temperature
- Developed for an extended temperature range (300K-675K) and low electric fields(4×10⁴ 5×10⁵Vcm⁻¹).
- Observed the contribution of non-equilibrium Auger generation at high temperatures differentiate this model from other standard models.

New UNIBO Model

• Modification of compact UNIBO model by extending the temperature range between 300-773K:

$$\alpha(\epsilon_{\text{ava}}, T) = \epsilon_{\text{ava}} / (a(T) + b(T) \exp[d(T) / \epsilon_{\text{ava}} + c(T)])$$

- Likewise UNIBO, New UNIBO model developed for low electric field range.
- Theoretically based on UNIBO theory
 - Different method of solving the parameters, so, resulted different values.

Conclusions

- Van Overstraeten and Lackner model based on Chynoweth law, but used different parameters
 - o reliable for low-field regions (Shockley's low field theory).
- Okuto and Crowell model valid for whole range of fields (Baraff's theory)..
- UNIBO and New UNIBO models showed their reliability for high temperature ranges and low electric fields(down to 4×10⁴Vcm⁻¹).
- All models except Okuto & Crowell typically used for self-heating power devices and ESD-protection structures.
- Our focus is on thin p-n junctions with moderate and high field regions Okuto and Crowell.