Tutorial Statistics
Limits Part |1

M. Herbst

mentioned where possible



yesterday
Statistics/ Probability

Frequentist/ Bayesian
Probability Density Function
Confidence Level/ p-Value
Confidence Intervals

Exercises

today
Hypothesis Testing

Error Classification

Size/ Power of Test

Test Statistics/ Chisquare Dist.
NP Lemma/ Wilks’ theorem
Likelihood Function
Systematics

POI, Nuissance Parameters
Profile Likelihood Ratio

Coverage/ Flip-Flopping/ Asymptotic Limit/ Look-Elsewhere

current ATLAS discussion: Power Constraint Limits



Bayesian Statistics, follow up

P(B) 1s called the marginal probability of B: the a priori probability of
witnessing the new evidence B under all possible hypotheses. It can be
calculated as the sum of the product of all probabilities of any complete set of
mutually exclusive hypotheses and corresponding conditional probabilities:

http.//en.wikipedia.org/wiki/Bayesian inference

Bayes’ Law

palp) - PB4 PA)

P(B)

P(B)= P(E) = P(E|H) P(H) + P(E|-H) P(-H)

http.//en.wikipedia.org/wiki/Bayesian inference
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http://en.wikipedia.org/wiki/A_priori_%28statistics%29
http://en.wikipedia.org/wiki/Bayesian_inference
http://en.wikipedia.org/wiki/Bayesian_inference
http://en.wikipedia.org/wiki/Bayesian_inference
http://en.wikipedia.org/wiki/Bayesian_inference

Bayesian Statistics

7t (H) does not assume
anything about x

P(x|H H
ps) Pl ()
SR = A (H)dH

posterior probability
after seeing the data “normalisation”

sum over all hypothesis



done your Homework?

Solution:

From the figure:

p(p = 3 ,2) =04,

3.1 - Particle Production  p(, =4,2) = 0.22,
p(p=5,2) =0.12,
pu = 6, 2) = 0.06
— [~ 5.3

(exact solution, see e.g. PDG: p = 5.32)

Solution:

a) Hbgr = 0, Nops = 2

3.2 - Particle Production See previous exercise, s = 5.3
small background b) ttogr = 1, Nops = 2:
/—Lsig = 9.3 — /.ng,‘ = 4.3
thanks to C) Hbgr = 3, Nops =0: p= e~ Hsigt3) = .1
0. Behnke, C. Kleinwort, S. Schmitt (DESY), " Hsio OUBNE to be smaller than zero = jisiy = 0.

from Terascale Statistics School 2008 exercises



done your Homework?

3.3 - Particle Production
modified frequentist

3.4 - Particle Production
frequentist vs. bayesian

thanks to
O. Behnke, C. Kleinwort, S. Schmitt (DESY),

from Terascale Statistics School 2008 exercises

Solution:

CLs = CL(S + B)/CL(B) = e Wsig*ttgr) [e=Hbgr =
e #sis = 0.1 = pgig = —In(0.1) = 2.3

... as if there were no background!

(Reference: A.L. Read, (Oslo) CERN-OPEN-2000-205,
Aug 2000.)

Solution:

a) Frequentist: from the CL curve:
CL=0.1e 1280

Ui = —2+ 1.28 = —0.72
b) Bayesian:

Renormalised total integral in physical area:
Fonl L -)"|2

[da’ je 7 =CL(2) =0.028

Integral above limit:
Y.

- d:v’ A-e 2 =0.1-0.028=0.0028

CL = 0.0028 + 2.750
— Wi = —2+ 2.75 = 0.75



Observed vs. Expected Limits

understand the jargon
Expected Limiut:

calculated from background prediction only
(as 1f data/MC agree exactly, 1.e. there 1s no deviation)
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Hypothesis Testing

consider data under two Hypothesis:

Ho Null-Hypothesis: background - only
H; Alternate Hypothesis: background + signal

decide whether to accept/ reject Ho
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Error Classification

can never be sure TRUE condition

it 1s the right decision! , ,
guilty not guilty

.g sentenced TRUE Type I Error
L guilty POSITIVE | false positive
k:

2 o o | Type I Error|  TRUE
-

ouitly false negative| NEGATIVE




Size and Power

treat Hypotheses asymmetrically

Null-Hypothesis 1s special!

Fix rate of a, call it “*Size of the Test”’

call (1 - ) the “Power of the Test”

now can define a Goal:

Maximise Power for a fixed Size of the Test

10



Hypothesis Testing: Size and Power

think of 50 discovery in particle physics: 50 < o =2.87 - 107

very small chance to reject the Standard Model
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Kyle Cranmer (NYU) CERN Academic Training, Feb 2-5, 2009

in general: Size is arbitrary: choose depend on Utility or Risk ...
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Neyman-Pearson Lemma (1928-1938)

given the probability to wrongly reject Null-Hypothesis

a=P(x¢W | Hy)
(if data falls in W we accept Ho)

find region W that minimizes the probability of

wrongly accepting Ho (when Hj 1s true)

b= HI .

NP [.emma:

region W 1s a contour of the Likelihood Ratio! ‘
it can be shown (proot):

any other contour (same size) has less power!

12



P(x

Test Statistic

Likelihood Ratio
Hy)

P(x

> k,, isanexample of a Test Statistic

H 0 ) (real valued function, summarizing
the data in a way relevant to the Hypo-Test)

» Common test statistics

- simple likelihood ratio (LEP) Qrep = Lsts(p=1)/Le(p = 0)
. ratio of profiled likelihoods (Tevatron) @rev = Ls+s(s=1,0)/Ly(p =0,7')
- profile likelihood ratio (LHC) M) = Lgyp(p, 0)/Losp(ft, D)

(taken from Kyle Cranmer’s talk)

V’s are nuisance parameters (shape)

13



Simple Hypothesis Testing

an Hypothesis 1s simple, if it has no free parameters
NP Lemma 1s the answer!

f (x| Hop) vs. f(xI1Hjp)

if there are free parameters
Hypothesis is composite!

f (x| Ho) vs. f(x|Hi, Mmiges )

typically pdf can be parametrized: f(x10)

for fixed O it is a pdf for x,
as a function of 6 call it “Likelihood function”
(not a pdf!)

divide 0 into parameters of interest, nuisance parameters
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LEP vs. LHC Likelihood Ratio

Simple Likelihood Ratio (LEP)

L(data|p = 1,b,v)

QLEP =

L(data|lp = 0, b, v)

Profile Likelithood Ratio (LHC)

Alu=0)=

L(data|fi,b,?)
sophisticated ansatz:

, where D is best fit with i fixed to O
»and v is best fit with u left floating

15



Hypothesis Testing vs. Interval Construction

Interval Construction 1s “inverted” Hypothesis Test

Property of Test

Property of Intervall

test size Q
probability of rejecting
a false value of 0

power =1 -f3

most powerful

confidence level a

probability of not covering
a false value of 0

1-p

uniformly most accurate

16



Wilk’s Theorem

f(x[0o)
| Opest (7))

negative logarithm of test statistic approaches y2-distribution
in the asymptotic limit (central limit theorem)
with n degrees of freedom equal to parameters of interest!

—2log A\(0) = x>

T

—2log A\(6p) = —2log f(

17



Wilk's Theorem
—2log \(0) = x5,

Fl-2log A(0)10)

—2log A(6) ~ x:

Figures from
Kyle Cranmer

(4l(6)x Fo1z—-)f 0
7 L
6 :—\I
5 - "'\
|
4 |-
b\
2|
Figure from R. Cousins, s
Am. J. Phys. 63 398 (1995)

=2 1InL(ne=3 1 )
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p-Value Correspondence for ¥2n
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Figure 2: Probabilities to observe a y* equal or larger than the given one for different

degrees of freedom n (from the PDG).



ﬁ%’iémahcs

constrain via sideband/
control region measurement

statistical uncertainty
scale with lumi

from model assumptions/
poorly understood features
shape systematics
don’t scale with lumi

from underlying paradigm
philosophical issue

Orlando Aquije © 2008 | atixvecfor.deviantart.com
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Constrain Systematics

Typically, we consider an auxiliary measurement y used to
estimate background (Type | systematic)

» eg: a sideband counting experiment where background
in sideband is a factor + bigger than in signal region

Lp(z,y|p,b) = Pois(z|u +b) - Pois(y|Td).

(taken from Kyle Cranmer)

.~

20000

Events / 2 GeV

17500

can convert systematic
error into statistical one

turn “The Bad” into “The Good”

15000

12500

10000 .
105 120 135

m,, (GeV)
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Few Words on Sensitivity Issue

Spurious exclusion

Consider again the case of low sensitivity. By construction the
probability to reject u 1if 4 1s true 1s a (e.g., 5%).

And the probability to reject u if z = 0 (the power) 1s only slightly
oreater than a.

4

This means that with
+( Ial 4 ) probability of around a = 5%
adl (shightly higher), one excludes
—» critical region  hypotheses to which one has
essentially no sensitivity (e.g.,

oL (1pl0)  my=1000 TeV).

= “Spurious exclusion”

G. Cowan ATLAS Limits Workshop / PCL
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Recommendation to use PCL

b?, - b-only expectation
)
C
o -20 background
£ fluctuation
L i Observed limit is
a f “too lucky” for
> (——""_—‘““ comfort, impose
A e ; “power constraint”
(@)

1 |
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Kyle Cranmer (NYU) ATLAS Statistics Wor
from Kyle Cranmer 5 +-\">>~ ~ < z

from Glen Cowan
PCL

95% Upper-limit on o/0,,

(ATLAS Stat. Workshop 15.04.11)

. Here power below
120 130 140 150 160 170 180 190 200 threshold; do not
m,, (GeV) exclude.
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what | couldn’t talk about

(over-/ under-) Coverage
Flip-Flopping
Look-Elsewhere Effect

Power Constraint Limits

an much more stuff that can be said about limits ....
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conclusion

Hypothesis Testing

Error Classification
Power and Size of Test
Neyman-Pearson Lemma

Test Statistics
Wilk’s Theorem
Systematics

25



NOW

Hands-On part

have a look at my wiki page



commonly used limit implementation

fortran routines for CLs
written by Tom Junk
combination of search channels (eclsyst.f)

Nuclear Instruments and Methods in Physics Research A 434 (1999) 435-443
almost usea everywnere

mkdir tutorialtestsite; cd tutorialtestsite;
cp -r ~mherbst/testarea/junklimit .

try it out: ./junklimit/testeclsyst

cp -r ~mherbst/testareal/cernlib .

change junklimit/testeclsyst.f and compile

also some bayesian codes (don’t know myself)

27



RooFit/ RooStats

RooStats: Framework for the Collection of Statistical Methods

RooFit: Complex fit-machinery, maybe used in any aspect of hep

RooFit + RooStat:
unified framework for users (coherence)
also addresses publishing of Statistical Results

28



RooFit/ RooStats

The Prototype Problem in RooFit/RooStats

Early in the RooStats project, we
considered this prototype problem

Lp(z,y|p,b) = Pois(z|p+ b) - Pois(y|Tb).

Easy to code up using RooFit:

RooRealVar s( : R TR SRR 111 6 -

RooRealVar b('b", i - N | R 1|1 2 e

RooRealVar tau( , ,_tau, 0,2);

tau. setConstant (KTRUE) ;

RooFormulaVar splush( , ,RooArgSet(s,b));
RooProduct  hTau( s ", RooArgSet (b, tau));
RooRealVar x("x","x", s+ b, 0., 200.);

RooRealVar y{'v","v",_b*_taw, 0., 200.);

RooPoisson sigRegion(’ -1gfe ; e , X, splusb) ;
RooPolsson sideband( ba . ' , ¥, bTau) ;

RooProdPdf joint(

Easy to obtain relevant plots in three

different approaches

, RooArgSet(sigReqion, sideband) );

Kyle Cranmer (NYU)

CERN Academic Training, Feb 2-5, 2009

°0 5 1 15 20 25 0 35 40 a5 gﬂ

Gamma Posterior

-~ log Likelihood Rat

(7

156
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Preparations to use ATLAS combination package

sorry only for ATLAS users

check out ATLAS Combination repository

svn co svn+ssh://svn.cern.ch/reps/atlasgrp/Physics/
SUSY/Analyses/Combination/trunk

init environment for ATHENA and root
source $AtlasSetup/scripts/asetup.sh 16.5.0

make library
cd trunk/Tools; make;

load Library in Macro (if you can’t have your own...)

gSystem->Load("~mherbst/testarea/tutorial/trunk/lib/
liboCombinationTools.so");

30



Making the Workspace

from Combination svn: trunk/Tools/MakeWorkSpaceOneChannel.cxx

MakeWorkSpaceOneChannel (
filename , suffix,

data, // observartion in signal region

back_exp, // background expectaion in signal region

b_exp_gauss_sigma, // Absolute uncertainty on SM background only (without JES etc)
ds_JES_numb, // Rel. effect of 1 sigma variation from JES : for signal in signal region
db_JES_numb, // Rel. effect of 1 sigma variation from JES : for SM background in signal region
ds_lumi_numb, // Rel. effect of 1 sigma variation from lumi : for signal in signal region
db_Ilumi_numb, // Rel. effect of 1 sigma variation from lumi : for SM expectation in signal region
sig_exp, // signal expectation in signal region

sig_eff, // Rel. effect on 1 sigma variation from eg theory uncertainty: On signal in signal region

copy makeWorkspace.C Macro
cp ~mherbst/testarea/tutorial/makeWorkspace.C .
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The Model for the PDF

RooFormulaVar * s= new RooFormulaVar("s","@0*(1.+@1*@2+@3"@4+@5*@6)*@7",
RooArgSet(*mu,*ds_lumi,nuis_lumi,*ds_JES,nuis_JES,*ds_sigeff,nuis_sig,*sig_exp_var));

RooFormulaVar *b = new RooFormulaVar("b","@0*@1*(1.+@2*@3+@4*@5+@6*@7)",
RooArgSet(*back_exp_wO0_var,*gauss_back_mean_var,*db_lumi,nuis_lumi,
*db_JES,nuis_JES,*gauss_back_sigma_var,*nuis_back_chan));

RooFormulaVar * s_plus_b= new RooFormulaVar("s_plus_b","@0+@1" RooArgSet(*s,*b));

32



Analysing the Workspace

cp ~mherbst/testarea/tutorial/analyseWorkspace.C .

play with RooStat tutorials:

~mherbst/testarea/tutorial/roostattuts/
or

SROOTSYS/tutorials/roostats/
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