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yesterday
Statistics/ Probability
Frequentist/ Bayesian

Probability Density Function
Confidence Level/ p-Value

Confidence Intervals
Exercises

today
Hypothesis Testing

Error Classification
Size/ Power of Test  

Test Statistics/ Chisquare Dist.
NP Lemma/ Wilks’ theorem

Likelihood Function
Systematics

POI, Nuissance Parameters
Profile Likelihood Ratio

Coverage/ Flip-Flopping/ Asymptotic Limit/ Look-Elsewhere  
current ATLAS discussion: Power Constraint Limits
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Bayesian Statistics, follow up

P (A|B) =
P (B|A) P (A)

P (B)

Bayes’ Law

P(B) is called the marginal probability of B: the a priori probability of 
witnessing the new evidence B under all possible hypotheses. It can be 
calculated as the sum of the product of all probabilities of any complete set of 
mutually exclusive hypotheses and corresponding conditional probabilities:

P (B) =

http://en.wikipedia.org/wiki/Bayesian_inference

http://en.wikipedia.org/wiki/Bayesian_inference
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Bayesian Statistics

P (H|x) =
P (x|H) π(H)∫
P (x|H)π(H)dH

π (H) does not assume 
anything about x

“normalisation”
sum over all hypothesis

posterior probability
after seeing the data
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done your Homework?

3.1 - Particle Production

3.2 - Particle Production
small background

thanks to 

O. Behnke, C. Kleinwort, S. Schmitt (DESY), 

from Terascale Statistics School 2008 exercises
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done your Homework?

3.3 - Particle Production
modified frequentist

3.4 - Particle Production
frequentist vs. bayesian

thanks to 

O. Behnke, C. Kleinwort, S. Schmitt (DESY), 

from Terascale Statistics School 2008 exercises
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Observed vs. Expected Limits

Expected Limit:

calculated from background prediction only
(as if data/MC agree exactly, i.e. there is no deviation)

Observed Limit:

data is compared 
to MC background 
prediction,
observed
limit should wiggle
around expected!

understand the jargon
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Hypothesis Testing

 inspired by lectures of Kyle Cranmer at CERN (ATLAS, NYU)

consider data under two Hypothesis:

H0 Null-Hypothesis: background - only
H1 Alternate Hypothesis: background + signal

decide whether to accept/ reject H0
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Error Classification
can never be sure
 it is the right decision!

TRUE condition

O
U

R
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ec
isi

on
guilty not guilty

sentenced
guilty

not 
sentenced

guitly

TRUE
POSITIVE

TRUE
NEGATIVE

Type I Error
false positive

Type II Error
false negative

call rate of Type II Error: β
call rate of  Type I Error: α
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Size and Power

call rate of Type II Error: β

call rate of  Type I Error: α
treat Hypotheses asymmetrically 
Null-Hypothesis is special!
Fix rate of α, call it “Size of the Test”

call ( 1 - β ) the “Power of the Test”

now can define a Goal:
Maximise Power for a fixed Size of the Test
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Hypothesis Testing: Size and Power

think of 5σ discovery in particle physics: 5σ ⇔ α = 2.87 ⋅ 10-7

very small chance to reject the Standard Model

in general: Size is arbitrary: choose depend on Utility or Risk ... 
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Neyman-Pearson Lemma (1928-1938)

given the probability to wrongly reject Null-Hypothesis

α = P (x /∈ W | H0)
(if data falls in W we accept H0)

find region W that minimizes the probability of 
wrongly accepting H0  (when H1 is true) 

β =  (!∈" | # 1)

NP Lemma: 
region W is a contour of the Likelihood Ratio!
it can be shown (proof): 

any other contour (same size) has less power!
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Test Statistic

Likelihood Ratio
is an example of a Test Statistic
(real valued function, summarizing

the data in a way relevant to the Hypo-Test)

(taken from Kyle Cranmer’s talk)

ν’s are nuisance parameters (shape) 

P (x|H1)
P (x|H0)

> kα
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Simple Hypothesis Testing

an Hypothesis is simple, if it has no free parameters
NP Lemma is the answer!

f (x | H0)   vs.    f( x | H1 )
if there are free parameters
Hypothesis is composite!

f (x | H0)   vs.    f( x | H1, mHiggs )

typically pdf can be parametrized:        f ( x | θ )
for fixed θ it is a pdf for x,
as a function of θ call it “Likelihood function” 

(not a pdf!)
divide θ into parameters of interest, nuisance parameters
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LEP vs. LHC Likelihood Ratio

Simple Likelihood Ratio (LEP)

Profile Likelihood Ratio (LHC)

sophisticated ansatz:
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Hypothesis Testing vs. Interval Construction

Interval Construction is “inverted” Hypothesis Test

Property of Test Property of Intervall

test size α

probability of rejecting 
a false value of θ
power = 1 - β

most powerful

confidence level α

probability of not covering
a false value of θ
1 - β

uniformly most accurate
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Wilk’s Theorem

negative logarithm of test statistic approaches χ2-distribution
in the asymptotic limit (central limit theorem)

with n degrees of freedom equal to parameters of interest!

−2 log λ(θ0) = −2 log
f(x|θ0)

f(x|θbest(x))

−2 log λ(θ) = χ2
n
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Wilk’s Theorem

−2 log λ(θ) = χ2
n

Figures from
Kyle Cranmer
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p-Value Correspondence for χ2n
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3 Types of Systematics constrain via sideband/ 
control region measurement

statistical uncertainty
scale with lumi

from model assumptions/
poorly understood features

shape systematics
don’t scale with lumi

from underlying paradigm
philosophical issue
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Constrain Systematics

(taken from Kyle Cranmer)

can convert systematic
 error into statistical one

turn “The Bad” into “The Good”
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Few Words on Sensitivity Issue
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Recommendation to use PCL

from Kyle Cranmer

from Glen Cowan

(ATLAS Stat. Workshop 15.04.11) 
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what i couldn’t talk about

(over-/ under-) Coverage

Flip-Flopping

Look-Elsewhere Effect

Power Constraint Limits

an much more stuff that can be said about limits ....
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conclusion

Hypothesis Testing
Error Classification
Power and Size of Test
Neyman-Pearson Lemma

Wilk’s Theorem
Test Statistics

Systematics
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now

Hands-On part

have a look at my wiki page
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commonly used limit implementation

fortran routines for CLs 
written by Tom Junk
combination of search channels (eclsyst.f)

almost used everywhere

also some bayesian codes (don’t know myself) 

cp -r ~mherbst/testarea/junklimit .
mkdir tutorialtestsite; cd tutorialtestsite;

try it out: ./junklimit/testeclsyst

change junklimit/testeclsyst.f and compile

cp -r ~mherbst/testarea/cernlib .
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RooFit/ RooStats

RooStats: Framework for the Collection of Statistical Methods
RooFit: Complex fit-machinery, maybe used in any aspect of hep
RooFit + RooStat:

unified framework for users (coherence)
also addresses publishing of Statistical Results
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RooFit/ RooStats
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Preparations to use ATLAS combination package

svn co svn+ssh://svn.cern.ch/reps/atlasgrp/Physics/
SUSY/Analyses/Combination/trunk

check out ATLAS Combination repository 

source $AtlasSetup/scripts/asetup.sh 16.5.0
init environment for ATHENA and root

cd trunk/Tools; make;
make library

gSystem->Load("~mherbst/testarea/tutorial/trunk/lib/
libCombinationTools.so");

load Library in Macro (if you canʼt have your own...)

sorry only for ATLAS users
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Making the Workspace

MakeWorkSpaceOneChannel (
     filename ,  suffix ,
  
    data, // observartion in signal region
    back_exp, // background expectaion in signal region
    b_exp_gauss_sigma, // Absolute uncertainty on SM background only (without JES etc)
    ds_JES_numb,  // Rel. effect of 1 sigma variation from JES : for signal in signal region
    db_JES_numb, // Rel. effect of 1 sigma variation from JES : for SM background in signal region
    ds_lumi_numb,  // Rel. effect of 1 sigma variation from lumi : for signal in signal region
    db_lumi_numb, // Rel. effect of 1 sigma variation from lumi : for SM expectation in signal region
    sig_exp, // signal expectation in signal region
    sig_eff, // Rel. effect on 1 sigma variation from eg theory uncertainty: On signal in signal region

cp ~mherbst/testarea/tutorial/makeWorkspace.C .
copy makeWorkspace.C Macro

from Combination svn: trunk/Tools/MakeWorkSpaceOneChannel.cxx
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The Model for the PDF

RooFormulaVar * s= new RooFormulaVar("s","@0*(1.+@1*@2+@3*@4+@5*@6)*@7",
RooArgSet(*mu,*ds_lumi,nuis_lumi,*ds_JES,nuis_JES,*ds_sigeff,nuis_sig,*sig_exp_var));

RooFormulaVar *b = new RooFormulaVar("b","@0*@1*(1.+@2*@3+@4*@5+@6*@7)",
RooArgSet(*back_exp_w0_var,*gauss_back_mean_var,*db_lumi,nuis_lumi,

*db_JES,nuis_JES,*gauss_back_sigma_var,*nuis_back_chan));

RooFormulaVar * s_plus_b= new RooFormulaVar("s_plus_b","@0+@1",RooArgSet(*s,*b));
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Analysing the Workspace

cp ~mherbst/testarea/tutorial/analyseWorkspace.C .

play with RooStat tutorials:

~mherbst/testarea/tutorial/roostattuts/
or

$ROOTSYS/tutorials/roostats/
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