Tutorial Statistics Limits Part II

M. Herbst

influenced by many other unknowing contributors, mentioned where possible

yesterday

Statistics/ Probability
Frequentist/ Bayesian
Probability Density Function
Confidence Level/ p-Value
Confidence Intervals
Exercises

today

Hypothesis Testing Error Classification Size/ Power of Test Test Statistics/ Chisquare Dist. NP Lemma/ Wilks' theorem Likelihood Function **Systematics** POI, Nuissance Parameters Profile Likelihood Ratio

Coverage/ Flip-Flopping/ Asymptotic Limit/ Look-Elsewhere current ATLAS discussion: Power Constraint Limits

Bayesian Statistics, follow up

P(B) is called the <u>marginal probability</u> of B: the <u>a priori</u> probability of witnessing the new evidence B under all possible hypotheses. It can be calculated as the sum of the product of all probabilities of any complete set of mutually exclusive hypotheses and corresponding conditional probabilities:

http://en.wikipedia.org/wiki/Bayesian_inference

Bayes' Law
$$P(A|B) = \frac{P(B|A) \ P(A)}{P(B)}$$

$$P(B) = P(E) = P(E|H) P(H) + P(E|\neg H) P(\neg H)$$

http://en.wikipedia.org/wiki/Bayesian_inference

Bayesian Statistics

π (H) does not assume anything about x

$$P(H|x) = \frac{P(x|H) \pi(H)}{\int P(x|H)\pi(H)dH}$$

posterior probability after seeing the data

"normalisation" sum over all hypothesis

done your Homework?

3.1 - Particle Production

3.2 - Particle Production small background

thanks to

O. Behnke, C. Kleinwort, S. Schmitt (DESY), from Terascale Statistics School 2008 exercises

Solution:

From the figure:

$$\begin{split} p(\mu = 3, 2) &= 0.4, \\ p(\mu = 4, 2) &= 0.22, \\ p(\mu = 5, 2) &= 0.12, \\ p(\mu = 6, 2) &= 0.06 \\ \rightarrow \mu \sim 5.3 \end{split}$$
 (exact solution, see e.g. PDG: $\mu = 5.32$)

Solution:

a)
$$\mu_{bgr}=0$$
, $N_{obs}=2$:
See previous exercise, $\mu_{sig}=5.3$

b)
$$\mu_{bgr} = 1$$
, $N_{obs} = 2$:
 $\mu_{sig} = 5.3 - \mu_{bgr} = 4.3$

c)
$$\mu_{bgr}=3$$
, $N_{obs}=0$: $p=e^{-(\mu_{sig}+3)}=0.1$ $\rightarrow \mu_{sig}$ ought to be smaller than zero $\rightarrow \mu_{sig}=0$.

done your Homework?

3.3 - Particle Production modified frequentist

Solution:

$$CL_s=CL(S+B)/CL(B)=e^{-(\mu_{sig}+\mu_{bgr})}/e^{-\mu_{bgr}}=e^{-\mu_{sig}}=0.1\rightarrow \mu_{sig}=-ln(0.1)=2.3$$
 ... as if there were no background! (Reference: A.L. Read, (Oslo) CERN-OPEN-2000-205, Aug 2000.)

Solution:

a) Frequentist: from the CL curve:

$$CL = 0.1 \leftrightarrow 1.28\sigma$$

 $\rightarrow \mu_{lim} = -2 + 1.28 = -0.72$

b) Bayesian:

3.4 - Particle Production frequentist vs. bayesian

Renormalised total integral in physical area:

$$\int_{0}^{\infty} dx' \frac{1}{\sqrt{2\pi}} e^{\frac{-(x'+2)^2}{2}} = CL(2) = 0.028$$

Integral above limit:

$$\rightarrow \int_{\mu_{lim}}^{\infty} dx' \frac{1}{\sqrt{2\pi}} e^{\frac{-(x'+2)^2}{2}} = 0.1 \cdot 0.028 = 0.0028$$

$$CL = 0.0028 \leftrightarrow 2.75\sigma$$

 $\rightarrow \mu_{lim} = -2 + 2.75 = 0.75$

thanks to

O. Behnke, C. Kleinwort, S. Schmitt (DESY), from Terascale Statistics School 2008 exercises

Observed vs. Expected Limits

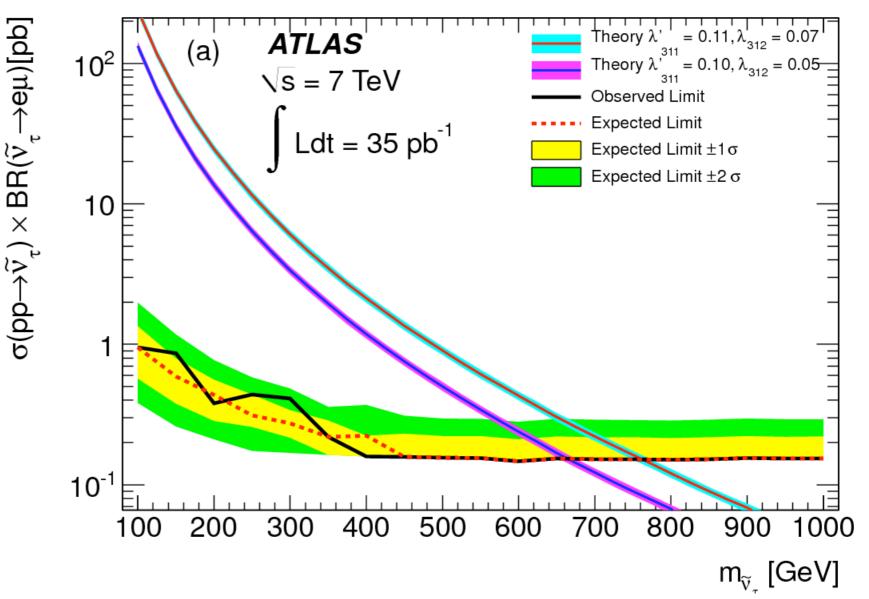
understand the jargon

Expected Limit:

calculated from background prediction only (as if data/MC agree exactly, i.e. there is no deviation)

Observed Limit:

data is compared to MC background prediction, observed limit should wiggle around expected!



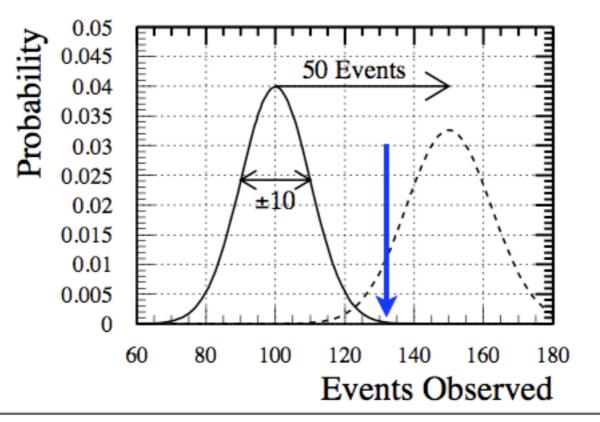
Hypothesis Testing

consider data under two Hypothesis:

H₀ Null-Hypothesis: background - only

H₁ Alternate Hypothesis: background + signal

decide whether to accept/ reject H₀



Kyle Cranmer (NYU)

CERN Academic Training, Feb 2-5, 2009

inspired by lectures of Kyle Cranmer at CERN (ATLAS, NYU)

Error Classification

can never be sure it is the right decision!		TRUE condition	
		guilty	not guilty
OUR decision	sentenced guilty	TRUE POSITIVE	Type I Error false positive
	not sentenced guitly	Type II Error false negative	TRUE NEGATIVE

call rate of Type I Error: α call rate of Type II Error: β

Size and Power

call rate of Type I Error: α

treat Hypotheses asymmetrically

Null-Hypothesis is special!

Fix rate of α , call it "Size of the Test"

call rate of Type II Error: β

call (1 - β) the "Power of the Test"

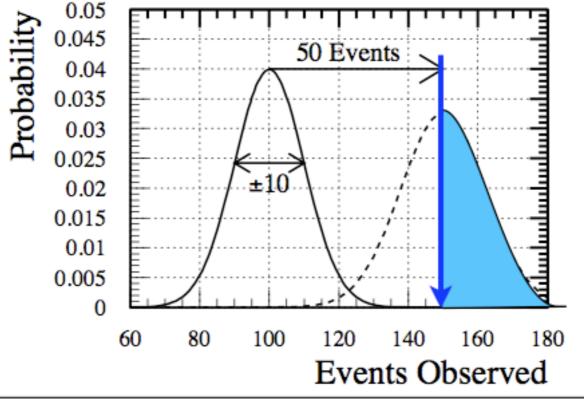
now can define a Goal:

Maximise Power for a fixed Size of the Test

Hypothesis Testing: Size and Power

think of 5σ discovery in particle physics: $5\sigma \Leftrightarrow \alpha = 2.87 \cdot 10^{-7}$

very small chance to reject the Standard Model



Kyle Cranmer (NYU)

CERN Academic Training, Feb 2-5, 2009

in general: Size is arbitrary: choose depend on *Utility* or *Risk* ...

Neyman-Pearson Lemma (1928-1938)

given the probability to wrongly reject Null-Hypothesis

$$\alpha = P(x \notin W \mid H_0)$$

(if data falls in W we accept H_0)

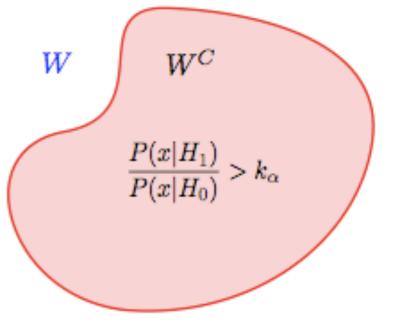
find region W that minimizes the probability of wrongly accepting H_0 (when H_1 is true)

$$\beta = (1 + 1)$$

NP Lemma:

region W is a contour of the Likelihood Ratio! it can be shown (proof):

any other contour (same size) has less power!



Test Statistic

$$\frac{P(x|H_1)}{P(x|H_0)} > k_{\alpha}$$

Likelihood Ratio

is an example of a Test Statistic

(real valued function, summarizing

the data in a way relevant to the Hypo-Test)

Common test statistics

simple likelihood ratio (LEP)

$$Q_{LEP} = L_{s+b}(\mu = 1)/L_b(\mu = 0)$$

ratio of profiled likelihoods (Tevatron)

$$Q_{TEV} = L_{s+b}(\mu = 1, \hat{\hat{\nu}})/L_b(\mu = 0, \hat{\hat{\nu}}')$$

profile likelihood ratio (LHC)

$$\lambda(\mu) = L_{s+b}(\mu, \hat{\nu}) / L_{s+b}(\hat{\mu}, \hat{\nu})$$

(taken from Kyle Cranmer's talk)

v's are nuisance parameters (shape)

Simple Hypothesis Testing

an Hypothesis is simple, if it has no free parameters NP Lemma is the answer!

 $f(x \mid H_0)$ vs. $f(x \mid H_1)$

if there are free parameters Hypothesis is composite!

 $f(x \mid H_0)$ vs. $f(x \mid H_1, m_{Higgs})$

typically pdf can be parametrized: $f(x | \theta)$

for fixed θ it is a pdf for x, as a function of θ call it "Likelihood function" (not a pdf!)

divide θ into parameters of interest, nuisance parameters

LEP vs. LHC Likelihood Ratio

Simple Likelihood Ratio (LEP)

$$Q_{LEP} = \frac{L(data|\mu=1,b,\nu)}{L(data|\mu=0,b,\nu)}$$

Profile Likelihood Ratio (LHC)

$$\lambda(\mu=0) = \frac{L(data|\mu=0,\hat{b}(\mu=0),\hat{v}(\mu=0))}{L(data|\hat{\mu},\hat{b},\hat{v})}$$

sophisticated ansatz:

- $oldsymbol{\cdot}$ where $\hat{\hat{
 u}}$ is best fit with μ fixed to 0
- $oldsymbol{\imath}$ and $\hat{
 u}$ is best fit with μ left floating

Hypothesis Testing vs. Interval Construction

Interval Construction is "inverted" Hypothesis Test

Property of Test	Property of Intervall
test size α	confidence level α
probability of rejecting a false value of θ power = 1 - β	probability of not covering a false value of θ 1 - β
most powerful	uniformly most accurate

Wilk's Theorem

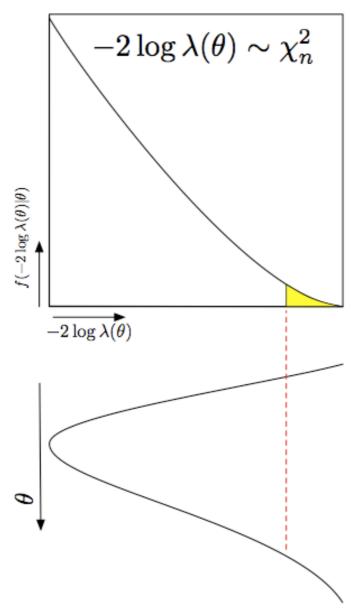
$$-2\log \lambda(\theta_0) = -2\log \frac{f(x|\theta_0)}{f(x|\theta_{best}(x))}$$

negative logarithm of test statistic approaches χ^2 -distribution in the asymptotic limit (central limit theorem) with n degrees of freedom equal to parameters of interest!

$$-2\log\lambda(\theta) = \chi_n^2$$

Wilk's Theorem

$$-2\log\lambda(\theta) = \chi_n^2$$



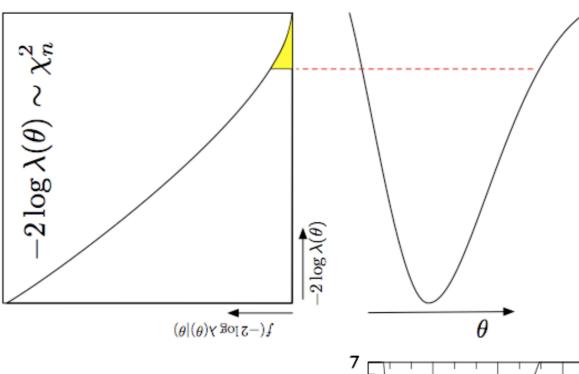
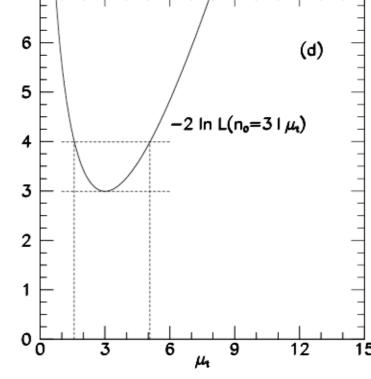


Figure from R. Cousins, Am. J. Phys. 63 398 (1995)



p-Value Correspondence for χ²n

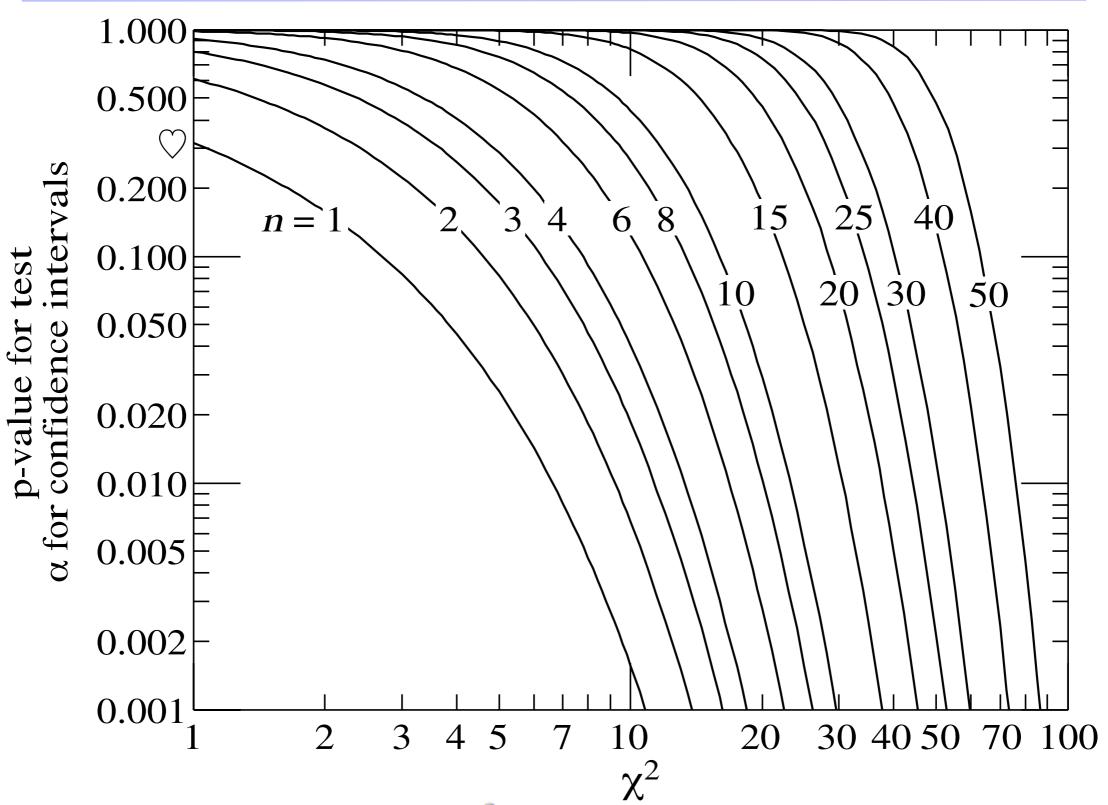
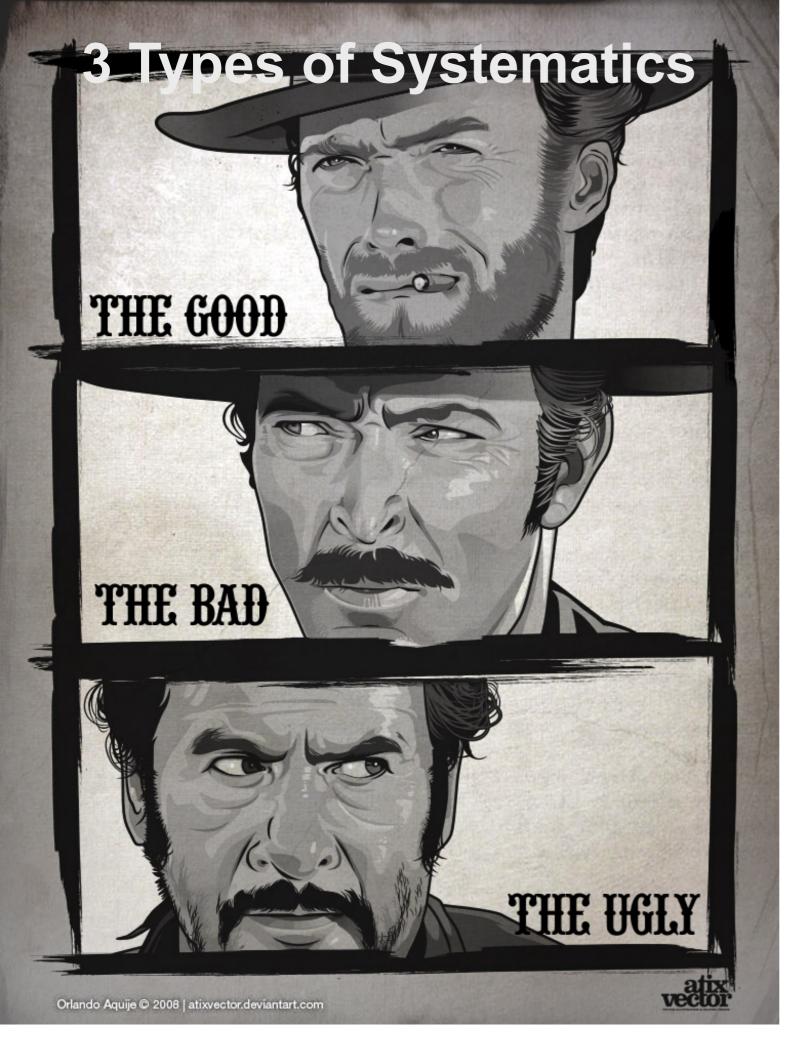


Figure 2: Probabilities to observe a χ^2 equal or larger than the given one for different degrees of freedom n (from the PDG).



constrain via sideband/
control region measurement

statistical uncertainty
scale with lumi

from model assumptions/
poorly understood features
shape systematics
don't scale with lumi

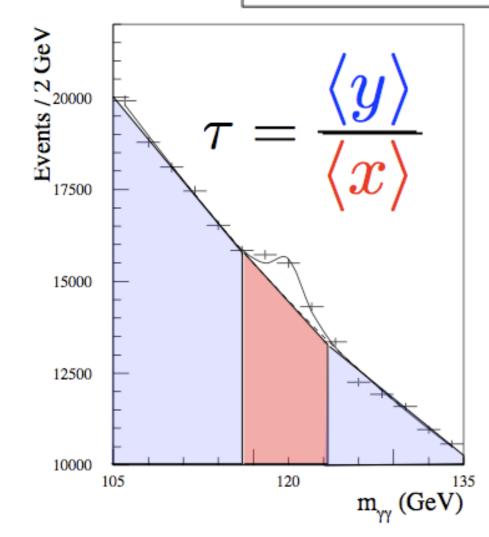
from underlying paradigm philosophical issue

Constrain Systematics

Typically, we consider an auxiliary measurement y used to estimate background (Type I systematic)

• eg: a sideband counting experiment where background in sideband is a factor τ bigger than in signal region

$$L_P(x, y|\mu, b) = Pois(x|\mu + b) \cdot Pois(y|\tau b).$$



(taken from Kyle Cranmer)

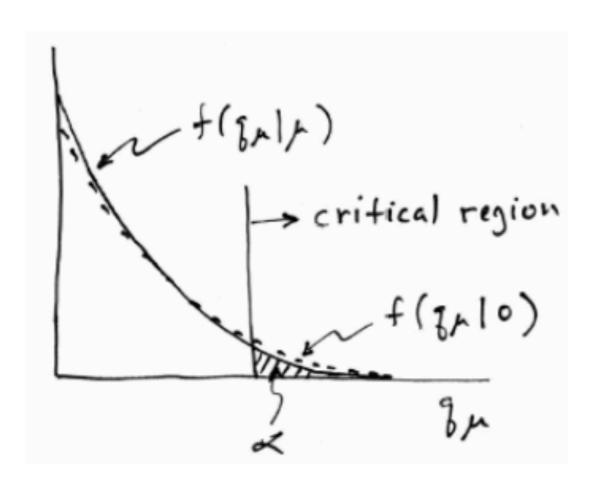
can convert systematic error into statistical one turn "The Bad" into "The Good"

Few Words on Sensitivity Issue

Spurious exclusion

Consider again the case of low sensitivity. By construction the probability to reject μ if μ is true is α (e.g., 5%).

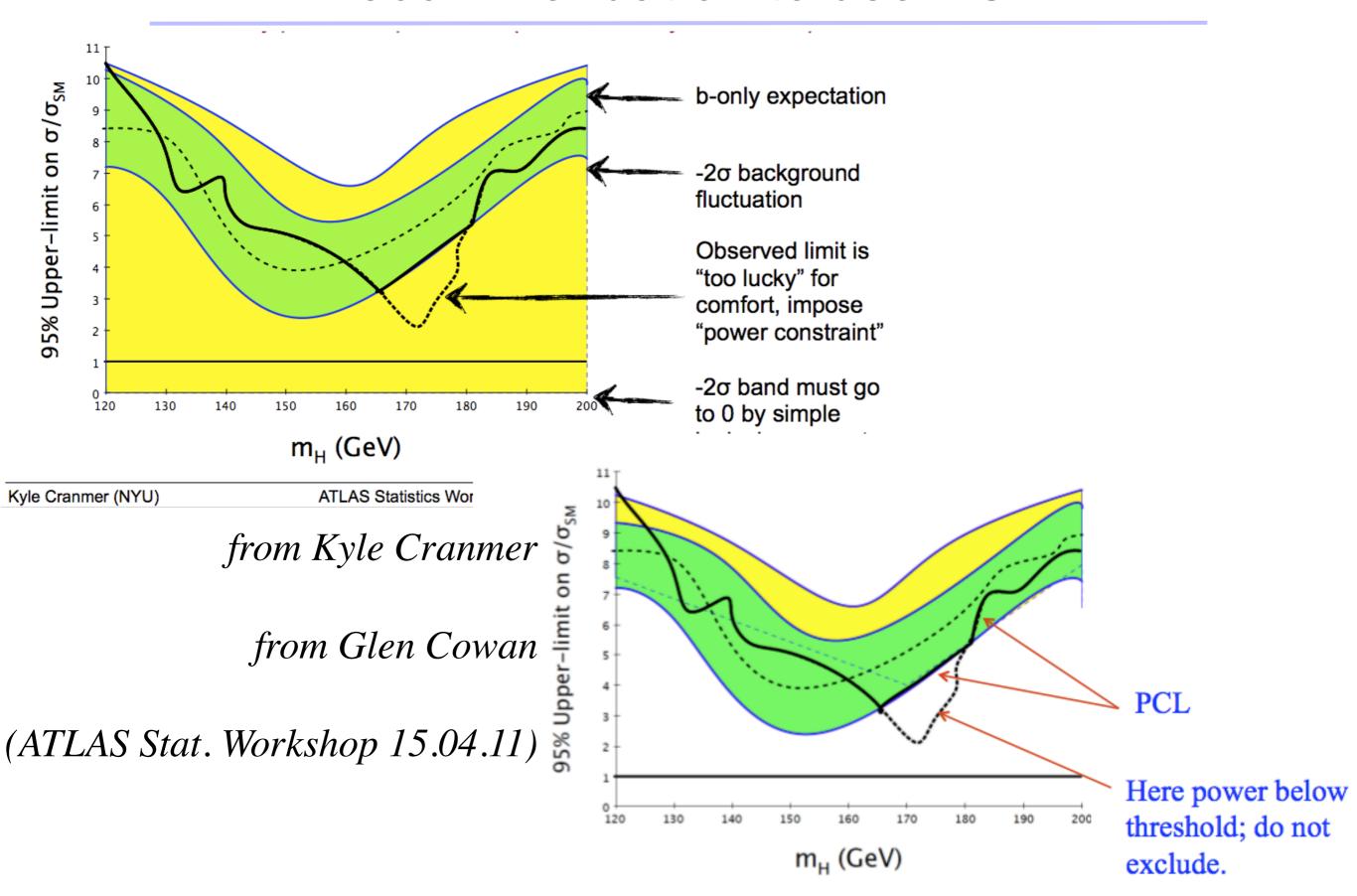
And the probability to reject μ if $\mu = 0$ (the power) is only slightly greater than α .



This means that with probability of around $\alpha = 5\%$ (slightly higher), one excludes hypotheses to which one has essentially no sensitivity (e.g., $m_{\rm H} = 1000 \text{ TeV}$).

"Spurious exclusion"

Recommendation to use PCL



what i couldn't talk about

(over-/ under-) Coverage

Flip-Flopping

Look-Elsewhere Effect

Power Constraint Limits

an much more stuff that can be said about limits

conclusion

Hypothesis Testing
Error Classification
Power and Size of Test
Neyman-Pearson Lemma
Test Statistics
Wilk's Theorem
Systematics

now

Hands-On part

have a look at my wiki page

commonly used limit implementation

fortran routines for CL_s written by Tom Junk combination of search channels (eclsyst.f)

Nuclear Instruments and Methods in Physics Research A 434 (1999) 435-443 almost used everywnere

mkdir tutorialtestsite; cd tutorialtestsite;

cp -r ~mherbst/testarea/junklimit.

try it out: ./junklimit/testeclsyst

cp -r ~mherbst/testarea/cernlib.

change junklimit/testeclsyst.f and compile

also some bayesian codes (don't know myself)

RooFit/RooStats

RooStats: Framework for the Collection of Statistical Methods

RooFit: Complex fit-machinery, maybe used in any aspect of hep

RooFit + RooStat:

unified framework for users (coherence) also addresses publishing of Statistical Results

RooFit/ RooStats

The Prototype Problem in RooFit/RooStats

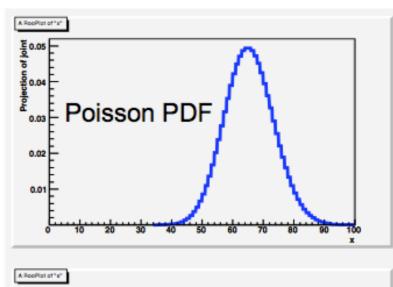
Early in the RooStats project, we considered this prototype problem

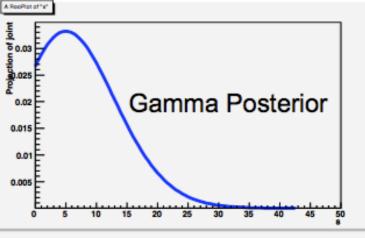
$$L_P(x, y|\mu, b) = Pois(x|\mu + b) \cdot Pois(y|\tau b).$$

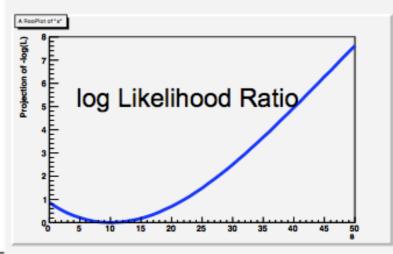
Easy to code up using RooFit:

```
RooRealVar s("s", "s", _s, 0., 100.);
RooRealVar b("b", "b", _b, 0., 200.);
RooRealVar tau("tau", "tau", _tau, 0, 2);
tau.setConstant(kTRUE);
RooFormulaVar splusb("splusb", "s+b", RooArgSet(s, b));
RooProduct bTau("bTau", "b*tau", RooArgSet(b, tau));
RooRealVar x("x", "x", _s+ _b, 0., 200.);
RooRealVar y("y", "y", _b*_tau, 0., 200.);
RooPoisson sigRegion("sigRegion", "sigRegion", x, splusb);
RooPoisson sideband("sideband", "sideband", y, bTau);
RooProdPdf joint("joint", "joint", RooArgSet(sigRegion, sideband));
```

Easy to obtain relevant plots in three different approaches







Preparations to use ATLAS combination package sorry only for ATLAS users

check out ATLAS Combination repository
svn co svn+ssh://svn.cern.ch/reps/atlasgrp/Physics/
SUSY/Analyses/Combination/trunk

init environment for ATHENA and root source \$AtlasSetup/scripts/asetup.sh 16.5.0

make library
cd trunk/Tools; make;

load Library in Macro (if you can't have your own...)
gSystem->Load("~mherbst/testarea/tutorial/trunk/lib/libCombinationTools.so");

Making the Workspace

from Combination svn: trunk/Tools/MakeWorkSpaceOneChannel.cxx

```
MakeWorkSpaceOneChannel ( filename, suffix,
```

```
data, // observartion in signal region
back_exp, // background expectaion in signal region
b_exp_gauss_sigma, // Absolute uncertainty on SM background only (without JES etc)
ds_JES_numb, // Rel. effect of 1 sigma variation from JES : for signal in signal region
db_JES_numb, // Rel. effect of 1 sigma variation from JES : for SM background in signal region
ds_lumi_numb, // Rel. effect of 1 sigma variation from lumi : for signal in signal region
db_lumi_numb, // Rel. effect of 1 sigma variation from lumi : for SM expectation in signal region
sig_exp, // signal expectation in signal region
sig_eff, // Rel. effect on 1 sigma variation from eg theory uncertainty: On signal in signal region
```

copy makeWorkspace.C Macro cp ~mherbst/testarea/tutorial/makeWorkspace.C .

The Model for the PDF

```
RooFormulaVar * s= new RooFormulaVar("s","@0*(1.+@1*@2+@3*@4+@5*@6)*@7", RooArgSet(*mu,*ds_lumi,nuis_lumi,*ds_JES,nuis_JES,*ds_sigeff,nuis_sig,*sig_exp_var));

RooFormulaVar *b = new RooFormulaVar("b","@0*@1*(1.+@2*@3+@4*@5+@6*@7)", RooArgSet(*back_exp_w0_var,*gauss_back_mean_var,*db_lumi,nuis_lumi,
```

*db_JES,nuis_JES,*gauss_back_sigma_var,*nuis_back_chan));

RooFormulaVar * s_plus_b= new RooFormulaVar("s_plus_b","@0+@1",RooArgSet(*s,*b));

Analysing the Workspace

cp ~mherbst/testarea/tutorial/analyseWorkspace.C .

play with RooStat tutorials:

~mherbst/testarea/tutorial/roostattuts/

or

\$ROOTSYS/tutorials/roostats/