
PARALLEL HARDWARE OBJECTS FOR DYNAMICALLY PARTIAL RECONFIGURATION

Norbert Abel, Udo Kebschull

Kirchhoff Institute for Physics,
Heidelberg

INF 227, 69120 Heidelberg
email:{abel, kebschull}@kip.uni-heidelberg.de

ABSTRACT

Many of today’s software-to-hardware compiler projects try
to find data flow parallelism in a sequential program descrip-
tion and use it to generate parallel running hardware com-
ponents. In this paper we present a new possibility to do
a parallel description based on the combination of object-
oriented programming and dynamically partial reconfigura-
tion. Our compiler translates software objects directly to
Hardware Objects, which are running in parallel and can be
instantiated and removed dynamically. Furthermore, we fo-
cus on parallel inter object communication which allows the
Hardware Objects to communicate in parallel.

1. INTRODUCTION

Since the 1960s object-oriented programming (OOP) has
changed the way software design is done. Using OOP, the
central point of software development became interacting
objects with assigned attributes and methods. The differ-
ence between OOP and procedural programming is crucial,
since for procedural programming the handled variables are
absolutely passive whereas for OOP every object acts as an
active part of the program. This means, that the objects pro-
vide the attributes and the functionality [1]. Due to this, we
use OOP to realize parallel programming. Combined with
the thread concept, the described objects really are indepen-
dently acting instances. This leads to a powerful process de-
scription, making it possible to use the parallelism provided
by parallel architectures like modern CPUs or FPGAs.

Xilinx FPGAs provide the possibility to be reconfigured
partially and dynamically. This means, that parts of the
hardware can be exchanged while the rest of the circuit is
running untouched. This provides completely new possibil-
ities regarding object-oriented hardware descriptions. The
dynamic character of interacting objects can be implemented
directly using dynamically partial reconfiguration (DPR).
Objects are translated directly into Hardware Objects which,
in a simple case, are adders or multipliers, and in more com-
plex cases are tasks consisting of many functional units. Us-
ing DPR these Hardware Objects can be loaded and removed

dynamically.
There are several former projects that focus on the de-

sign of parallel systems in high level languages. Most of
them focus on the analysis of a sequential process descrip-
tion. They try to find independent dataflows to execute them
in parallel [2]. It turned out that this method is limited. To
generate well parallelizable code, the high level program-
mers often have to write the programs in a special, par-
allelization aware way. As a consequence new program-
ming languages for highly parallel architectures (like mod-
ern graphic cards) provide the possibility toexplicitly for-
mulate the parallelism [3]. Our paper focuses the design
and the implementation of a hardware compiler that takes an
explicitly parallel, object-oriented description and translates
it to dynamically reconfigurable hardware. Former projects
that focus on OOP and reprogrammable hardware usually
confined themself to instantiate coprocessor objects on an
FPGA. In these environments the communication always
stays controlled by a processor or a bus. The hardware in-
stantiation of objects is only done to speed up the object
execution but not to run several objects in parallel [4]. Other
projects, like the JHDL project [5], focus on the instantia-
tion of parallel running objects, but leave out the possibil-
ity of runtime reconfiguration. Although the JHDL Papers
talk about dynamic object instantiation, it has never been
implemented within the JHDL project. The target of our
project is to fully use the intrinsic parallelism of objectsto
describe parallel hardware, which is mainly consisting of
parallel running, dynamically instantiatable Hardware Ob-
jects. In section 2 we take a closer look at the correlation
between hardware components and software objects. Sec-
tion 3 focuses on the dynamic linking of objects. Section
4 goes into detail with the implementation. In section 5 we
present example applications and in section 6 we summarize
our work.

2. HARDWARE OBJECTS

Our basic concept is to find and to use similarities between
the objects in OOP and the programmable hardware. For in-

stance, using Java we would not translate the Java code into
Java bytecode and then translate the bytecode into VHDL,
but we would rather translate the Java objects directly to
Hardware Objects represented in VHDL. The main target
of this concept is to use the potential parallelism of OOP.

This section demonstrates the correlation between hard-
ware and Java objects. We decided to use Java and VHDL,
since Java is object-oriented and supports the parallelism
concept and VHDL is very easy to read and to understand.
Nevertheless it is not mandatory to use Java and VHDL
– other languages like C++ and Verilog also provide the
needed functionality. We do not want to focus on the lan-
guages but on the principle behind them.

Fig. 1. A simple dataflow

2.1. A simple dataflow

Figure 1 shows a simple data flow consisting of two adders
and one multiplier. It is clear that these hardware compo-
nents are running all the time and in parallel. To be able to
describe the same behavior in Java, we build a class named
HardwareThreadthat inherits from theThread-class. All
the Java objects, representing a hardware component, inherit
from theHardwareThread-class. Thus they are really run-
ning in parallel. The classHardwareThreadcontains one
method running all the time:calc(). This method is empty
and can be overwritten by a subclass with a method contain-
ing the functionality of the object. It represents the contin-
uous characteristic of the hardware. TheDECLARATION-
part of Figure 2 shows the Java description of the adders and
the multiplier.

It is visible, that the inputs and outputs of the functional
units in figure 1 are represented by get and set methods as
usual in OOP. This emphasizes the similarity between hard-
ware components and objects. Both have well defined input
and output ports. In VHDL they are represented by in and
out signals of the component, in Java they are represented
by set and get methods. The functionality is encapsulated.
In VHDL it is part of the body of the component. In Java
we implemented it in the methodcalc(). Using threads both
are running all the time and parallel to other objects or com-
ponents. To get the functionality represented in figure 1 the
Java objects have to be combined with each other. This is
done in theINTERCONNECT-part of figure 2. The object

/ / DECLARATION:
c l a s s Adder ex tends HardwareThread{

p r i v a t e i n t a , b , s ;
pub l i c s e t a (i n t a) { t h i s . a = a ; }
pub l i c s e t b (i n t b) { t h i s . b = b ; }
pub l i c g e t s () { re turn t h i s . s ; }
p ro tec ted void c a l c () { s = a + b ; }

}
c l a s s M u l t i p l i e r ex tends HardwareThread{

p r i v a t e i n t a , b , p ;
pub l i c s e t a (i n t a) { t h i s . a = a ; }
pub l i c s e t b (i n t b) { t h i s . b = b ; }
pub l i c g e t p () { re turn t h i s . p ; }
p ro tec ted void c a l c () { p = a ∗ b ; }

}
pub l i c c l a s s s i m p l e J a v a {

pub l i c s t a t i c vo id main (S t r i n g [] a r g s) {
/ / INSTANTIATION :
Adder A1 = new Adder () ;
Adder A2 = new Adder () ;
M u l t i p l i e r M = new M u l t i p l i e r () ;

/ / INTERCONNECT:
A1 . s e t a (X1) ;
A1 . s e t b (Y1) ;
A2 . s e t a (X2) ;
A2 . s e t b (Y2) ;
M. s e t a (A1 . g e t s ()) ;
M. s e t b (A2 . g e t s ()) ;
P1 = M. g e t p () ;

}
}

Fig. 2. Java description of the objects

namedsimpleJavainstantiates the two adders and the multi-
plier. This is done in theINSTANTIATION-part of figure 2.

2.2. Parallel Object Language

The Java description shown in figure 2 can be processed in
two ways. First, one can let it run in software, using a usual
Java compiler. Second, one can translate it to VHDL, syn-
thesize it and let it run in hardware. Our target was to pro-
vide an environment where both executions act identically.
Thus one major problem in our first example is the data
integrity and serializability. The central question is: how
long does it take before all the changes at the outputs caused
by the inputs have been done? In hardware this problem is
solved using flip-flops and clock signals. The synthesis tool
calculates at compile time if the distance between two sim-
ilar edges of the clock is long enough, so that no glitch is
stored in the flip-flops. For the software execution there is
no mechanism in figure 2 that ensures that the adders have
calculated the new value (based on the inputs X1, X2, Y1
and Y2) before the multiplier uses their output. The same
problems exists for the multiplier.

To solve this problem we extended the classHardware-
Threadwith methods and signals that ensure the integrity
and serializability of the output signals. Using the encapsu-
lation and inheritance of Java objects, the developer does not
have to handle these signals. Unfortunately, when theHard-
wareThreadclass was extended in this way, the elegance of

the descriptions shown in figure 2 was destroyed. There was
only one set and one get method each using communication
objects, and the inter object communication became much
more complex. For instance synchronization keywords had
to be implemented. For software execution this just destroys
the elegance. For hardware execution it makes the hardware-
to-software compilation much more complex, since the com-
piler has to analyze the Java synchronization keywords and
has to translate them correctly to hardware synchronization
methods (like flip-flops and clock signals). Due to this we
decided to introduce a Java precompiler called POL (Parallel
Object Language). POL uses nearly the same syntax as Java,
but starting the POL precompiler for software execution re-
sults in a Java program enriched with the synchronization
signals and methods.

pub l i c c l a s s simplePOL ex tends ParObj {
ParObjVec<Adder> Adders = new ParObjVec<Adder>;
ParObjVec<M u l t i p l i e r > M u l t i p l i e r s

= new ParObjVec<M u l t i p l i e r >;

pub l i c simplePOL () {
Adders . add (new Adder ()) ;
Adders . add (new Adder ()) ;
M u l t i p l i e r s . add (new M u l t i p l i e r ()) ;

}
c l a s s Adder ex tends ParObj {

p r i v a t e i n t a , b , s ;
pub l i c s e t a (i n t a) { t h i s . a = a ; }
pub l i c s e t b (i n t b) { t h i s . b = b ; }
pub l i c g e t s () { re turn t h i s . s ; }
p ro tec ted void c a l c () { s = a + b ; }

}
c l a s s M u l t i p l i e r ex tends ParObj {

p r i v a t e i n t a , b , p ;
pub l i c s e t a (i n t a) { t h i s . a = a ; }
pub l i c s e t b (i n t b) { t h i s . b = b ; }
pub l i c g e t p () { re turn t h i s . p ; }
p ro tec ted void c a l c () { p = a ∗ b ; }

}
pub l i c vo id c a l c () {

Adders<0>. s e t a (X1) ;
Adders<0>. s e t b (Y1) ;
Adders<1>. s e t a (X2) ;
Adders<1>. s e t b (Y2) ;
M u l t i p l i e r s <0>. s e t a (Adders<0>. g e t s ()) ;
M u l t i p l i e r s <0>. s e t b (Adders<1>. g e t s ()) ;
P1 = M u l t i p l i e r s<0>. g e t p () ;

}
}

Fig. 3. Parallel Object Language

Figure 3 demonstrates the POL implementation of the
simple data flow. POL ensures the data integrity by itself
but some design rules have to be considered. Every class
that shall be interpreted as Parallel Object has to inherit from
ParObj. This class can contain set and get methods for the
attributes. No public attributes and no direct attribute access
is allowed. For inter object communication the get and set
methods have to be used. The POL precompiler translates
the several set and get methods to one set method and one
get method enriched with synchronization elements (as ad-
ditional classes, methods, attributes and keywords).

Interacting objects are arranged in hierarchical groups.
In figure 3 the two adders and the multiplier are packaged in
the objectsimplePOL. Every Parallel Object has to be part
of a Parallel Object Vector (ParObjVec). These vectors con-
tain all objects of the same type. This is crucial to be able to
handle dynamically created objects in software and in hard-
ware and will be focused in section 3. The access to the
Parallel Objects is handled via the Parallel Object Vectors.
The methodcalc() is running permanently and represents
the continuous characteristic of hardware components.

Due to the strict restrictions of POL it is possible to
translate the POL objects directly to parallel running hard-
ware components. Set methods are translated to input sig-
nals. Get methods become output signals and the function-
ality of the components is extracted from the methodcalc().
Of course POL objects can be more complex than a simple
addition or multiplication. The methodcalc() can contain
many branches, loops and calculations. Several projects fo-
cused the translation of sequential process descriptions into
a hardware description language (HDL). These well known
methods of process parallelization can be used for the trans-
lation of the Java code inside ofcalc().

3. DYNAMIC OBJECTS

3.1. A simple example: Pong

In the last example the Parallel Objects have been static in
the way that a POL-to-hardware compiler can analyze the
structure of the POL program shown in figure 3 and recog-
nize that Parallel Objects are only created in the constructor.
In this section we want to face the dynamic instantiation of
Parallel Objects in POL. For this we use the popular game
Pong. Our Pong example consists of 2 user controllable bars
andn balls, whilen can be dynamically increased and de-
creased. Bars and balls are both represented by Parallel Ob-
jects.

TheDECLARATION-part of Figure 4 shows the imple-
mentation of the Parallel ObjectBall. EveryBall is part of
a Parallel Object Vector calledBalls. TheBarsare part of a
Parallel Object Vector namedBars. The command line”for
(Bar b: Bars)” realizes the access to allBars. This is the
POL method to access all objects sharing one Parallel Object
Vector. Thus it is possible to generate any number ofBalls
or Bars and to communicate with them. For software exe-
cution the POL precompiler enriches this access with some
synchronization commands.

In figure 4 we introduced the methodfinish(). It is public
and can be called by the object itself or by an other object.
It changes the behavior of the Parallel Object so that it is
not running any longer. Furthermore the object is being re-
moved from the Parallel Object Vector.

TheINSTANTIATION-part of Figure 4 demonstrates the
implementation of the methodcalc()belonging to the object

. . .
/ / DECLARATION:
c l a s s B a l l ex tends ParObj{

p r i v a t e i n t x , y , d i r x , d i r y ;
pub l i c B a l l (i n t x , i n t y) {

t h i s . x = x ; t h i s . y = y ;
t h i s . d i r x = 1 ; t h i s . d i r y = 1 ;

}
pub l i c c a l c () {

x = x + d i r x ;
y = y + d i r y ;
i f (y<=0) d i r y = 1 ;
i f (y>=MAX Y) d i r y = −1;

f o r (Bar b : Bars)
i f ((x == b . g e t x ())&&(y == b . g e t y ()) d i r x ∗= −1;

i f (x<0) f i n i s h () ;
i f (x>MAX X) f i n i s h () ;

}
}

/ / INSTANTIATION :
pub l i c vo id c a l c () {

S t r i n g s ;
s = s t d i n () ;
i f (s == ”1 ”) Bars<0>.up () ;
i f (s == ”2 ”) Bars<0>.down () ;
i f (s == ”3 ”) Bars<1>.up () ;
i f (s == ”4 ”) Bars<1>.down () ;
i f (s == ”5 ”) B a l l s . add (new B a l l (nX , nY)) ;

}
. . .

Fig. 4. Parallel Objects vs. Pong

that realizes Pong. The command”Balls.add(new Ball(nX,
nY))” creates a newBall object at position (nX, nY).

3.2. Dynamically Partial Reconfiguration

To be able to translate our Pong game to hardware it is
mandatory to be able to instantiate hardware components at
runtime. Using normal synthesis tools this is completely
impossible, but Xilinx FPGAs like the ”Virtex-4” are able
to be reconfigured partially and dynamically. Furthermore
these FPGAs provide an internal configuration access port
(ICAP) that makes it possible to control the partial recon-
figuration via the logic on the chip itself. Based on these
possibilities the basic idea is to partition the target FPGA
into a static and some dynamic areas. The dynamic areas are
placeholders for the components that have to be instantiated
at runtime (e.g. the components representing the Balls). The
static part consists of all components belonging to static ob-
jects (e.g. a serial port controller) and the Hardware Sched-
uler, a program that controls the reconfiguration process. It
is the Hardware Scheduler that decides which dynamic com-
ponent is loaded at which time and to which dynamic area.
In a very simple case there are always enough areas to in-
stantiate the dynamic components. In a more complex case
there are more dynamic components than dynamic areas and
thus the Hardware Scheduler has to instantiate the dynamic
components alternately [6].

To be able to describe the complete reconfiguration envi-

Fig. 5. Software execution of Pong

ronment in Java we used the JSB (Java System Builder) [7].
The JSB provides theip coresof the Xilinx EDK as Java
objects. Originally it is used to describe static embedded
systems on system level (like the EDK does). We extended
the JSB, so that it is able to instantiate the Hardware Sched-
uler and to translate the POL objects to Java or to hardware.
For software execution the POL descriptions are translated
to ordinary Java files as described before. The static JSB
components provide software simulations of their hardware
functionality. (For example the classpushButtonsprovides a
graphical interface with clickable buttons.) For hardwareex-
ecution the static JSB components provide their correspond-
ing MSS, MHS and MPD files representing the static part of
the design [8]. (For example the classVGAoutprovides a
video controller. This is used to visualize the balls and bars
on a monitor.) Furthermore the POL description is being
translated into static components (like the bars) and dynamic
components (like the balls). The static components become
a part of the static design, the dynamic components are com-
piled independently. After generating the MSS, MHS, MPD
and VHDL files the Xilinx tools EDK, ISE and PlanAhead
are used to generate the static and the dynamic bitfiles. The
static bitfile is loaded onto the FPGA. Next the dynamic bit-
files are passed to the Hardware Scheduler running on the
FPGA. Now it is possible to create and to remove hardware
components dynamically by configuring them into the dy-
namic areas. Figure 5 demonstrates the software execution
of our Pong game, figure 6 shows a screen shot of the hard-
ware execution of our Pong game.

4. IMPLEMENTATION DETAILS

4.1. Communication

In many applications programmable hardware is used to han-
dle huge data streams. Examples are the data acquisition in
detector systems [9], video streaming [10] and networking
[11]. Thus the dynamic hardware generated by a POL-to-
hardware compiler has to be able to handle such huge data

Fig. 6. Hardware execution of Pong

streams. This negates the usage of a simple bus to let the
Hardware Objects communicate with each other. Using a
bus, the Hardware Objects would be calculating in parallel
but would have to provide the result of their calculation se-
quentially. Regarding big data streams this would negate
the whole parallelism. To avoid this kind of bottle neck, we
developed a communication matrix that provides a parallel
inter object communication. The communication matrix is
part of the static design and is connected to the dynamic
parts via bus macros [12]. It is also connected to the static
Hardware Objects. The matrix contains a FIFO pool. Every
Hardware Object can use one or more FIFOs of this pool
to store its data. The right connection between the Hard-
ware Objects and the FIFOs is established automatically by
the POL-to-hardware compiler. For this the compiler gener-
ates a unique object number for each Hardware Object. This
number is used to address the objects. Before an object is re-
moved it can store its context in a FIFO. In this case, it uses
its own object number as the target address. Furthermore, it
can store data for other objects in the FIFO pool. For this
it uses the number of the target object as the target address.
The matrix contains a set of multiplexers that connect the
FIFOs to the right Hardware Objects depending on the tar-
get addresses. Since the FIFOs can be written and read in
parallel, the communication matrix keeps the parallelism.
The compiler generates special object numbers representing
the Object Vectors (e.g.Barsin figure 4). Hardware Objects
can use this object number to address all objects belonging
to one Object Vector.

Since in POL objects can dynamically instantiate other
objects, Hardware Objects have to be able to instantiate other
Hardware Objects. For this the bus macros contain an in-
stantiation bus. Using this bus, a Hardware Object can tell
the Scheduler the object number of the new Hardware Ob-
ject that shall be instantiated.

4.2. Limitations

The flexibility of a dynamically reconfigurable System us-
ing Hardware Objects is limited by the used hardware. A
very important threshold is the number of FIFOs the com-
munication matrix contains. Depending on the functionality
of an object the compiler has to provide one, two or even
more FIFOs to one Hardware Object to maintain the paral-
lelism. For this reason, the maximum parallelism is deter-
mined by the number of parallel accessible FIFOs. In an en-
vironment withn object areas one has to implement at least
n + 2 FIFOs. One output FIFO for every Hardware Object
and two FIFOs as connection between the communication
matrix and the outer world.

If there are more active Hardware Objects than object
areas, the Scheduler can load the Hardware Objects alterna-
tively. When Hardware ObjectA sends data to the phys-
ically removed Hardware ObjectB this data needs to be
stored untilB is loaded again. Thus the size of the FIFOs
divided through the data rate ofA determines the timeB can
be removed untilA is not able to store anymore data and is
blocked. Thus the maximum number of Hardware Objects
running at the same time is limited by the number of object
areas and the needed data rates. The higher the data rates
are, the less reconfigurations can be performed.

5. APPLICATIONS

To evaluate the possibilities and the limitations of a POL-
to-hardware compiler we implemented three examples. The
first one was Pong (implemented on a Virtex-2 Pro 30), de-
monstrating the possibility to add and to remove Hardware
Objects dynamically. It has already been focused in section
3. The other two example applications are an audio DSP
and video processing (implemented on a Virtex-5 LX50),
demonstrating the behavior of a dynamic environment re-
garding data streams.

Our audio DSP has a 32 bit input (16 bit for the left and
16 bit for the right channel) and a 32 bit output. We im-
plemented 4 objects representing 4 different effects: a high
pass, a low pass, a distortion and an echo. Every object was
instantiated to activate the corresponding effect and removed
to deactivate it. To test the limits of the communication ma-
trix we only provided one dynamic area. Therefore, if the
user activates all 4 objects, the Scheduler has to configure
all the 4 objects in turn. Nevertheless, our target was an un-
interrupted audio stream at the output. This was possible
since the Hardware Objects could calculate 100.000 sam-
ples in one millisecond (due to the clock of 100MHz), but
only 48 samples per millisecond were needed (due to the
audio quality). The Scheduler needed 0.2 ms to reconfig-
ure the dynamic area. Knowing this parameter the compiler
calculated that one Hardware Object only had to stay con-
figured for 1 microsecond and thus the FIFO has to store at

least 100 samples. Thus, every Hardware Object calculated
1 microsecond and paused 803 microseconds. The compiler
instantiated 4 FIFOs for the 4 objects, each with a size of
512 Byte. If all 4 effects were activated, the resulting sys-
tem loaded the 4 Hardware Objects alternately using DPR,
but due to the FIFOs the audio stream stayed uninterrupted
the whole time. The latency was 2.8 ms.

In our audio example one reconfiguration turn lasted 804
microseconds, but only 4 microseconds of a turn were used
for calculation. 800 microseconds were used for reconfig-
uration. The reason is the very low speed of the Xilinx
reconfiguration interface. The 4 microseconds calculation
time sufficed, since only 48 samples per millisecond were
needed, but 100.000 samples could be processed in one mil-
lisecond. If the number of needed dates per second rises,
the calculation time and with it the needed FIFO size rises,
too. To demonstrate this, we will take a look at our third
example: video processing. We implemented a Hardware
Object realizing an edge detection and a Hardware Object
realizing a gamma correction in a video stream. Our stream
consisted of 25 frames per second. Every frame had a width
of 352 and a height of 288 Pixels. One Pixel had the size of
3 bytes. Thus, we needed a data rate of 7.6 MB/s. The filters
could produce data with a data rate of 25 MB/s. To be able to
load the two filters in turns without interrupting the stream,
every object had to calculate about 0.3 ms. In this time it
produces 2.3 MB data. We therefore needed a minimum of
4 FIFOs with a size of 2.3 MB. This exceeded the limitations
of our FPGA. Hence it was not possible to configure the two
Hardware Objects alternately without interrupting the video
stream. This points out that a permanent reconfiguration as
realized in our audio example is not always possible. Never-
theless, in environments with huge data streams (like video
processing or data acquisition) the reconfiguration can be
used to exchange parts of the processing system to be able
to react to changing requirements [10]. In this case DPR
can help to save chip resources, since not every Hardware
Object has to be instantiated from the beginning. Objects
are only instantiated when they are needed. The number of
needed dynamic areas is determined by the maximum num-
ber of Hardware Objects running in parallel and producing
huge data streams.

6. CONCLUSION

In this paper we presented POL as one possibility to do
a parallel object description. Our POL-to-hardware com-
piler translates POL objects directly to Hardware Objects.
Thegetand thesetmethods become the inputs and the out-
puts and the content of the methodcalc() determines the
functionality of the resulting Hardware Object. Since the
target hardware is partial and dynamically reconfigurable,
the dynamic instantiation of objects does not have to be

avoided, but can be directly implemented. This combina-
tion of object-orientation and DPR solves two problems at
once. First, the dynamic character of OOP does not have to
be removed, but can be translated directly to the hardware.
Therefore, the generated Hardware Objects are very similar
to their software pendants. Hence, it is no longer necessary
to translate object-oriented programs to a sequential process
description (like Java bytecode) and then to reparallelizethis
sequential description. Second, POL provides a very elegant
way to control dynamic hardware. Today it is still very com-
plex to use DPR, since the developer has to understand the
reconfiguration techniques in detail to be able to use DPR.
Using POL the complete DPR techniques (like the instanti-
ation of bus macros, the partitioning of the chip, the instan-
tiation of a scheduler, the instantiation of a communication
matrix including FIFOs) are encapsulated. The instantiation
of a new Hardware Object is done with a simplenew. Due to
these new possibilities, which come with the combination of
DPR and OOP, we are convinced that it is time to reconsider
the use of OOP for hardware design.

7. REFERENCES

[1] D. Morris, D. Evansa, and P. Green, “Object oriented com-
puter system engineering,”Springer-Verlag, 1996.

[2] A. C. S. Becka and G. Gaydadjiev, “Transparent recon-
figurable acceleration for heterogeneous embedded applica-
tions,” in Proc. DATE, 2008, pp. 1208–1213.

[3] NVIDIA-Corporation, “Nvidia cuda computed device archi-
tecture programming guide version 1.1,” Nov. 2007.

[4] M. Edwards and P. Green, “An object oriented design method
for reconfigurable computing systems,” inProc. DATE, 2000.

[5] B. Hutchings and M. Rytting, “A cad suite for high-
performance fpga design,” inField-Programmable Custom
Computing Machines.

[6] N. Abel, “Schnelle dynamische partielle rekonfiguration
in hardware mit inter-task-kommunikation,”University of
Leipzig, June 2005.

[7] J. Gebelein, “System-specification of embedded systems in
java for synthesis,”University of Leipzig, July 2007.

[8] Xilinx, “Platform specification format reference manual,”
www.xilinx.com, 2007.

[9] T. Alt and V. Lindenstruth, “Fpga based pre-/coprocessors for
the alice hlt,” inProc. DPG-Conference, Mar. 2005.

[10] C. Claus and J. Zeppenfeld, “Using partial-run-time recon-
figurable hardware to accelerate video processing in driver
assistance system,” inProc. DATE, 2007.

[11] S. Saponara and E. Petri, “Fpga-based networking systems
for high data-rate and reliable in-vehicle communications,”
in Proc. DATE, 2007.

[12] P. Lysaght and B. Blodget, “Enhanced architectures, design
methodologies and cad tools for dynamic reconfiguration of
xilinx fpgas,” in Proc. FPL, 2006, pp. 012–017.

