PARALLEL HARDWARE OBJECTS FOR DYNAMICALLY PARTIAL RECONFIGURATION
Norbert Abel, Udo Kebschull

Kirchhoff Institute for Physics,
Heidelberg
INF 227, 69120 Heidelberg
email: {abel, kebschull@kip.uni-heidelberg.de

ABSTRACT dynamically.

Many of today’s software-to-hardware compiler projecys tr There are several forr_ner_projects that focus on the de-
to find data flow parallelism in a sequential program descrip- Sign of parallel systems in high level languages. Most of
tion and use it to generate parallel running hardware com-them focus on the analysis of a sequential process descrip-
ponents. In this paper we present a new possibility to dopon. They try to find independent Qataflows tq e>.<e<.:ute them
a parallel description based on the combination of object- I parallel [2]. It turnegl out that this method is limited. To
oriented programming and dynamically partial reconfigura- 9€nerate well parallelizable code, the high level program-
tion. Our compiler translates software objects directly to Mers often have to write the programs in a special, par-
Hardware Objects, which are running in parallel and can be @/€lization aware way. As a consequence new program-
instantiated and removed dynamically. Furthermore, we fo- Ming languages for highly parallel architectures (like mod
cus on parallel inter object communication which allows the €M graphic cards) provide the possibility eaplicitly for-

Hardware Objects to communicate in parallel. mulate the parallelism [3]. Our paper focuses the design
and the implementation of a hardware compiler that takes an

explicitly parallel, object-oriented description andistates
it to dynamically reconfigurable hardware. Former projects

Since the 1960s object-oriented programming (OOP) hasthat .focus on OOP af‘d reprogrammable hardwf':lre usually
confined themself to instantiate coprocessor objects on an

changed the way software design is done. Using OOP, theFPGA n th . ts th icai |
central point of software development became interacting ¢) nt I(Iass benwronmen s the cgmml_Jrr;]lcahloZ aways
objects with assigned attributes and methods. The differ-Stays controlled by a processor or a bus. 1he hardware in-

ence between OOP and procedural programming is crucial stantiation of objects is only done to speed up the object
: . . ‘execution but not to run several objects in parallel [4]. €th
since for procedural programming the handled variables are”"". .) : .
’ prog g rojects, like the JHDL project [5], focus on the instantia-

absolutely passive whereas for OOP every object acts as afl

active part of the program. This means, that the objects pro-f[Ion of pa_rallel runni_ng objects, but leave out the possibil
vide the attributes and the functionality [1]. Due to thig w ity of runtime reconfiguration. Although the JHDL Papers

use OOP to realize parallel programming. Combined with _talk about dynamic object instantiation, it has never been

the thread concept, the described objects really are imdepe |mplem¢nted within the ‘].HD.L prOJect. The target. of our
dently acting instances. This leads to a powerful process de prole(?t s to fully use the |ntr|n5|_c p"?“a"e"_sm of ob!eq:uts

scription, making it possible to use the parallelism predd describe par_allel hardwgre, Wh'Ch IS mainly consisting of
by parallel architectures like modern CPUs or FPGASs. parallel running, dynamically instantiatable Hardware- Ob

Xilinx FPGAS provide the possibility to be reconfigured jects. In section 2 we take a closer look at the cprrelation
partially and dynamically. This means, that parts of the between hardware components and software objects. Sec-

hardware can be exchanged while the rest of the circuit istIon 3 focuses on the dynamic linking of objects. Section

running untouched. This provides completely new possibil- 4 goes into detail W'th th? |mplem_entat|o_n. In section 5 we
ities regarding object-oriented hardware descriptionke T present example applications and in section 6 we summarize
dynamic character of interacting objects can be implentente our work.

directly using dynamically partial reconfiguration (DPR).

Objects are translated directly into Hardware Objects tvhic 2. HARDWARE OBJECTS

in a simple case, are adders or multipliers, and in more com-

plex cases are tasks consisting of many functional units. Us Our basic concept is to find and to use similarities between
ing DPR these Hardware Objects can be loaded and removedhe objects in OOP and the programmable hardware. For in-

1. INTRODUCTION

stance, using Java we would not translate the Java code intG;pecLarATION:

Java bytecode and then translate the bytecode into VHDL,C'aniﬁ;&eriﬁxtgnds H:fdwareThread{
but we would rather translate the Java objects directly to public seta (int a) { this.a

Hardware Objects represented in VHDL. The main target ~ public setb(int b) { this.b
public get.s() { return this .s;

of this concept is to use the potential parallelism of OOP. protected void calc() { s = a + }b;}

This section demonstrates the correlation between hard- .
class Multiplier extends HardwareThread{

ware and Java objects. We decided to use Java and VHDL = private int a, b, p;
a; }

i i i _Ori i public set.a(int a) { this.a
since Java is object-oriented and supports the parallelism D ublic seth(int b) { this b = b: 1

concept and VHDL is very easy to read and to understand. public getp() { return this.p; }
Nevertheless it is not mandatory to use Java and VHDL _ Protected void calc() { p = a * b; }
— other languages like C++ and Verilog also provide the public class simpleJava{

needed functionality. We do not want to focus on the lan- P“b/'/ing;imlAVT?g’N_mai“ (String[] args){
guages but on the principle behind them. Adder Al = new Adder ();

Adder A2 = new Adder();

Multiplier M = new Multiplier ();

}
}

a;
b;

[|

X //INTERCONNECT :
Y — + Al.seta(X1);
1 Al.setb (Y1);
X P, A2.seta (X2);
A2.setb(Y2);
X + M.set.a(Al.gets ());
\(2_.. M. set.b (A2.gets ());
P1 = M.getp ();

Fig. 1. A simple dataflow
Fig. 2. Java description of the objects

2.1. Asimple dataflow
b namedsimpleJavanstantiates the two adders and the multi-

Figure 1 shows a simple data flow consisting of two adders plier. This is done in théNSTANTIATIONpart of figure 2.

and one multiplier. It is clear that these hardware compo-

nents_are running all the t.im(.a and in parallgl. To be able to 2.2, Parallel Object Language

describe the same behavior in Java, we build a class named

HardwareThreadthat inherits from theThreadclass. All The Java description shown in figure 2 can be processed in
the Java objects, representing a hardware componentitinhertwo ways. First, one can let it run in software, using a usual
from the HardwareThreaeclass. Thus they are really run- Java compiler. Second, one can translate it to VHDL, syn-
ning in parallel. The classlardwareThreadcontains one thesize it and let it run in hardware. Our target was to pro-
method running all the timecalc(). This method is empty vide an environment where both executions act identically.
and can be overwritten by a subclass with a method contain-Thus one major problem in our first example is the data
ing the functionality of the object. It represents the conti integrity and serializability. The central question is:who

uous characteristic of the hardware. TDECLARATION long does it take before all the changes at the outputs caused
part of Figure 2 shows the Java description of the adders andby the inputs have been done? In hardware this problem is
the multiplier. solved using flip-flops and clock signals. The synthesis tool

It is visible, that the inputs and outputs of the functional calculates at compile time if the distance between two sim-
units in figure 1 are represented by get and set methods adlar edges of the clock is long enough, so that no glitch is
usual in OOP. This emphasizes the similarity between hard-stored in the flip-flops. For the software execution there is
ware components and objects. Both have well defined inputno mechanism in figure 2 that ensures that the adders have
and output ports. In VHDL they are represented by in and calculated the new value (based on the inputs X1, X2, Y1
out signals of the component, in Java they are representedind Y2) before the multiplier uses their output. The same
by set and get methods. The functionality is encapsulated.problems exists for the multiplier.

In VHDL it is part of the body of the component. In Java To solve this problem we extended the clatsdware-

we implemented it in the methazhlc(). Using threads both ~ Threadwith methods and signals that ensure the integrity
are running all the time and parallel to other objects or com- and serializability of the output signals. Using the encaps
ponents. To get the functionality represented in figure 1 the lation and inheritance of Java objects, the developer doies n
Java objects have to be combined with each other. This ishave to handle these signals. Unfortunately, wherHuel-
done in theNTERCONNECTpart of figure 2. The object wareThreadclass was extended in this way, the elegance of

the descriptions shown in figure 2 was destroyed. There was Interacting objects are arranged in hierarchical groups.
only one set and one get method each using communicatiorin figure 3 the two adders and the multiplier are packaged in
objects, and the inter object communication became muchthe objectsimplePOL Every Parallel Object has to be part
more complex. For instance synchronization keywords hadof a Parallel Object VectoRarObjVeg. These vectors con-

to be implemented. For software execution this just destroy tain all objects of the same type. This is crucial to be able to
the elegance. For hardware execution it makes the hardwarehandle dynamically created objects in software and in hard-
to-software compilation much more complex, since the com- ware and will be focused in section 3. The access to the
piler has to analyze the Java synchronization keywords andParallel Objects is handled via the Parallel Object Vectors
has to translate them correctly to hardware synchronizatio The methodcalc() is running permanently and represents
methods (like flip-flops and clock signals). Due to this we the continuous characteristic of hardware components.
decided to introduce a Java precompiler called POL (Paralle Due to the strict restrictions of POL it is possible to
Object Language). POL uses nearly the same syntax as Javaranslate the POL objects directly to parallel running hard
but starting the POL precompiler for software execution re- ware components. Set methods are translated to input sig-
sults in a Java program enriched with the synchronization nals. Get methods become output signals and the function-
signals and methods. ality of the components is extracted from the methatt().

Of course POL objects can be more complex than a simple
addition or multiplication. The methodalc() can contain
many branches, loops and calculations. Several projects fo
cused the translation of sequential process descriptigas i

a hardware description language (HDL). These well known
methods of process parallelization can be used for the-trans
lation of the Java code inside oalc().

public class simplePOL extends ParObj {
ParObjVec<Adder> Adders =new ParObjVec<Adder>;
ParObjVec<Multiplier > Multipliers
= new ParObjVes<Multiplier >;

public simplePOL () {
Adders.addfew Adder());
Adders . addfew Adder());
Multipliers .add pew Multiplier ());

¥

class Adder extends ParObj {
private int a, b, s;
public seta(int a) { this.a a; }
public setb(int b) { this.b b; } i .
bublic gets() { return this .s: 3.1. Asimple example: Pong
protected void calc() { s = a + b; }

3. DYNAMIC OBJECTS

[

In the last example the Parallel Objects have been static in
the way that a POL-to-hardware compiler can analyze the
} structure of the POL program shown in figure 3 and recog-
} nize that Parallel Objects are only created in the consiruct

class Multiplier extends ParObj {
private int a, b, p;
public seta(int a) { this.a a;
public setb(int b) { this.b = b;

T o

public get.p () { return this .
protected void calc() { p = ax b; }

¥

public void calc () {
Adders<0>.seta (X1);
Adders<0>.setb (Y1);
Adders<1l>.seta (X2);
Adders<l>.setb (Y2);

Multipliers <O>.set a (Adders<O>.get.s ());
Multipliers <0>.setb (Adders<1>.get.s ());

P1 = Multipliers<0>.getp ();

In this section we want to face the dynamic instantiation of
Parallel Objects in POL. For this we use the popular game
Pong. Our Pong example consists of 2 user controllable bars
andn balls, whilen can be dynamically increased and de-
creased. Bars and balls are both represented by Parallel Ob-
jects.

The DECLARATIONpart of Figure 4 shows the imple-

¥ mentation of the Parallel Obje8all. EveryBall is part of

a Parallel Object Vector calldBalls. TheBarsare part of a

Parallel Object Vector namdsglars The command liné&for

(Bar b: Bars)” realizes the access to &hars This is the

POL method to access all objects sharing one Parallel Object
Figure 3 demonstrates the POL implementation of the Vector. Thus it is possible to generate any numbeBaifs

simple data flow. POL ensures the data integrity by itself or Barsand to communicate with them. For software exe-

but some design rules have to be considered. Every classution the POL precompiler enriches this access with some

that shall be interpreted as Parallel Object has to inhrerinf ~ synchronization commands.

ParObj. This class can contain set and get methods for the Infigure 4 we introduced the methdidish(). Itis public

attributes. No public attributes and no direct attributesss and can be called by the object itself or by an other object.

is allowed. For inter object communication the get and set It changes the behavior of the Parallel Object so that it is

methods have to be used. The POL precompiler translatesiot running any longer. Furthermore the object is being re-

the several set and get methods to one set method and onmoved from the Parallel Object Vector.

get method enriched with synchronization elements (as ad- ThelINSTANTIATIONpart of Figure 4 demonstrates the

ditional classes, methods, attributes and keywords). implementation of the methazhlc() belonging to the object

Fig. 3. Parallel Object Language

Gl UART Output (Eeami]sa) B PushBUttons inp =

// DECLARATION: Bals s [=] [1]2]3]42]8]
class Ball extends ParObj (.16, Y26
private int x, y, dirx, diry; e i L o=
public Ball (int x, int y) { 5 4
this.x = x; this.y = vy; PRV
this.dirx = 1; this.diry = 1; 28,718
} (39, Y:29
public calc() { Bars.
x = x + dirx; g
y =y + diry;
if (y<=0) diry = 1,
if (y>=MAXY) diry = —1;
for (Bar b: Bars) <] oN

if ((x == b.getx())&&(y == b.get.y()) dirx x= —1;
if (x<0) finish ();

It OOMAXX) finish () Fig. 5. Software execution of Pong

}
//INSTANTIATION:

public void calc () { ronment in Java we used the JSB (Java System Builder) [7].
String s The JSB provides thg coresof the Xilinx EDK as Java
e objects. Originally it is used to describe static embedded
if (s == "2") Bars<0>.down(); systems on system level (like the EDK does). We extended
" Ez . i; 52:22;:32\,\(,,)1;0; the JSB, so that it is able to instantiate the Hardware Sched-
if (s =="5") Balls.addfpew Ball(nX, nY)); uler and to translate the POL objects to Java or to hardware.

For software execution the POL descriptions are translated
to ordinary Java files as described before. The static JSB
components provide software simulations of their hardware
functionality. (For example the clapsishButtongrovides a
graphical interface with clickable buttons.) For hardwexe
that realizes Pong. The commafihlls.add(new Ball(nX, €cution the static JSB components provide their correspond

nY))” creates a newall object at position (nX, nY). ing MSS, MHS and MPD files representing the static part of
the design [8]. (For example the clag&Aoutprovides a

video controller. This is used to visualize the balls andsbar
on a monitor.) Furthermore the POL description is being
To be able to translate our Pong game to hardware it istranslated into.static components (Iikg the bars) and dymam
mandatory to be able to instantiate hardware components afompPonents (like the balls). The static components become
runtime. Using normal synthesis tools this is completely & Partof the static design, the dynamic components are com-
impossible, but Xilinx FPGAs like the "Virtex-4” are able Piled independently. After generating the MSS, MHS, MPD
to be reconfigured partially and dynamically. Furthermore @nd VHDL files the Xilinx tools EDK, ISE and PlanAhead
these FPGAs provide an internal configuration access port€ used to generate the static and the dynamic bitfiles. The
(ICAP) that makes it possible to control the partial recon- s_tatlc bitfile is loaded onto the FPGA. Next the dynfamlc bit-
figuration via the logic on the chip itself. Based on these files are passed to the Hardware Scheduler running on the
possibilities the basic idea is to partition the target FPGA FPGA. Now itis possible to create and to remove hardware
into a static and some dynamic areas. The dynamic areas argomponents dy_namlcally by configuring them into the dy_-
placeholders for the components that have to be instadtiate "@MiC areas. Figure 5 demonstrates the software execution
at runtime (e.g. the components representing the Ballg). Th ©f our Pong game, figure 6 shows a screen shot of the hard-
static part consists of all components belonging to static o Ware execution of our Pong game.
jects (e.g. a serial port controller) and the Hardware Sched
_uler, a program that controls the re_configu_ration proqetss. I 4. IMPLEMENTATION DETAILS
is the Hardware Scheduler that decides which dynamic com-
ponent is I(_Jaded at which time and to which dynamic area.4 1. communication
In a very simple case there are always enough areas to in-
stantiate the dynamic components. In a more complex casdn many applications programmable hardware is used to han-
there are more dynamic components than dynamic areas andle huge data streams. Examples are the data acquisition in
thus the Hardware Scheduler has to instantiate the dynamiaetector systems [9], video streaming [10] and networking
components alternately [6]. [11]. Thus the dynamic hardware generated by a POL-to-
To be able to describe the complete reconfiguration envi- hardware compiler has to be able to handle such huge data

Fig. 4. Parallel Objects vs. Pong

3.2. Dynamically Partial Reconfiguration

4.2. Limitations

The flexibility of a dynamically reconfigurable System us-
ing Hardware Obijects is limited by the used hardware. A
very important threshold is the number of FIFOs the com-
munication matrix contains. Depending on the functiogalit
of an object the compiler has to provide one, two or even
more FIFOs to one Hardware Object to maintain the paral-
lelism. For this reason, the maximum parallelism is deter-
mined by the number of parallel accessible FIFOs. In an en-
vironment withn object areas one has to implement at least
n + 2 FIFOs. One output FIFO for every Hardware Object
and two FIFOs as connection between the communication
matrix and the outer world.
If there are more active Hardware Objects than object
Fig. 6. Hardware execution of Pong areas, the Scheduler can load the Hardware Objects alterna-
tively. When Hardware Objecl sends data to the phys-
ically removed Hardware Objed® this data needs to be
stored untilB is loaded again. Thus the size of the FIFOs
streams. This negates the usage of a simple bus to let thejivided through the data rate dfdetermines the tim& can
Hardware Objects communicate with each other. Using ape removed untild is not able to store anymore data and is
bus, the Hardware Objects would be calculating in parallel plocked. Thus the maximum number of Hardware Objects
but would have to provide the result of their calculation se- running at the same time is limited by the number of object
quentially. Regarding big data streams this would negateareas and the needed data rates. The higher the data rates
the whole parallelism. To avoid this kind of bottle neck, we gare, the less reconfigurations can be performed.
developed a communication matrix that provides a parallel
inter object communication. The communication matrix is
part of the static design and is connected to the dynamic
parts via bus macros [12]. It is also connected to the static
Hardware Objects. The matrix contains a FIFO pool. Every
Hardware Object can use one or more FIFOs of this pool
to store its data. The right connection between the Hard-

ware Objects and the FIFOs is established automatically byObjects dynamically. It has already been focused in section

the POL-to-hardware compiler. For this the compiler gener- 3. The other two example applications are an audio DSP

ates a unique object number for each Hardware Object. This : . . i
number is used to address the objects. Before an object is re"-md video processing (implemented on a Virtex-5 LX50),

moved it can store its context in a FIFO. In this case, it usesdemonstratlng the behavior of a dynamic environment re-

: . .garding data streams.
its own object number as the target address. Furthermore, it . - .
can store data for other objects in the FIFO pool. For this Our audio DSP has a 32 bit input (16 bit for the left and

it uses the number of the target object as the target address:l.6 bit for the right channel) and a 32 bit output. We im-

The matrix contains a set of multiplexers that connect the plemented 4 objects representing 4 different effects: & hig

FIFOs to the right Hardware Objects depending on the tar- pass, a low pass, a distortion and an e_cho. Every object was
get addresses. Since the FIFOs can be written and read ir|]nstant|ated to activate the corresponding effect and veaho
) L : . to deactivate it. To test the limits of the communication ma-
parallel, the communication matrix keeps the parallelism. | . : :
. . . .~ trix we only provided one dynamic area. Therefore, if the
The compiler generates special object numbers repregentin : . '
the Object Vectors (e.darsin figure 4). Hardware Objects user activates all 4 objects, the Scheduler has to configure

.) : . all the 4 objects in turn. Nevertheless, our target was an un-
can use this object number to address all objects belongin . . .

. nterrupted audio stream at the output. This was possible
to one Object Vector.

since the Hardware Objects could calculate 100.000 sam-
Since in POL objects can dynamically instantiate other ples in one millisecond (due to the clock of 100MHz), but
objects, Hardware Objects have to be able to instantiags oth only 48 samples per millisecond were needed (due to the
Hardware Objects. For this the bus macros contain an in-audio quality). The Scheduler needed 0.2 ms to reconfig-
stantiation bus. Using this bus, a Hardware Object can tellure the dynamic area. Knowing this parameter the compiler
the Scheduler the object number of the new Hardware Ob-calculated that one Hardware Object only had to stay con-
ject that shall be instantiated. figured for 1 microsecond and thus the FIFO has to store at

5. APPLICATIONS

To evaluate the possibilities and the limitations of a POL-

to-hardware compiler we implemented three examples. The
first one was Pong (implemented on a Virtex-2 Pro 30), de-
monstrating the possibility to add and to remove Hardware

least 100 samples. Thus, every Hardware Object calculatedavoided, but can be directly implemented. This combina-
1 microsecond and paused 803 microseconds. The compiletion of object-orientation and DPR solves two problems at
instantiated 4 FIFOs for the 4 objects, each with a size of once. First, the dynamic character of OOP does not have to
512 Byte. If all 4 effects were activated, the resulting sys- be removed, but can be translated directly to the hardware.
tem loaded the 4 Hardware Objects alternately using DPR,Therefore, the generated Hardware Objects are very similar
but due to the FIFOs the audio stream stayed uninterruptedo their software pendants. Hence, it is no longer necessary
the whole time. The latency was 2.8 ms. to translate object-oriented programs to a sequentialgsoc

In our audio example one reconfiguration turn lasted 804 description (like Java bytecode) and then to reparalléfize
microseconds, but only 4 microseconds of a turn were usedsequential description. Second, POL provides a very etegan
for calculation. 800 microseconds were used for reconfig- way to control dynamic hardware. Today it is still very com-
uration. The reason is the very low speed of the Xilinx plex to use DPR, since the developer has to understand the
reconfiguration interface. The 4 microseconds calculation reconfiguration techniques in detail to be able to use DPR.
time sufficed, since only 48 samples per millisecond were Using POL the complete DPR techniques (like the instanti-
needed, but 100.000 samples could be processed in one milation of bus macros, the partitioning of the chip, the instan
lisecond. If the number of needed dates per second risestiation of a scheduler, the instantiation of a communicatio
the calculation time and with it the needed FIFO size rises, matrix including FIFOs) are encapsulated. The instawmimati
too. To demonstrate this, we will take a look at our third of a new Hardware Object is done with a simpkn Due to
example: video processing. We implemented a Hardwarethese new possibilities, which come with the combination of
Object realizing an edge detection and a Hardware ObjectDPR and OOP, we are convinced that it is time to reconsider
realizing a gamma correction in a video stream. Our streamthe use of OOP for hardware design.
consisted of 25 frames per second. Every frame had a width
of 352 and a height of 288 Pixels. One Pixel had the size of 7. REFERENCES
3 bytes. Thus, we needed a data rate of 7.6 MB/s. The filters
could produce data with a data rate of 25 MB/s. To be able to
load the two filters in turns without interrupting the stream
every object had to calculate about 0.3 ms. In this time it [2] A. C. S. Becka and G. Gaydadjiev, “Transparent recon-
produces 2.3 MB data. We therefore needed a minimum of figurab]e acceleration for heterogeneous embedded applica-
4 FIFOs with a size of 2.3 MB. This exceeded the limitations tions,” in Proc. DATE 2008, pp. 1208-1213.
of our FPGA. Hence it was not possible to configure the two [3] NVIDIA-Corporation, “Nvidia cuda computed device archi-

[1] D. Morris, D. Evansa, and P. Green, “Object oriented com-
puter system engineeringSpringer-Verlag1996.

Hardware Objects alternately without interrupting theedid tecture programming guide version 1.1,” Nov. 2007.
stream. This points out that a permanent reconfiguration as [4] M. Edwards and P. Green, “An object oriented design method
realized in our audio example is not always possible. Never- for reconfigurable computing systems,Rnoc. DATE 2000.

theless, in environments with huge data streams (like video [5] B. Hutchings and M. Rytting, “A cad suite for high-
processing or data acquisition) the reconfiguration can be performance fpga design,” iRield-Programmable Custom
used to exchange parts of the processing system to be able =~ Computing Machines

to react to changing requirements [10]. In this case DPR [6] N. Abel, “Schnelle dynamische partielle rekonfiguration
can help to save chip resources, since not every Hardware in hardware mit inter-task-kommunikationIniversity of
Object has to be instantiated from the beginning. Objects Leipzig June 2005.

are only instantiated when they are needed. The number of [7] J. Gebelein, “System-specification of embedded systems in

needed dynamic areas is determined by the maximum num- java for synthesis,University of LeipzigJuly 2007.
ber of Hardware Objects running in parallel and producing [g] Xilinx, “Platform specification format reference manual,”
huge data streams. www.xilinx.com2007.

[9] T.Altand V. Lindenstruth, “Fpga based pre-/coprocessors for
the alice hlt,” inProc. DPG-ConferenceéMar. 2005.

[10] C. Claus and J. Zeppenfeld, “Using partial-run-time recon-
figurable hardware to accelerate video processing in driver
assistance system,” Proc. DATE 2007.

[11] S. Saponara and E. Petri, “Fpga-based networking systems
for high data-rate and reliable in-vehicle communications,”
in Proc. DATE 2007.

[12] P. Lysaght and B. Blodget, “Enhanced architectures, design
methodologies and cad tools for dynamic reconfiguration of
xilinx fpgas,” in Proc. FPL, 2006, pp. 012-017.

6. CONCLUSION

In this paper we presented POL as one possibility to do
a parallel object description. Our POL-to-hardware com-
piler translates POL objects directly to Hardware Objects.
Thegetand thesetmethods become the inputs and the out-
puts and the content of the methodlc() determines the

functionality of the resulting Hardware Object. Since the
target hardware is partial and dynamically reconfigurable,
the dynamic instantiation of objects does not have to be

