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1 Confidence Levels for normal distribution

1.1 Measurement precision of thermometers

A company produces clinical thermometers.

a) From testing a sample of thermometers it is observed

that the results from different thermometers spread

approximately according to a normal distribution with

a sigma of 0.1 degree celsius. Estimate how many of

10000 produced thermometers will show a tempera-

ture which is

I) more than 0.3 degree wrong? (Note: can be either

too low or to high)

II) more than +0.3 degree wrong?

III) more than 0.4 degree wrong?

IV) more than +0.4 degree wrong?

b) If one demands instead that less than 5% of the ther-

mometers should be wrong by more than 0.1 degree

- then to which precision (sigma) the thermometers

should be calibrated?

Hint: Use the Confidence level curves for a gaussian

function
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Solution:

From reading the confidence level curves:

a) I) 0.3 = 3 σ; CL(3σ) = 2.7 · 10−3

→ 10000·0.0027 = 27 thermometers are expected

to be wrong like that

II) For single sided CL the number is just the half,

ergo 13.5

III) more than 0.4 degree wrong?

CL(4σ) = 6.3 · 10−5 → 0.63 thermometers

IV) more than +0.4 degree wrong?

→ 0.32 thermometers

b) 5% corresponds to 2σ, hence the σ should be

0.5 · 0.1 = 0.05 degrees.



1.2 Search for free quarks

An experiment was to look for quarks of charge 2e/3,

where e is the elementary charge. They should produce

an ionisation of 4/9I0, where I0 is the ionisation pro-

duced by a particle with the elementary charge. In an

exposure of 106 cosmic particles, one track was measured

to have 0.44I0.

→ Calculate the number of expected particles with

true charge e, which would be measured with ionisation

I ≤ 0.44 I0 due a fluctuation of the ionisation measure-

ment for the following two cases:

a) The ionisation estimates of the detector distribute as

a Gauss function with σ = 0.07 I0 for all tracks

b) 99% of tracks with σ = 0.07 I0, while the rest with

σ = 0.14 I0.

What are (your) conclusions for the possible discovery of

free quarks?

Hint: Use the Confidence level curves for a gaussian

function



Solution:

From reading the confidence level curves:

a) 0.44I0 is 8σ away from the nominal value I0 for a

standard particle with the elementary charge → the

chance for such a fluctuation or larger is

CL(8σ) = 10−15.

The expected number of such tracks in a total sample

of 1 M tracks is 10−9.

b) for the 1% of tracks with σ = 0.14I0 0.44I0 is 4σ

away corresponding to CL(4σ) = 3 · 10−5. The ex-

pected number of such tracks in a total sample of

1M tracks is thus 106 · 0.01 · 3 · 10−5 = 0.3

In case a) it seems like that a disovery was made, in case

b) the event could be very well explained by a standard

particle with fluctuating ionisation measurement.



2 Fluctuation probability for Poisson distribution

2.1 Increased leukemia close to nuclear power plants

Researchers from Mainz (Maria Blettner et al) ob-

served that in a 5 km surrounding of nuclear power plants

37 children contracted leukemia (in the years 1980 -

2003), while the statistical average in the population is

17. → Determine the probability for a statistical fluc-

tuation from 17 to ≥ 37:

a) Use the exact poisson probabilities as shown in the

figure

b) Approximate the distribution by a gaussian with µ =

17 and σ =
√

17. Use the CL curves for the gaussian

to determine the fluctuation probability.

Poisson distribution - Fluctuation probability
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Solutions:

a) Simply reading off the figure: p = 2 · 10−5

b) Deviation in number of σ: (37 − 17)/
√

17 = 4.85

→ CL = 6 · 10−7

The difference between both estimates is due to the fact

that the Poisson distribution has more tails towards larger

numbers compared to the gaussian. However, in both

cases, the fluctuation probability is very low such than

one can conclude there is a significant increase in the

cancer risk close to nuclear power plants. Further infor-

mation:

• The results are vehemently disputed by advocats and

opposers of nuclear power plants.

• The study gave also numbers for the number of all

kind of cancer illnesses: 77 in the surrounding of nu-

clear power plants and 48 in the general population.



2.2 6 aus 49 Lottery (Streichaufgabe)

The frequency of drawing certain numbers in the ger-

man “6 aus 49 Lottery” (using 2088 draws from 1961-

2000) is shown in the figure. The expectation value is

298. → Check the probability (using gaussian approxi-

mation) for the observed largest upward and the largest

downward fluctation to occur. Do you think everything

is correct with this lottery?

Lottery 6 aus 49: Single Number frequency (Y:1961-2000)
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Solutions:

• Largest upward fluct.:
n = 32 : (361 − 298)/

√
298 = +3.64σ → CL ∼ 10−4

• Largest downwards fluct.:

n = 13 : (252 − 298)/
√

298 = −2.66σ → CL ∼ 0.004

These fluctuations look significant. However, one must

not forget that we have looked deliberately for the largest

deviations. If one considers that there are 49 numbers

to choose from... such single deviations are not unlikely.

The χ2 = ∑
i=1,49

(fi−298)2

298 = 53 for the number of degrees

of freedom ndf = 48 is still reasonable (probability of

∼ 30%).



3 Limit determination for Poisson statistics

3.1 Particle production - basic limit determination

An experiment searches for the production of a new

particle. After the final selection Nobs = 2 candidate

events are observed. → Determine a 90% C.L. upper

limit on the expectation value µ of the underlying poisson

distribution.

Instructions: The 90% upper limit value is given by

the value µ for which the probability to observe Nobs or

less events p(µ,Nobs) = ∑
i≤Nobs

e−µ µi

i! = 10%. For a

selection of values µ these probabilities are shown in the

figure below. From comparing the p values at Nobs = 2

try to estimate the µ for which p(µ, 2) = 0.1.
Poisson distr. - Downward fluctuation probability
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Solution:

From the figure:

p(µ = 3, 2) = 0.4,

p(µ = 4, 2) = 0.22,

p(µ = 5, 2) = 0.12,

p(µ = 6, 2) = 0.06

→ µ ∼ 5.3

(exact solution, see e.g. PDG: µ = 5.32)



3.2 Upper Limit for Signal + small background - fre-

quentist approach

Most general the data consist of signal and background

such that µ = µsig + µbgr. Here µsig and µbgr are the

Poisson parameters for signal and background respec-

tively. Determine 90% C.L. upper limits on µsig for the

following cases with a given Nobs and known µbgr:

a) µbgr = 0, Nobs = 2

b) µbgr = 1, Nobs = 2

c) µbgr = 3, Nobs = 0

Hint: Again the relevant formula to be used is

p(µ, Nobs) = ∑
i≤Nobs

e−µ µi

i! = 10%.

to find a value for µ and then replacing µ = µsig + µbgr.

Note: p(µ,Nobs = 0) = e−µ.



Solution:

a) µbgr = 0, Nobs = 2:

See previous exercise, µsig = 5.3

b) µbgr = 1, Nobs = 2:

µsig = 5.3 − µbgr = 4.3

c) µbgr = 3, Nobs = 0: p = e−(µsig+3) = 0.1

→ µsig ought to be smaller than zero → µsig = 0.



3.3 Upper Limit for signal + small background - Mod-

ified frequentist approach

Determine (again) for the case µbgr = 3, Nobs = 0 a

90% upper limit using the modified frequentist approach:

CLs = CL(S + B)/CL(B) = 0.1

Note: CL(S + B) and CL(B) are defined as

Hypothesis CL

Background only
CL(B) = p(µbgr, Nobs)

=
∑

i≤Nobs
e−µbgr

µi
bgr

i!

Signal + Background
CL(S + B) = p(µsig + µbgr, Nobs)

=
∑

i≤Nobs
e−(µsig+µbgr) (µsig+µbgr)

i

i!



Solution:

CLs = CL(S + B)/CL(B) = e−(µsig+µbgr)/e−µbgr =

e−µsig = 0.1 → µsig = −ln(0.1) = 2.3

... as if there were no background!

(Reference: A.L. Read, (Oslo) CERN-OPEN-2000-205,

Aug 2000.)



3.4 Upper Limit for particle negative yield measure-

ment with gaussian errors - frequentist and Bayesian

solution

An experiment “observes” after background subtrac-

tion a yield of N = −2 ± 1 particles. → Determine an

90% upper limit µlim for the expectation value of events

using

a) Frequentist approach: taking the results at face value

Instruction: determine the 90% upper limit as usually

for a measurement with gaussian error, i.e. from

CL =
∞∫

µlim

dx′ 1√
2π

e
−(x′+2)2

2 = 10%

Hint: The solution for µlim can be read off from the

CL curves for a gaussian

b) Bayesian approach: the particle yields must be posi-

tive!

Instruction: The limit µlim can be determined from

CL =

∞∫
µlim

dx′ 1√
2π

e
−(x′+2)2

2

∞∫

0
dx′ 1√

2π
e
−(x′+2)2

2

= 10%

Hint: Both integrals can be looked up from the CL

curves for a gaussian! For illustration see also the

figures below
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Solution:

a) Frequentist: from the CL curve:

CL = 0.1 ↔ 1.28σ

→ µlim = −2 + 1.28 = −0.72

b) Bayesian:

Renormalised total integral in physical area:
∞∫
0.

dx′ 1√
2π

e
−(x′+2)2

2 = CL(2) = 0.028

Integral above limit:

→ ∞∫
µlim

dx′ 1√
2π

e
−(x′+2)2

2 = 0.1 · 0.028 = 0.0028

CL = 0.0028 ↔ 2.75σ

→ µlim = −2 + 2.75 = 0.75



4 Signal discovery?

4.1 Ωc peak at ARGUS

The ARGUS e+e− experiment reported 1992 the ob-

servation of the charmed and doubly strange baryon Ωc

through its decay channel Ξ−K−π+π+ (published in PL

B288 367). The obtained mass spectrum is shown in the

figure.

ARGUS ΩC signal peak
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→ Try to make your own assessment of the signal and

its significance:

a) Fluctuation probability: Under the assumption there

is only background with constant density:

1. Estimate the average number of background events

per mass bin (Note: the histogram contains 50

bins; the bin width is 12 MeV)

2. Define a ±2σ mass window around the peak (Note:

the resolution is ∼ 12 MeV, i.e. approximately the

bin width)

3. Count the total number of candidates Ncand,sig in

the ±2σ region

4. Estimate the number of expected background events

µbgr in this region

5. Estimate the probability for the poisson distribu-

tion to fluctuate from µbgr to Ncand,sig or larger

values (Probabilities for selected values µ are shown

in the figure below)



b) Signal significance: Under signal + background hy-

pothesis: Try to estimate the signal and its signifi-

cance

1. Estimate the number of background events per

bin from the entries in the sidebands of the peak

2. Estimate the number of background events µbgr

in the ±2σ region around the peak

3. Obtain the number Nsig = Ncand,sig − µbgr, esti-

mate an error σNsig
and determine the signal sig-

nificance Nsig/σNsig
.



Poisson distribution - Fluctuation probability
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Solutions:

a) Fluctuation probability:

1. #bgr/bin = 43/50 = 0.86

2. ±2σ mass window: 2.7-2.748 GeV

3. Ncand,sig = 12

4. 4 · 0.86 = 3.44

5. Fluctuation probability: something between 10−4

and 10−3. exact value = 2 · 10−4... Looks like a

discovery!

b) 1. Sidebands: (43 − 12)/46 = 0.67 candidates/bin

2. 4 · 0.67 = 2.7

3. Nsig = 12 − 2.7 = 9.3; σNsig
≈ √

Ncand,sig =√
12 = 3.46

⇒ Nsig/σNsig
= 9.3/3.46 = 2.7

Further information: The ωc is supposed to be the css

baryon ground state (see figure). It is still not known

very well (PDG2006), its mass has been determined by

CLEO2 to be (2.6946 ± 2.6 ± 1.9) GeV.
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5 Combination and compatibility of two measure-

ments

5.1 Direct CP violation ε′

The direct CP violation parameter Re
(

ε′
ε

)
was measured by two

different experiments to be (rounded numbers!)

Re


ε′

ε


 = (7 ± 6) × 10−4 (E731)

Re


ε′

ε


 = (23 ± 6) × 10−4 (NA31)

a) Determine from the two single measurements a combined result

and error.

Hint: Weighted average â of two measurements ai:

â = 1
g1+g2

· (g1a1 + g2a2) with gi = 1/σ2
i ; σâ = (g1 + g2)

−0.5

b) Determine and compare the significances (= value/error) for the

observation of direct CP violation for the single measurements

and the combined one. Is there enough evidence to claim that

direct CP violation was observed?



c) Estimate the compatibility of the two measurements from

χ2 =
∑

i=1,2

(ai − â)2

σ2
i

Express the compatibility from the probability to observe such

a χ2 or a larger one.

Hints: In the case of averaging two measurements the number

of degrees of freedom for the χ2 is n = 1. The requested

probability can be looked up from the probability curves vs χ2

(for different n) in figure 2.
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Solutions:

a) â = 1
1/62+1/62 · (1/62 · 7 + 1/62 · 23) = 15

σâ = (1/62 + 1/62)−0.5 = 4.2

b) Significances:

E731: 7/6 = 1.2

NA31: 23/6 = 3.8

Combined: 15/4.2 = 3.6

For NA31 alone there is 3.8 σ evidence for direct CP violation,

for the combined measurement ’only’ 3.6 σ.

c) χ2 = (7− 15)2/62 + (23− 15)2/62 = 3.55 From the probability

curves vs χ2 for n = 1:

Probability = 0.05

Extra Information:

• Using the solution for â it can be easily shown that χ2 =
(a1−a2)

2

σ2
1+σ2

2
. It is evident that this should follow a gaussian dis-

tribution with width 1.

• The current status of the Re
(

ε′
ε

)
measurements is shown in

figure 3. (The figure containts also the exact numbers of the

NA31 and E731 measurements).
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Figure 3: Re
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results compilation in 2008



6 Streichaufgabe: Max. Likelihood analytically

6.1 Radioactive Decay

The probability density for radioactive decay of a certain sub-

stance is given by

p(t, λ) = λe−λt

λ can be determined from a set of observed decay times, using the

maximum likelihood method: Determine an estimate for λ for the

case of

a) one single decay at time ti by calculating

– ω = lnL = ln p(λ, ti)

– dω/dλ

– find the solution for λ from dω/dλ = 0

b) generalise to N decays. The Likelihoodfunction is now given by

L = ΠN
i=1λe−λti

Determine for both cases a) and b) an estimate for the error of

λ from

σλ̂ =
(
−d2ln(L)/dλ2

)−1/2

(parabola approximation of lnL around the maximum)



Using instead χ2 formulation:

Figure 5 shows the χ2 = −2(ln(L)−ln(Lmax)) function for different

number of radioactive decays. (coincidentally with minimas exactly

at λ = 1). Determine graphically the ± errors of the estimated λ

from the values of λ for which χ2 = χ2
min + 1 using the exact χ2

curves and compare to using the parobala approximated curves.



Figure 4: Likelihood function for single radioactive decay at time t = 1.

Figure 5: χ2 = −2(ln(L) − ln(Lmax)) function for different number of radioactive decays

(coincidentally with minimas exactly at λ = 1).



Solutions:

a) – ω = lnL = ln p(λ, ti) = ln λ − λti

– dω/dλ = 1
λ
− ti

– dω/dλ = 0 ↔ λ = 1
ti

b) – ω = lnL =
∑

i=1,N ln(Li) =
∑

i=1,N ln λ−λti = Nln(λ)−
λT with T =

∑
ti

– dω/dλ = N
λ − T

– dω/dλ = 0 ↔ λ = N
T

Error estimate σλ̂ =
(−d2ω/dλ2

)−1/2
:

a) d2ω
dλ2 = d

dλ
(1
λ
− ti) = − 1

λ2 ⇒ σλ̂ = λ = 1/ti

b) d2ω
dλ2 = d

dλ(N
λ − T ) = −N

λ2 ⇒ σλ̂ = λ√
N

=
√

N
T

Compare the ± errors graphically (see figure 5):

decays χ2 + 1 left χ2 + 1 right parabola

1 0.6 1.4 1.

10 0.29 0.35 0.3

100 0.1 0.1 0.1


