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6.1 Radioactive Decay



1 Confidence Levels for normal distribution

1.1 Measurement precision of thermometers

A company produces clinical thermometers.

a) From testing a sample of thermometers it is observed
that the results from different thermometers spread
approximately according to a normal distribution with
a sigma of 0.1 degree celsius. Estimate how many of
10000 produced thermometers will show a tempera-
ture which is

1) more than 0.3 degree wrong? (Note: can be either
too low or to high)
I1) more than +0.3 degree wrong?
l1l) more than 0.4 degree wrong?
IV) more than +0.4 degree wrong?
b) If one demands instead that less than 5% of the ther-

mometers should be wrong by more than 0.1 degree

- then to which precision (sigma) the thermometers
should be calibrated?

Hint: Use the Confidence level curves for a gaussian

function
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Solution:

From reading the confidence level curves:

a) N0.3=30; CL(30)=27-10"°
— 10000-0.0027 = 27 thermometers are expected
to be wrong like that

I1) For single sided C'L the number is just the half,
ergo 13.5

l1l) more than 0.4 degree wrong?
CL(40) = 6.3 - 107> — 0.63 thermometers

IV) more than +0.4 degree wrong?
— 0.32 thermometers

b) 5% corresponds to 20, hence the ¢ should be
0.5-0.1 = 0.05 degrees.



1.2 Search for free quarks

An experiment was to look for quarks of charge 2¢/3,
where ¢ is the elementary charge. They should produce
an ionisation of 4/91;, where [ is the ionisation pro-
duced by a particle with the elementary charge. In an
exposure of 10° cosmic particles, one track was measured
to have 0.441,.

— Calculate the number of expected particles with
true charge e, which would be measured with ionisation
I <0.44 Iy due a fluctuation of the ionisation measure-
ment for the following two cases:

a) The ionisation estimates of the detector distribute as
a Gauss function with o = 0.07 I for all tracks

b) 99% of tracks with o = 0.07 [, while the rest with
o=0.14 ]Q.

What are (your) conclusions for the possible discovery of
free quarks?

Hint: Use the Confidence level curves for a gaussian

function



Solution:

From reading the confidence level curves:

a) 0.441; is 8¢ away from the nominal value [ for a
standard particle with the elementary charge — the
chance for such a fluctuation or larger is

CL(8c) = 107",

The expected number of such tracks in a total sample
of 1 M tracks is 107

b) for the 1% of tracks with o = 0.141; 0.441; is 4o
away corresponding to C'L(40) = 3-107°. The ex-
pected number of such tracks in a total sample of

1M tracks is thus 10°-0.01-3-107° = 0.3

In case a) it seems like that a disovery was made, in case
b) the event could be very well explained by a standard
particle with fluctuating ionisation measurement.



2 Fluctuation probability for Poisson distribution

2.1 Increased leukemia close to nuclear power plants

Researchers from Mainz (Maria Blettner et al) ob-
served that in a 5 km surrounding of nuclear power plants
37 children contracted leukemia (in the years 1980 -
2003), while the statistical average in the population is
17. — Determine the probability for a statistical fluc-
tuation from 17 to > 37:

a) Use the exact poisson probabilities as shown in the
figure

b) Approximate the distribution by a gaussian with p =
17 and 0 = v/17. Use the CL curves for the gaussian
to determine the fluctuation probability.

Poisson distribution - Fluctuation probability
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Solutions:
a) Simply reading off the figure: p =2-107°

b) Deviation in number of o: (37 — 17)/V/17 = 4.85
— CL=6-107"

The difference between both estimates is due to the fact
that the Poisson distribution has more tails towards larger
numbers compared to the gaussian. However, in both
cases, the fluctuation probability is very low such than
one can conclude there is a significant increase in the
cancer risk close to nuclear power plants. Further infor-
mation:

e The results are vehemently disputed by advocats and
opposers of nuclear power plants.

e The study gave also numbers for the number of all
kind of cancer illnesses: 77 in the surrounding of nu-
clear power plants and 48 in the general population.



2.2 6 aus 49 Lottery (Streichaufgabe)

The frequency of drawing certain numbers in the ger-
man “6 aus 49 Lottery” (using 2088 draws from 1961-
2000) is shown in the figure. The expectation value is
298. — Check the probability (using gaussian approxi-
mation) for the observed largest upward and the largest
downward fluctation to occur. Do you think everything
is correct with this lottery?

Lottery 6 aus 49: Single Number frequency (Y :1961-2000)
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Solutions:

e Largest upward fluct.:
n=32: (361 — 298)/v/298 = +3.640 — CL ~ 10~

e Largest downwards fluct.:
n=13: (252 — 298)/1/298 = —2.660 — CL ~ 0.004

These fluctuations look significant. However, one must
not forget that we have looked deliberately for the largest
deviations. If one considers that there are 49 numbers

to choose from... such single deviations are not unlikely.

L 2
The x* = %149 Ui 298)° 2338)

of freedom ndf = 48 is still reasonable (probability of
~ 30%).

= 53 for the number of degrees



3 Limat aetermination for Foisson statistics

3.1 Particle production - basic limit determination

An experiment searches for the production of a new
particle. After the final selection N, = 2 candidate
events are observed. — Determine a 90% C.L. upper
limit on the expectation value 1 of the underlying poisson
distribution.

Instructions: The 90% upper limit value is given by
the value p for which the probability to observe N, or

less events | p(pt, Nops) = Si<n,,, e "L = 10%.| For a
selection of values 11 these probabilities are shown in the

figure below. From comparing the p values at N s = 2
try to estimate the p for which p(u,2) = 0.1.

Poisson distr. - Downward fluctuation probability




Solution:

From the figure:

plp=3,2) =04,

plp =4,2) =0.22,
p(p=5,2) =0.12,
p(p=6,2) =0.06
— 4~ 5.3

(exact solution, see e.g. PDG: = 5.32)



3.2 Upper Limit for Signal + small background - fre-
quentist approach

Most general the data consist of signal and background
such that p = gy + pogr. Here pig, and piy are the
Poisson parameters for signal and background respec-
tively. Determine 90% C.L. upper limits on (i, for the
following cases with a given Ny,; and known fi,:

a) Hogr — 0, Nobs = 2
b) Hogr = L, Nobs = 2
C) Hogr = 3, Nobs =0

Hint: Again the relevant formula to be used is

p(ﬂa Nobs) = 2Li<N e G_M'l;—; = 10%.

to find a value for 1 and then replacing 1t = f4ig + fipgr-
Note: p(u, Nops = 0) = e,



Solution:

a) Mbgr — 0, Nobs = 2

See previous exercise, [igi; = 0.3
b) Hbgr = L, Nops = 2:

Msig = 5.3 — Mbgr — 4.3

c) Hngr = 3, Nops = 0: p = e~ i) = (.1
— [Lsig ought to be smaller than zero — f15, = 0.



3.3 Upper Limit for signal + small background - Mod-
ified frequentist approach

Determine (again) for the case iy, = 3, Nops = 0 a
90% upper limit using the modified frequentist approach:
CL;,=CL(S+ B)/CL(B)=0.1

Note: C'L(S + B) and C'L(B) are defined as

Hypothesis CL

CL(B) - p(ﬂbgra Nobs)

i Hbgr
- ZZ.SNobse Hegr 7!

Background only

CL S+B):p Hsi —|—,ub7“7Nobs
Signal + Background ( (g e )
_(Msig+ub97’) (Msig"i"'ﬂbgr)l

- ZZ.SNobs € 1




Solution:

CL, = CL(S+ B)/CL(B) = e~ Wsigttugr) /e~ Hgr —
e i = 0.1 — gy = —In(0.1) = 2.3

... as if there were no background!

(Reference: A.L. Read, (Oslo) CERN-OPEN-2000-205,
Aug 2000.)



3.4 Upper Limit for particle negative yield measure-
ment with gaussian errors - frequentist and Bayesian
solution

An experiment “observes” after background subtrac-
tion a yield of N = —2 4 1 particles. — Determine an
90% upper limit f1;,, for the expectation value of events
using
a) Frequentist approach: taking the results at face value

Instruction: determine the 90% upper limit as usually
for a measurement with gaussian error, i.e. from

1 _(x/ 2)2
e 2 = 10%

CL = i dz’
le/m V 27T

Hint: The solution for 1;,, can be read off from the
C'L curves for a gaussian

b) Bayesian approach: the particle yields must be posi-
tive!

Instruction: The limit 4;,, can be determined from

o0 1 —(2/42)2
| da’ e

CL = Hlim V 21 —— 10%
7@ dx’ : e

0 V2T
Hint: Both integrals can be looked up from the C'L

curves for a gaussian! For illustration see also the
figures below
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Figure 1: Gaussian with mean value —2 and width 1; the coloured areas show the integrals
needed for the bayesian CL determination.



Solution:

a) Frequentist: from the CL curve:
CL=0.1+ 1280
— Upim = —2+ 1.28 = —0.72

b) Bayesian:
Renormalised total integral in physical area:
00 —(2/+2)?
I da’ e =CL(2) =0.028
Integral above limit:
S dr e 2 00-0.028 = 00028
Lodrt e =0.1-0.028 = 0.

CL = 0.0028 < 2.750
— i = —2 + 2.75 = 0.75



4 Signal discovery?

4.1 (). peak at ARGUS

The ARGUS eTe™ experiment reported 1992 the ob-

servation of the charmed and doubly strange baryon (2.
through its decay channel == K77 (published in PL
B288 367). The obtained mass spectrum is shown in the
figure.

ARGUS Q.. signal peak
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— Try to make your own assessment of the signal and

its significance:

a) Fluctuation probability: Under the assumption there

is only background with constant density:

1.

Estimate the average number of background events
per mass bin (Note: the histogram contains 50

bins; the bin width is 12 MeV)

. Define a £20 mass window around the peak (Note:

the resolution is ~ 12 MeV, i.e. approximately the
bin width)

. Count the total number of candidates N 4,4 ig In

the =20 region

Estimate the number of expected background events

[y In this region

. Estimate the probability for the poisson distribu-

tion to fluctuate from pyg to Negndsig or larger
values (Probabilities for selected values p are shown
in the figure below)



b) Signal significance: Under signal + background hy-
pothesis: Try to estimate the signal and its signifi-
cance

1. Estimate the number of background events per
bin from the entries in the sidebands of the peak

2. Estimate the number of background events (4,
in the £20 region around the peak

3. Obtain the number Ny, = Neand sig — Hogr, €Sti-
mate an error oy, and determine the signal sig-
nificance st‘g/Ust-g-



Poisson distribution - Fluctuation probability
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Solutions:
a) Fluctuation probability:
1. #bgr/bin = 43 /50 = 0.86
2. £20 mass window: 2.7-2.748 GeV
3. Neand.sig = 12
4.4.0.86 =3.44
5

. Fluctuation probability: something between 10~
and 1073, exact value = 2 - 107*... Looks like a

discovery!

b) 1. Sidebands: (43 — 12)/46 = 0.67 candidates/bin
2.4-0.67=2.7

3. Nsig = 12 =27 =93; on,, = Neandsig =
V12 = 3.46
= Nyig/on,, =9.3/3.46 = 2.7

Further information: The w, is supposed to be the css
baryon ground state (see figure). It is still not known
very well (PDG2006), its mass has been determined by
CLEO? to be (2.6946 & 2.6 + 1.9) GeV.






5 Combination and compatibility of two measure-
ments

5.1 Direct CP violation ¢

The direct CP violation parameter Re (%/) was measured by two

different experiments to be (rounded numbers!)

€

Re (6/) — (7+6) x 107* (E731)

Re (6/) — (234 6) x 10* (NA31)

€

a) Determine from the two single measurements a combined result
and error.

Hint: Weighted average a of two measurements a;:

L. (g1a1 + goa9) with g; = 1/%23 oa = (g1 + 92)_0'5

b) Determine and compare the significances (= value/error) for the
observation of direct CP violation for the single measurements
and the combined one. Is there enough evidence to claim that

direct CP violation was observed?



c) Estimate the compatibility of the two measurements from

A2
a; — a
X2 — Z ( ? > )
i=1,2 g;
Express the compatibility from the probability to observe such

a x or a larger one.

Hints: In the case of averaging two measurements the number
of degrees of freedom for the x? is n = 1. The requested
probability can be looked up from the probability curves vs y?
(for different n) in figure 2.
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Figure 2: Probabilities to observe a x? equal or larger than the given one for different
degrees of freedom n (from the PDG).



Solutions:

a)d:m-(1/62-7+1/62-23):15

oq = (1/6°+1/6%)7"" = 4.2

b) Significances:
E731: 7/6 =1.2
NA31: 23/6 = 3.8
Combined: 15/4.2 = 3.6
For NA31 alone there is 3.8 o evidence for direct CP violation,

for the combined measurement ‘only’ 3.6 0.

c) x> = (7—15)?/6°+ (23 — 15)*/6* = 3.55 From the probability
curves vs 2 for n = 1:
Probability = 0.05

Extra Information:

e Using the solution for @ it can be easily shown that y* =
)2 L : : :
%. It is evident that this should follow a gaussian dis-
1 2
tribution with width 1.
e The current status of the Re <%) measurements is shown in
figure 3. (The figure containts also the exact numbers of the

NA31 and E731 measurements).
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Figure 3: Re (%) results compilation in 2008




6 Streichaufgabe: Max. Likelihood analytically

6.1 Radioactive Decay

The probability density for radioactive decay of a certain sub-

stance is given by

p(t,\) = e ™

A can be determined from a set of observed decay times, using the
maximum likelihood method: Determine an estimate for )\ for the
case of

a) one single decay at time t; by calculating
—w=InL=Inp\t)
— dw/d\
— find the solution for A from dw/d\ =0

b) generalise to N decays. The Likelihoodfunction is now given by

L =T Ae

Determine for both cases a) and b) an estimate for the error of

A from
oy = (~n(L))dx?) "

(parabola approximation of InL around the maximum)



Using instead y? formulation:

Figure 5 shows the x? = —2(In(L)—In(L,,.)) function for different
number of radioactive decays. (coincidentally with minimas exactly
at A = 1). Determine graphically the + errors of the estimated A
from the values of A for which x? = x?. + 1 using the exact x’

curves and compare to using the parobala approximated curves.



0.35
0.3
0.25
0.2
0.15
0.1

0.05

0 E\ [ ‘ L1 ‘ L1 ‘ | ‘ L1 ‘ L ‘ L1 ‘ L1 ‘ | ‘ L1
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
A

0.5 1 1.5 2 25 3 3.5 4 4.5 5
A

Figure 4: Likelihood function for single radioactive decay at time ¢ = 1.

<5 Cl
5 £35
C <
Tt T3
- -
£ 3 725
N o™~
I I 2 £
2 15
e
1 =
0.5 [ N
O O :\ ‘ L1 ‘ LT
12 3 4 5 0.6 0.8
A A
P =~ F
= L < e S S S
E gl
T 4 3.5 | |
| ) |3
N 3
S Z25
g " g
I L I 2
2 -
¥ 1.5
1B !
i 0.5 [ A e v
O C O | ‘ | | ‘ N
0.8 098 099 1 1.01 1.02
A A
Figure 5: x* = —2(In(L) — In(Lya.)) function for different number of radioactive decays

(coincidentally with minimas exactly at A = 1).



Solutions:

a) —w=InL=Inp\t;)=In\— )\
—dw/d\ =5 — 1,
—dw/dA:OHA:%

b) —w=InL=xi1nyIn(L;) =21 nInA—A; = Nin(\) —

AT with T = © ¢,

—dw/d\ =Y T
—dw/dA =0 A =2

Error estimate o = (—de/d)\Q)_l/Q:

2

d>w _ d (N N )2 _ N
b) e = (T =—n=0=/5=7

Compare the =+ errors graphically (see figure 5):

decays | x% + 1 left | x> + 1 right | parabola
1 0.6 1.4 1.

10 0.29 0.35 0.3

100 0.1 0.1 0.1




