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Here some thoughts on adding a step up transformer to MMC designs are summarized.
These are driven by the fact that most MMCs with low inductance meanders suffer from
the fact that their noise level is dominated by the SQUIDs used rather than by the more
fundamental noise due to thermodynamic fluctuations. A step up transformer might
help to improve this situation by enhancing the flux coupling form the meander to the
SQUID.

This text should be understod as describing the evolution of the thoughts NOT just
giving a final picture but rather the stream of ideas that lead to it.
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Figure 1: Schematic of MMC with superconducting trafo.

Considering the scheme of the meander with inductance LM connected to a SQUID with
inductance Ls and input inductance of Li via a superconducting flux transformer with
inductances LA and LB, as depicted in Figure 1, the following three equations should
hold:

δΦM − δI1(LM + LA) + δI2MAB = 0 (1)
δI1MAB + δI2(LB + Li) = 0 (2)

δΦs = δI2Mis (3)

rearranging equation 2 gives

δI1 =
LB + Li

MAB
δI2. (4)
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Putting this into (1) and using the mutual inductances MAB =
√

LALB and Mis =
√

LiLs

this leads to the following expression relating the flux change in the meander to the flux
change in the SQUID

δΦs

δΦM
=

√
LiLs

(LM+LA)(LB+Li)√
LALB

−
√

LALB

(5)

In Figure 2 a plot of the ”flux-coupling-coefficient” δΦs/δΦM for varying inductances LA

and LB is shown for a given meander inductance LM = 1nH and a given SQUID input
inductance Li = 1.8nH representing the ”small” PTB SQUID.
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Figure 2: Coupling δΦs/δΦM of the flux in the meander to flux in the SQUID as a
function of the two transformer inductances. Here the meander inductance is fixed to
LM = 1nH and the SQUID’s input inductance is Ls = 1.8nH.

This shows that the coupling is getter better the bigger the inductances LA and LB are,
but why? To understand this, let’s have a look if there is any obvious dependence of one
of those inductances on the overall coupling, when we keep the other one fixed (also with
the meander inductance fixed to one value).

Figure 3 shows the dependance of the coupling-coefficient on the primary transformer
inductance LA for a given secondary transformer inductance that is matched to the
SQUID input inductance, i.e. LB = Li, and a given meander inductance. Furthermore,
it shows the same for LA = 2LM and varying LB.
So it seems there is a maximum for a certain ratio of LA compared to LM with fixed LB

and the same is true for a ratio of LB compared to Li with fixed LA, let’s have a closer
look to that by expressing the inductance of the primary side of the transformer in units
of the meander inductance LA = aLM and setting the secondary side of the transformer
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Figure 3: Coupling to the SQUID with varying LA in units of LM with fixed LB = Li

(black) and with varying LB in units of Li with fixed LA = 2LM (red). In both cases
LM = 1nH.

equal to the input coil inductance of the SQUID, the flux-coupling-coefficient can be
written as follows:

δΦs

δΦM
=

√
a

(a + 2)

√
Ls

LM
, (6)

this shows a maximum for a = 2, leading to:

δΦs

δΦM
= 2−

3
2

√
Ls

LM
. (7)

So some systematics can be found, but taking this idea to the next step the flux-
coupling-coefficient can even be parameterized further. Introducing not only LA = aLM

but also LB = bLi the expression is even more general:

δΦs

δΦM
=

√
a · b

(a + b + 1)

√
Ls

LM
, (8)

The flux-coupling-coefficient is shown in Figure 4 for several scenarios (described in
the caption) showing the same overall behaviour that can also be seen in Formula (8):

• The coupling will get better with smaller meander inductance. This might need to
get fixed by including some stray inductance Lstray, e.g. by adding some amount
to LM, this will shift the curve a bit (also displayed with Lstray = 100 pH).

• The larger a and b, the better the coupling.

• It can be shown that for given a best coupling will be reached for a = b
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Figure 4: Comparing flux-coupling-coefficient for different conditions. 1.: a = b = 10;
2.: a 6= b with a = 4, b = 2; 3.: a = b = 4 and 4.: a = b = 4 plus some Lstray = 0.1 nH

Especially the fact that the coupling coefficient can be improved infinitely with large
a and b calls for another improvement of the model. So far the transformer was assumed
to be perfect and an actual efficiency of the transformer was neglected. Up to now the
theoretical mutual inductance of MAB =

√
LALB was used, a correction factor k will be

needed to improve this model
MAB = k

√
LALB.

Simulations show that this factor is expected to be between 0.85 < k ≤ 1. This factor
depends on some constraints of the actual microstructures used in the fabrication, e.g.
linewidth of the structures, the thickness of insulation layers etc. . .

In the following I will try to introduce this factor k in the flux-coupling-coefficient for
further analysis of it

δΦs

δΦM
=

Mis

(LM+aLM)(bLi+Li)

k
√

ab
√

LMLi
− k

√
ab
√

LMLi

(9)

= k
√

ab

√
Ls

LM

1
a + b + (1− k2)ab + 1

(10)

Looking for a maximum for this expression with respect to a and b will help building a
transformer that is well matched to the entire MMC setup. This maximum will certainly
depend on the quality of transformer one can build, namely on the factor k. As was
shown above for a perfect transformer, a should equal b and the larger the two the better
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the overall flux coupling from the meander to the SQUID. This will change now. Setting
the derivatives of (10) with respect to a and b to zero yields to

a =
1 + b

1 + (1− k2)b
(11)

and
b =

1 + a

1 + (1− k2)a
, (12)

respectively. This shows that for best coupling a should still equal b, but that the
maximum will now strongly depend on the efficiency k of the transformer (illustrated in
Figure 5.
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Figure 5: Dependence of the a and b on the transformer efficiency k.

Example: Considering a transformer with MAB = k
√

LALB with a k of 0.95, the best
flux coupling will be achieved for

a = b =

√
1

1− 0.952
= 3.2. (13)

i.e. the primary side of the transformer should have 3.2 times the inductance of the
meander, whereas the secondary side of the transformer should have an inductance that
is 3.2 times the inductance of the input coil of the SQUID. In the case of transformer
efficiency of k = 0.85 the best coupling will be reached for a = b = 1.9.

In Figure 6 a comparison of the flux-coupling-coefficient for varying meander induc-
tance in the following different scenarios is shown:

• Setup of direct coupling to the SQUID of a gradiometric design (with Lstray=0.8 nH)

• Setup of direct coupling to the SQUID (with three different stray inductances as-
sumed (Lstray=0.3 nH and Lstray=0.8 nH and Lstray=1.2 nH)
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• Setup with a perfect transformer

• Setup with a transformer with efficiency MAB = k
√

LALB with k = 0.98 and
matched inductances with a = b = 5.0

• Setup with a transformer with efficiency MAB = k
√

LALB with k = 0.95 and
matched inductances with a = b = 3.2

• Setup with a transformer with efficiency MAB = k
√

LALB with k = 0.85 and
matched inductances with a = b = 1.9

This helps to compare with setups currently used and gives an idea for what size of
meanders the described step up transformers will improve the flux coupling and thus the
achievable energy resolution.
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Figure 6: Comparing the coupling to the SQUID of a setup with and without a trans-
former for several cases described in detail within the text.

Note: In the case without a transformer the following coupling expressions were used:

δΦs

δΦM
=

Mis

LM + 2(Li + Lstray)
(14)

δΦs

δΦM
=

Mis

LM + Li + Lstray
(15)

for the cases of a two pixel gradiometric and single pixel design, respectively.
Some further notes on transformers...
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Without taking into account stray inductances, the flux-coupling can be written as

Φs

ΦM
=

MisMAB

(LM + LA)(LB + Li)−MAB
2 (16)

as seen above.
Taking into account a stray-inductances LS,m between the meander and the primary

side of the transformer and a stray-inductance LS,t between the secondary side of the
transformer and the input coil of the SQUID the coupling can be written as:

Φs

ΦM
=

MisMAB

(LM + LS,m + LA)(LB + LS,t + Li)−MAB
2 (17)

Introducing a finite coupling and the rewriting the transformers coil inductances as
multiples of the meander inductance and the input coil inductance of the SQUID:

Φs

ΦM
=

k ·
√

ab ·Mis

[(1− k2)ab + a + b + 1]
√

LMLi + (a + 1)
√

LM
Li

LS,t + (b + 1)
√

Li
LM

LS,m + LS,mLS,t√
LMLi

(18)
Setting all stray-inductances to zero, as well as setting k = 1 leads to the formula as

seen before:

Φs

ΦM
=

√
ab ·Mis

[a + b + 1]
√

LMLi
(19)

For k 6= 1 we can now analytically maximize equation 18 and for the optimal ratio a/b
we obtain:

a

b
=

√
LMLi +

√
Li
LM

· LS,m

√
LMLi +

√
LM
Li

· LS,t

(20)

The coupling is then maximal for

a =

√√√√√(LM + LS,m)(
√

LMLi +
√

Li
LM

LS,m +
√

LM
Li

LS,t + LS,tLS,m√
LMLi

)

(1− k2)LM

(√
LMLi +

√
LM
Li

LS,t

) (21)

Although it does not look nice it seems to be ok . . . as it agrees with the results seen
before in the the limit of no stray inductances and perfect coupling.
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Figure 7: Illustrating the dependance of the flux coupling of a given meander, given
SQUID and given strays on the ratios a and b.
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Figure 8: Illustrating the dependance of the flux coupling of a given meander, given
SQUID and given transformer inductances on the occurring stray inductances.
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Figure 9: Illustrating the dependance of the flux coupling of a given meander, given
SQUID and given primary side of transformer inductances on possible secondary trans-
former side.
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