
Unifying the Build Flow of the PyNN
Modules for the FACETS Hardware Systems

Sebastian Jeltsch

November 30, 2010

Contents

1. An Introduction to the Automated Build Flow of the symap2ic Project 3
1.1. Project Structure . 3
1.2. Build Flow Concepts . 4
1.3. Building the PyNN Modules – a Step by Step Walk Through 4

2. Build Flow Unification and Integration 7
2.1. Multi-Chip Software Integration . 7
2.2. Unified Build Flow . 7

3. MongoDB 8
3.1. The MongoDB-Setup for Calibration Data 8

3.1.1. Short PyMongo Introduction . 9
3.2. Horizontal Database Scaling . 12

A. Sample Script for Horizontal mongoDB Scaling 14

2

1. An Introduction to the Automated Build
Flow of the symap2ic Project

This chapter offers a starting point for new users and developers of the symap2ic software
framework to get an overview of the basic project structure. Furthermore, a step-by-step
tutorial is provided to build the software that is necessary to work with the FACETS
hardware systems [Schemmel et al., 2010, 2008; Grübl , 2007] or virtual versions of these
[Vogginger , 2010].

Prerequisites The build flow in focus of this chapter is based on the WAF build system
in version 1.6 as well as on project checkouts around November 2010. The Python
2.6.5 interpreter has been used to realize and verify the correct build functionality. A
comprehensive documentation of the WAF tool can be found in the internet under
http://waf.googlecode.com/svn/docs/wafbook/single.html.

1.1. Project Structure

The software stack developed within the FACETS Project is distributed over numerous
smaller repositories. In these repositories, two different version control systems, namely
subversion (svn) and git, are used. To simplify the usage of the distributed software, a
top-level project – called symap2ic – has been created. It automatically retrieves the
sub-projects – thereby satisfying their mutual dependencies– and builds plus installs
them into the right place. An overview of the directory structure can be found in Figure
1.1.

The main directories are src and components, which comprise the source code of a
FACETS logging class and additional WAF functionality (src) as well as the collected
source code of all sub-projects (components). After a successful build process, the bin and
lib folder comprise the resulting program binaries and libraries ready to use. Ultimately,
the doc folder is the place where generated documentation from the sub-projects is
installed to. These documentations are generated via doxygen, which parses the program
sources and the code comments to automatically assemble a reference manual. After this
first insight into the basic project hierarchy and relevant tools, we will now have a look
on the conceptual structure of the build process.

3

http://waf.googlecode.com/svn/docs/wafbook/single.html

symap2ic

bin

doc

lib

src

components

pynnhw

systemsim

SpikeyHAL

SctrlTP

Figure 1.1.: An illustration of the directory structure found in the symap2ic project. The
symap2ic meta project itself is kept plain and comprises only little code. It
organizes the sub-projects, which are stored in the components folder.

1.2. Build Flow Concepts

The basic concept behind the building process is, that each sub-project provides its own
description in terms of a wscript. Every wscript is a recipe to tell WAF how to build the
sub-project and further defines the inter- and intra-project dependencies. Besides, the
recipe may include different variants and optional build targets. The main build process
from the symap2ic root project then executes the building processes of the sub-projects
recursively. The major problems in our case are mutual dependencies of the different
projects, e.g. the PyNN module depends both on the low-level software and the ethernet
communication stack (see Section 1.3). To resolve such software dependencies, symap2ic
offers the functionality to retrieve a set of sub-projects which have been predefined and
satisfies all dependencies. This functionality can be accessed via the --repositories

configuration argument from the command line. More information on that will be
provided in the following PyNN building walk through.

1.3. Building the PyNN Modules – a Step by Step Walk
Through

PyNN is a simulator independent neural network description language based on Python,
which can be used to access the FACETS hardware even as a non-hardware-expert. The
high-level PyNN instructions are translated via a custom software backend into low-level
operations. This section explains how to build such a backend from the project sources.
This is necessary to work with the hardware systems.

First of all you have to make sure that you have access to the relevant project

4

repositories. The rights management for the git repositories is independent from the one
for the svn repositories. So make sure you have both.

In order to access the svn you need a FACETS account from Björn Kindler (bjoern.kindler@kip.uni-
heidelberg.de). For access to the git repositories you must register on: https://gitviz.
kip.uni-heidelberg.de Afterwards you can get read&write permissions for individual
projects from:

• Eric Müller (emueller@kip.uni-heidelberg.de)

• Sebastian Jeltsch (sjeltsch@kip.uni-heidelberg.de)

Authentication is required to download any non-public (most projects) project, but the
gitviz server is configured to deny password authentication in general (although you can
access your projects via password authentication through the web front end). Instead
you must use the common user: git. You are individually identified by an unique ssh key.
In order to do so, you need to store your ssh public key in your gitviz profile via the web
front end. If you do not have ssh keys yet, create a pair of private and public keys by
typing ssh-keygen in the command line and following the instructions on the screen (or
just keep pressing return, you can also keep the passphrase empty). The generated ssh
keys are commonly stored in your home directory under the hidden .ssh sub-folder. In
case you used the default values during the key-pair generation you can copy the output
of:

cd ; cat . ssh / i d r s a . pub

into the respective field in your gitviz profile. Now, you are ready to checkout an instance
of the repositories. To get a copy of the symap2ic project into your current directory
type:

g i t c l one g i t @ g i t v i z . k ip . uni−h e i d e l b e r g . de : symap2ic . g i t

A good starting point to get familiar with the git version control software might be
the open “Pro Git” book (http://progit.org/book/).

Now, go to the symap2ic project directory. When you look at the top-level structure
you’ll find waf and a wscript. waf is a link to a WAF executable which is provided with
the repository. Note, that there is no need to install the build system on your computer,
instead you can and should use the provided version. This ensures that no version
conflicts arise and simplifies usage as well as maintenance. The wscript is the top-level
build receipt. If you are interested in the build process and are familiar with Python
you may have a look into it. When you enter python waf configure --help you’ll get
an overview on the available command line arguments. To automatically download all
repositories necessary for the Executable System Specification you would execute:

. . / boots t rap . sh
python waf c o n f i g u r e −−r e p o s i t o r i e s=<repo set>

The bootstrap.sh is responsible for sourcing the $SYMAP2IC PATH environment variable
in your current shell. For a correct functionality you need to source the bootstrap file in
each new shell or set the environment variable in the rc-script of your shell yourself (e.g.

5

https://gitviz.kip.uni-heidelberg.de
https://gitviz.kip.uni-heidelberg.de
http://progit.org/book/

$HOME/.bashrc for bash). The second command is responsible for actually getting the
necessary projects. The <repo set> needs to be replaced with either “systemsim” or
“Stage1” for either the virtual hardware system or the operation of the Spikey hardware.
If your chosen repository collection includes svn sources you will be prompted for your
FACETS username and password. If everything went right you can now find new sub-
directories in the components folder. Furthermore, if you rerun python waf configure

--help you will now be confronted with extra command line options provided by the
added sub-projects. For us the --stage option is of special interest. It ultimately lets us
define the build target. In case we downloaded the “systemsim” repositories the Stage2
option would the only valid choice. If we have chosen the Stage1 repositories we could
either build the Stage1 multi-chip or singe-chip PyNN module (valid --stage options
taken from the help prompt are: Stage2, Stage1-single, Stage1-multi). To finally build
the project use:

python waf c o n f i g u r e −−s tage=<option> i n s t a l l

after a successful build and installation you’ll find the necessary shared object files for
PyNN in your symap2ic/lib (it happens from time to time that WAF prompts for
some missing libraries, then simply rerun python waf install). In the Stage1 case
you’ll find additional tools in the bin folder to control and operate the hardware system.
Experiments on the actual Stage1 hardware require that you specify the Spikey chip you
want to run your experiment on (experiments on the virtual hardware require no such
files). Therefore, execute:

echo s ta t i on<your s t a t i o n id> > ˜/ my Stage1 stat ion

For a station number and a personal Spikey chip ask your advisor. If a special PyNN
version – with hardware support enabled – is installed and you you have correctly set
the $SYMAP2IC PATH environment variable (either via the bootstrap.sh or the rc-script of
your shell) you should be ready to run your PyNN scripts on either the virtual hardware
or the Stage1 hardware system.

6

2. Build Flow Unification and Integration

One major goal of the work at hand has been to integrate the new multi-chip system
software into the existing MappingTool project and to unify the build system. Therefore,
missing build descriptions have been implemented to make all existing PyNN hardware
modules (Stage1 single-chip, Stage1 multi-chip and Stage2 virtual hardware) buildable
from the top-level symap2ic project (see Section 1.1).

2.1. Multi-Chip Software Integration

Initially, the multi-chip software developed in Jeltsch [2010] has been integrated into
the existing project structure to make its functionality accessible for everyone. The
source code has been adapted to the main development line and the integration has been
modularized to reduce the software’s footprint as described below.

Automatically Generated Documentation The generation and installation of auto-
generated doxygen documentation and installation of a corresponding LATEXpdf has been
integrated into the WAF flow. After building the project with die --with-doxygen

configuration option the generated latex sources and pictures reside in the WAF build
folder. The finally typeset documentation is installed in the symap2ic/doc/pdf directory.
If a HTML documentation is desired one can build the documentation directly from the
MappingTool directory with the respective wscript.

2.2. Unified Build Flow

All three build variants for the PyNN backends responsible for the Spikey single-chip,
multi-chip and Stage2 virtual hardware are now accessible via the --stage configuration
option on the project’s top-level.

To reduce the dependencies between existing software and speed up the build process
C/C++ macros have been used to provide variant builds of the MappingTool for the
different PyNN targets. Otherwise, the build for the virtual hardware would depend on
the SpikeyHAL low-level software and the ARQ-ethernet stack [Schilling , 2010]. Moreover,
the Stage1 multi-chip build would depend on the system simulation. This reduces the
size of the final binaries and the number of necessary build targets for any variant of the
MappingTool from over 200 to about 130.

7

3. MongoDB

MongoDB is a free and open non-relational database system. Compared to databases
implementing the conventional, relational scheme (e.g. SQL), it allows to store arbitrary
data structures without requirements on the format. This makes the system highly
attractive for an application in the field of hardware systems under ongoing development,
as the calibration data sets can easily develop, too. Also, incomplete and non-standard-
conform calibration data sets can be stored and retrieved at any time without additional
effort. The database stores these arbitrary sets of data in so-called collections which
themselves are associated to one database hosted by the server.

3.1. The MongoDB-Setup for Calibration Data

Application of calibration data on the HICANN system and the Stage1 system requires
at least mongoDB version 1.6 and the respective development libraries. Pre-build
ubuntu packages can be found in the Electronic Vision(s) launchpad repository under:
https://launchpad.net/~visions/+archive/visions-default. Typical for database
server systems in general is that data can be accessed from any computer over the network.
Nevertheless, our mongoDB responsible for storing and organizing the calibration data
which is necessary for the Stage1 multi-chip system has been set up on the experiment
computer “paul” directly. At the time of writing no user name or password were required
to authenticate. A description on how to access the database can be found in the following
Section 3.1.1.

If you have any problems working with the mongoDB setup or the stored data contact
the responsible person, which are listed below. Responsible for the administration of the
database servers are:

• Eric Müller (emueller@kip.uni-heidelberg.de)

• Sebastian Jeltsch (sjeltsch@kip.uni-heidelberg.de)

Responsible for the Stage1 calibration datasets is:

• Daniel Brüderle (bruederle@kip.uni-heidelberg.de)

Responsible for the Stage2 calibration datasets is:

• Marc-Olivier Schwartz (marcolivier.schwartz@kip.uni-heidelberg.de)

8

https://launchpad.net/~visions/+archive/visions-default

3.1.1. Short PyMongo Introduction

To convey an idea on how to use the mongoDB we will perform some common tasks like
accessing, creating, modifying and deleting information in the database. Basic Python
knowledge will proof useful, but is not explicitly required. Since data in the database is
weakly typed, working with data in the database is similar to working with a Python
dictionary.

Establishing a Database Connection The easies way to connect to the database is to
open a remote shell on the computer “paul” (it hosts the calibration database). Here,
pymongo is already installed and default parameters assumed by pymongo can be used.
After connecting to “paul” you should open a interactive python interpreter.

ssh paul
$ ipython

Before we can establish a connection to the database we need to import the appropriate
python module, as follows:

In [1] : import pymongo as p

We don’t need to pass any arguments to the Connection() command. Pymongo will
simply use its default connection parameters, which correspond to the mongoDB server
running on “localhost” and using the default tcp port.

In [2] : con = p . Connection ()

In [4] : con . database names ()
Out [4] : [u ’ l o c a l h o s t ’ , u ’ t u t o r i a l ’ , u ’ admin ’ , u ’ l o c a l ’]

The second command did return the available databases in the currently running instance
of mongoDB. In this tutorial the databases “localhost” and “tutorial” are of special
interest to us.

First of all, we are going to have a look into the “localhost” database, which actually
stores the calibration data.

In [6] : db = con . l o c a l h o s t

In [7] : db . c o l l e c t i o n n a m e s ()
Out [7] : [u ’ user ’ , u ’ system . indexes ’ , u ’ s p i k e y c a l i b r a t i o n ’ ,

u ’ t e s t 0 ’ , u ’ t r a f o ’ , u ’ sp i k eypa ramete r t r an s l a t i on ’]

The collection “spikeyparametertranslation” stores the calibration data and the collection
“user” is an address book of people responsible for one or more calibration data sets.

In this tutorial we are focusing on the calibration data sets, they are far more interesting
than a bunch of names and email addresses to us. Furthermore, playing with the data
sets will convey a first feeling about the data format and the amount of data necessary
to calibrate the hardware.

9

Reading Data from the Database After connecting to the server and picking a database
we will start with reading data. Please do not try to modify data at this point, as you are
working with actual calibration data and we will get to the modification of data later on.

In [8] : sp ikey = db . sp i k eypa ramete r t r an s l a t i on

In [9] : sp ikey . count ()
Out [9] : 51

As see can see, 51 calibration data sets are organized in the mongoDB at the time of
writing.

The next step is optional and yields a lengthly output (you can always interrupt the
output with [ctrl+c]). The listed command will print all data stored in the “spikeypa-
rametertranslation” collection on the screen.

In [1 1] : f o r i in sp ikey . f i n d () :
p r i n t i

Out [1 1] : . . . # l o t o f s t u f f

So what have we done? The function find{} returns an iterator – a so-called cursor
in the mongoDB world – which we are using to iterate over all sets, one after another.
Normally, we are more interested in requesting specific data from the database. Therefore,
We can utilize a common Python dictionary as a filter.

In [2 4] : f o r i in sp ikey . f i n d ({ ’ chipID ’ : 456 , ’ t ransDi r ’ : 2 }) :
p r i n t i

Out [2 4] : . . . # should be one data s e t

Consequently, find will only return data sets with matching entries.

Storing Data in the Database So far we have seen how to get information from the
database. Now, we want to explore how to store new information. To keep the calibration
database clean we initially switch to the tutorial database and collection which we have
seen previously.

In [3 6] : db tut = con . t u t o r i a l
In [3 7] : tut = db tut . t u t o r i a l # r e f e r e n c e to c o l l e c t i o n ’ t u t o r i a l ’

This should typically be an empty database. So lets check:

In [3 7] : f o r i in tut . f i n d () :
p r i n t i

Don’t worry if some data is already stored in this database. We can simply ignore it and
continue. By executing:

In [3 8] : tut . save ({ ’ f oo ’ : ’ bar ’ })

you add a new data set to the collection with the key “foo” and the value “bar” (note,
in a relational database you would first need to have defined a new table with a “foo”
column storing strings) – and yes – it is really that simple.

10

Manipulating Data in the Database In the previous paragraph we stored our first,
own object in the database. Let’s see whether we can find it in the tutorial collection
collection and modify it:

In [6 0] : obj = tut . f i n d ({ ’ f oo ’ : ’ bar ’ }) [0]

Remember that find returns an iterator, we therefore pick the start element by means
of the array operator []. After we got the object, working with it is like working with a
python dictionary: we can modify data and add data by using the []-operator:

In [6 1] : obj [’ f oo ’] = 42
In [6 2] : obj [’A ’] = 4 .2

Note that, we have not only changed the value but also the data type, abusing the charm
of scheme free database system. The modification are not yet stored in the database.
You are working on a local copy of the data. To save the changes run:

In [6 3] : tut . save (obj)

Let’s check whether the changes have been correctly stored on the server:

In [6 4] : f o r i in tut . f i n d () :
p r i n t i

Out [6 4] : {u ’ i d ’ : ObjectId (’ 4 cdd4a426c632165c5000000 ’) ,
u ’ foo ’ : u ’ bar ’
u ’A ’ : 4 . 2 }

Removing Data from the Database Finally, we want to cover up our track and delete
the generated data, so that the next person will hopefully find an empty tutorial database.
We can delete data either by its unique object id (a random hash) or via references. You
may have already noticed the object id associated with each data set, which has been
printed to the screen each time you did something like:

in [7 2] : f o r i in tut . f i n d () :
p r i n t i

out [7 2] : {u ’ i d ’ : ObjectId (’ 4 cdd4a426c632165c5000000 ’) ,
u ’ foo ’ : u ’ bar ’
u ’A ’ : 4 . 2 }

To finally remove a specific data set you could execute (you need to substitute the
object id with your own unique id):

in [7 3] : tut . remove (p . o b j e c t i d . ObjectId (’ 4 cdd4a426c632165c5000000 ’))

Or you can use references: the next command deletes all data in “tutorial.tutorial” by
reference:

in [7 4] : f o r i in tut . f i n d () :
tut . remove (i)

Note that you have not been prompted for any confirmation on deleting the data, so
be careful whenever you remove data from the database. Otherwise the administrators
will be very pleased to restore the original entries from a raw file system backup.

11

You should now have a basic knowledge about requesting, creating, modifying and
removing data from a mongoDB via the pymongo API. For a complete documentation on
the pymongo Python module visit: http://api.mongodb.org/python/. Besides, there
are language bindings for practically any common programming language.

3.2. Horizontal Database Scaling

Calibration data sets for a complete wafer system are significantly larger than the ones
necessary for the Stage1 system. You may have already encountered the sets used for the
Stage1 system during the mongoDB walk through presented in Section 1.3. To provide
the necessary throughput for the wafer-scale system and allow for low latencies access
the mongoDB system can be scaled horizontally to span multiple physical servers, each
contributing almost linearly to the overall bandwidth.

A schematic of a typical mongoDB sharding setup can be found in Figure 3.1. Compared
to a single-server setup multiple daemons control the operation of the database. There
needs to be at least one mongod process set as configuration server, one mongod process
configured to act as a shard and one mongos routing process. The configuration servers
are responsible for the organization of the database instance and communicate with both,
the database backends (shards) and the mongos request routers. The so-called shards
store the actual data. It is mirrored transparently between the available shards on a
chunk-level with predefined chunk sizes. That means, in normal operation data can be
provided coherently by all available shards and the router can balance the load on all
shards symmetrically. If a data set is too new and not yet mirrored to all shards the
mongos route the request to shards with the data available.

To test a multi-server mongoDB a setup can be easily created by means of a script,
which can be found on github: https://github.com/mongodb/mongo-snippets/blob/
master/sharding/simple-setup.py or in the Appendix A. It sets up a database con-
figuration consisting of one configuration server , one mongos and three shard instances.
The database can then be accessed via the mongos router running on “localhost” port
27017.

12

http://api.mongodb.org/python/
https://github.com/mongodb/mongo-snippets/blob/master/sharding/simple-setup.py
https://github.com/mongodb/mongo-snippets/blob/master/sharding/simple-setup.py

Host Computer 2

Interfaces/Routing

Host-
Computer

Configuration
Data

Request

D
a
ta

R
e
q
u
e
st

Host Computer 1

Config Server

C1 mongod

C2 mongod

Host Computer 3C3 mongod

Cn mongod

Shards

S1 mongod

S2 mongod

S3 mongod

Sm mongod Mk mongos

M1 mongos

M2 mongos

M3 mongos

Figure 3.1.: An illustration of a completely redundant sharding mongoDB setup. Stored
data sets can be provided transparently by any physical server. Such a
multi-server setup improves the overall bandwidth of the database. Note,
that this is only one example configuration. Instances of the three different
process types can be arbitrarily distributed. But incoming requests are only
managed by mongos.

13

A. Sample Script for Horizontal mongoDB
Scaling

#! / usr / bin /python2
source :
https : // github . com/mongodb/mongo−sn ippe t s / blob / master / shard ing / simple−setup . py
commit : b7774daf9b327ed761ac

import os , sys , s h u t i l , a t e x i t
import pymongo

from socket import e r ror , socket , AF INET , SOCK STREAM
from s e l e c t import s e l e c t
from subproces s import Popen , PIPE , STDOUT
from thread ing import Thread
from time import s l e e p

try :
new pymongo
from bson . son import SON

except ImportError :
old pymongo
from pymongo . son import SON

BEGIN CONFIGURATION

some s e t t i n g s can a l s o be s e t on command l i n e .
s t a r t with −−help to see opt ions

BASE DATA PATH=’ / data /db/ shard ing / ’ #warning :
#ge t s wiped every time you run t h i s

MONGOPATH=os . getenv (”MONGOHOME” , os . path . expanduser (’ ˜/10 gen/mongo/ ’))
N SHARDS=3
N CONFIG=1 # must be e i t h e r 1 or 3
N MONGOS=1
CHUNK SIZE=200 # in MB (make smal l to t e s t s p l i t t i n g)
MONGOS PORT=27017 i f N MONGOS == 1 e l s e 10000 # s t a r t at 10001 when mult i

CONFIG ARGS=[]
MONGOS ARGS=[]
MONGODARGS=[]

14

Note t h i s r e p o r t s a l o t o f f a l s e p o s i t i v e s .
USE VALGRIND=False
VALGRIND ARGS=[” va l g r ind ” , ”−−log− f i l e =/tmp/mongos−%p . va l g r ind ” , ”−−leak−check=yes ” ,

(”−−suppr e s s i on s=”+MONGOPATH+” va lg r ind . suppr e s s i on s ”) , ”−−”]

see http :// pueblo . s o u r c e f o r g e . net /doc/manual/ a n s i c o l o r c o d e s . html
CONFIG COLOR=31 #red
MONGOS COLOR=32 #green
MONGODCOLOR=36 #cyan
BOLD=True

d e f a u l t s −− can change on command l i n e
COLLECTION KEYS = { ’ f oo ’ : ’ i d ’ , ’ bar ’ : ’ key ’ }

de f AFTER SETUP() :
f e e l f r e e to change any o f t h i s
admin and conn are both de f ined g loba ly
admin . command(’ enab le shard ing ’ , ’ t e s t ’)

f o r (c o l l e c t i o n , keys t r) in COLLECTION KEYS. i t e r i t e m s () :
key=SON((k , 1) f o r k in keys t r . s p l i t (’ , ’))
admin . command(’ s h a r d c o l l e c t i o n ’ , ’ t e s t . ’+c o l l e c t i o n , key=key)

admin . command(’ s h a r d c o l l e c t i o n ’ , ’ t e s t . f s . f i l e s ’ , key={ ’ i d ’ : 1})
admin . command(’ s h a r d c o l l e c t i o n ’ , ’ t e s t . f s . chunks ’ , key={ ’ f i l e s i d ’ : 1})

END CONFIGURATION

f o r x in sys . argv [1 :] :
opt = x . s p l i t (”=” , 1)
i f opt [0] != ’−−help ’ and l en (opt) != 2 :

r a i s e Exception (”bad arg : ” + x)

i f opt [0] . s t a r t s w i t h (’−− ’) :
opt [0] = opt [0] [2 :] . lower ()
i f opt [0] == ’ he lp ’ :

p r i n t sys . argv [0] , ’ [−−help] [−−chunks ize =200] [−−port =27017] \
[−−path=/where/ i s /mongod] [c o l l e c t i o n=key] ’

sys . e x i t ()
e l i f opt [0] == ’ chunks ize ’ :

CHUNK SIZE = i n t (opt [1])
e l i f opt [0] == ’ port ’ :

MONGOS PORT = i n t (opt [1])
e l i f opt [0] == ’ path ’ :

MONGOS PATH = opt [1]
e l i f opt [0] == ’ us eva l g r ind ’ : #i n t e n t i o n a l l y not in −−help

USE VALGRIND = i n t (opt [1])
e l s e :

15

r a i s e (Exception (”unknown opt ion : ” + opt [0]))
e l s e :

COLLECTION KEYS[opt [0]] = opt [1]

p r i n t (”MONGOPATH: ” + MONGOPATH)

i f not USE VALGRIND:
VALGRIND ARGS = []

f i x e d ” c o l o r s ”
RESET = 0
INVERSE = 7

i f os . path . e x i s t s (BASE DATA PATH) :
s h u t i l . rmtree (BASE DATA PATH)

mongod = MONGOPATH + ’mongod ’
mongos = MONGOPATH + ’ mongos ’

devnu l l = open (’ /dev/ n u l l ’ , ’w+’)

fd s = {}
procs = []

de f k i l l A l l S u b s () :
f o r proc in procs :

t ry :
proc . terminate ()

except OSError :
pass #al ready dead

a t e x i t . r e g i s t e r (k i l l A l l S u b s)

de f mkcolor (co l o r code) :
base = ’ \x1b[%sm ’
i f BOLD:

return (base ∗2) % (1 , co l o r code)
e l s e :

r e turn base % co l o r code

de f a s c o l o r (co lo r , t ex t) :
r e turn mkcolor (c o l o r) + text + mkcolor (RESET)

de f w a i t f o r (proc , port) :
t r y s = 0
whi le proc . p o l l () i s None and t r y s < 40 : # ˜10 seconds

t r y s += 1
s = socket (AF INET , SOCK STREAM)
try :

t ry :

16

s . connect ((’ l o c a l h o s t ’ , port))
re turn

except (IOError , e r r o r) :
s l e e p (0 . 2 5)

f i n a l l y :
s . c l o s e ()

#extra p r i n t s to make l i n e stand out
p r i n t
p r i n t proc . p r e f i x , a s c o l o r (INVERSE, ’ f a i l e d to s t a r t ’)
p r i n t

s l e e p (1)
k i l l A l l S u b s ()
sys . e x i t (1)

de f p r i n t e r () :
whi l e not fd s : s l e e p (0 . 0 1) # wait u n t i l the re i s at l e a s t one fd to watch

whi l e fd s :
(f i l e s , , e r r o r s) = s e l e c t (fd s . keys () , [] , f d s . keys () , 1)
f o r f i l e in s e t (f i l e s + e r r o r s) :

try to p r i n t r e l a t e d l i n e s toge the r
whi l e s e l e c t ([f i l e] , [] , [] , 0) [0] :

l i n e = f i l e . r e a d l i n e () . r s t r i p ()
i f l i n e :

p r i n t fd s [f i l e] . p r e f i x , l i n e
e l s e :

i f f d s [f i l e] . p o l l () i s not None :
p r i n t fd s [f i l e] . p r e f i x , a s c o l o r (INVERSE, ’EXITED ’) , \

f d s [f i l e] . r e turncode
de l f d s [f i l e]
break

break

p r i n t e r t h r e a d = Thread (t a r g e t=p r i n t e r)
p r i n t e r t h r e a d . s t a r t ()

c o n f i g s = []
f o r i in range (1 , N CONFIG+1):

path = BASE DATA PATH +’ c o n f i g ’ + s t r (i)
os . makedirs (path)
c o n f i g = Popen (

[mongod , ’−−port ’ , s t r (20000 + i) , ’−−c o n f i g s v r ’ , ’−−dbpath ’ , path] \
+ CONFIG ARGS, s td in=devnul l , s tdout=PIPE , s t d e r r=STDOUT)

c o n f i g . p r e f i x = a s c o l o r (CONFIG COLOR, ’C ’ + s t r (i)) + ’ : ’
f d s [c o n f i g . s tdout] = c o n f i g
procs . append (c o n f i g)

17

w a i t f o r (con f i g , 20000 + i)
c o n f i g s . append (’ l o c a l h o s t : ’ + s t r (20000 + i))

f o r i in range (1 , N SHARDS+1):
path = BASE DATA PATH +’ shard ’ + s t r (i)
os . makedirs (path)
shard = Popen (

[mongod , ’−−port ’ , s t r (30000 + i) , ’−−shardsvr ’ , ’−−dbpath ’ , path] \
+ MONGOD ARGS, s td in=devnul l , s tdout=PIPE , s t d e r r=STDOUT)

shard . p r e f i x = a s c o l o r (MONGODCOLOR, ’M’ + s t r (i)) + ’ : ’
f d s [shard . s tdout] = shard
procs . append (shard)
w a i t f o r (shard , 30000 + i)

#t h i s must be done be f o r e s t a r t i n g mongos
f o r c o n f i g s t r in c o n f i g s :

host , port = c o n f i g s t r . s p l i t (’ : ’)
c o n f i g = pymongo . Connection (host , i n t (port)) . c o n f i g
c o n f i g . s e t t i n g s . save ({ ’ i d ’ : ’ chunks ize ’ , ’ va lue ’ :CHUNK SIZE} , s a f e=True)

de l c o n f i g #don ’ t l e ave around connect ion d i r e c t l y to c o n f i g s e r v e r

i f N MONGOS == 1 :
MONGOS PORT −= 1 # added back in loop

f o r i in range (1 , N MONGOS+1):
route r = Popen (VALGRIND ARGS + [mongos , ’−−port ’ , s t r (MONGOS PORT+i) ,

’−−con f igdb ’ , ’ , ’ . j o i n (c o n f i g s)] + MONGOS ARGS,
s td in=devnul l , s tdout=PIPE , s t d e r r=STDOUT)

route r . p r e f i x = a s c o l o r (MONGOS COLOR, ’S ’ + s t r (i)) + ’ : ’
f d s [r ou te r . s tdout] = route r
procs . append (route r)

w a i t f o r (router , MONGOS PORT + i)

conn = pymongo . Connection (’ l o c a l h o s t ’ , MONGOS PORT + 1)
admin = conn . admin

f o r i in range (1 , N SHARDS+1):
admin . command(’ addshard ’ , ’ l o c a l h o s t :3000 ’+s t r (i) , a l l owLoca l=True)

AFTER SETUP()

s l e e p (2) # j u s t to be s a f e

p r i n t ’ ∗∗∗ READY ∗∗∗ ’
p r i n t
p r i n t

18

t ry :
p r i n t e r t h r e a d . j o i n ()

except KeyboardInterrupt :
pass

19

Bibliography

Grübl, A., VLSI implementation of a spiking neural network, Ph.D. thesis, Ruprecht-
Karls-Universität, Heidelberg, 2007, document no. HD-KIP 07-10.

Jeltsch, S., Computing with transient states on a neuromorphic multi-chip environment,
Diploma thesis, Ruprecht-Karls-Universität, Heidelberg, HD-KIP 10-54, http://www.
kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=2095, 2010.

Schemmel, J., J. Fieres, and K. Meier, Wafer-scale integration of analog neural networks,
in Proceedings of the 2008 International Joint Conference on Neural Networks (IJCNN),
2008.

Schemmel, J., D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner, A wafer-scale
neuromorphic hardware system for large-scale neural modeling, in Proceedings of the
2010 IEEE International Symposium on Circuits and Systems (ISCAS’10), IEEE Press,
2010.

Schilling, M., A highly efficient transport layer for the connection of neuromorphic
hardware systems, Diploma thesis, Ruprecht-Karls-Universität, Heidelberg, HD-KIP-
10-09, http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?

id=2000, 2010.

Vogginger, B., Testing the operation workflow of a neuromorphic hardware system with
a functionally accurate model, Diploma thesis, Ruprecht-Karls-Universität, Heidel-
berg, HD-KIP-10-12, http://www.kip.uni-heidelberg.de/Veroeffentlichungen/
details.php?id=2003, 2010.

20

http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=2095
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=2095
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=2000
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=2000
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=2003
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=2003

	An Introduction to the Automated Build Flow of the symap2ic Project
	Project Structure
	Build Flow Concepts
	Building the PyNN Modules – a Step by Step Walk Through

	Build Flow Unification and Integration
	Multi-Chip Software Integration
	Unified Build Flow

	MongoDB
	The MongoDB-Setup for Calibration Data
	Short PyMongo Introduction

	Horizontal Database Scaling

	Sample Script for Horizontal mongoDB Scaling

