PARALLEL HARDWARE OBJECTS FOR DYNAMICALLY PARTIAL RECONFIGURATION

Norbert Abel, Frederik Griill, Nick Meier, Andreas Beyer, Udo Kebschull

Kirchhoff Institute for Physics, Heidelberg
INF 227, 69120 Heidelberg
email: {abel, kebschull} @kip.uni-heidelberg.de

ABSTRACT

Many of today’s software-to-hardware compiler projects try
to find dataflow parallelism in a sequential program descrip-
tion and use it to generate parallel running hardware com-
ponents. In this paper we present a new possibility to do
a parallel description based on the combination of object-
oriented programming and dynamically partial reconfigura-
tion. Our compiler translates software objects directly to
Hardware Objects, which are running in parallel and can be
instantiated and removed dynamically. Furthermore, we fo-
cus on parallel inter object communication which allows the
Hardware Objects to communicate in parallel.

1. INTRODUCTION

Since the 1960s object-oriented programming (OOP) has
changed the way software design is done. Using OOP, the
central point of software development became interacting
objects with assigned attributes and methods. The differ-
ence between OOP and procedural programming is crucial,
since for procedural programming the handled variables are
absolutely passive whereas for OOP every object acts as an
active part of the program. This means, that the objects pro-
vide the attributes and the functionality [1]. Due to this, we
use OOP to realize parallel programming. Combined with
the thread concept, the described objects really are indepen-
dently acting instances. This leads to a powerful process de-
scription, making it possible to use the parallelism provided
by parallel architectures like modern CPUs or FPGAs.

Xilinx FPGAs provide the possibility to be reconfigured
partially and dynamically. This means, that parts of the
hardware can be exchanged while the rest of the circuit is
running untouched. This provides completely new possibil-
ities regarding object-oriented hardware descriptions. The
dynamic character of interacting objects can be implemented
directly using dynamically partial reconfiguration (DPR).
Software objects are translated directly into Hardware Ob-
jects which, in a simple case, are adders or multipliers, and
in more complex cases are tasks consisting of many func-
tional units. Using DPR these Hardware Objects can be
loaded and removed dynamically.

There are several former projects that focus on the de-
sign of parallel systems in high level languages. Most of
them focus on the analysis of a sequential process descrip-
tion. They try to find independent dataflows to execute them
in parallel [2]. It turned out that this method is limited. To
generate well parallelizable code, the high level program-
mers often have to write the programs in a special, par-
allelization aware way. As a consequence new program-
ming languages for highly parallel architectures (like mod-
ern graphic cards) provide the possibility to explicitly for-
mulate the parallelism [3]. Our paper focuses the design
and the implementation of a hardware compiler that takes an
explicitly parallel, object-oriented description and translates
it to dynamically reconfigurable hardware. Former projects
that focus on OOP and reprogrammable hardware usually
confined themselves to instantiate coprocessor objects on
an FPGA. In these environments the communication always
stays controlled by a processor or a bus. The hardware in-
stantiation of objects is only done to speed up the object
execution but not to run several objects in parallel [4]. Other
projects, like the JHDL project [5], focus on the instantia-
tion of parallel running objects, but leave out the possibil-
ity of runtime reconfiguration. Although the JHDL papers
talk about dynamic object instantiation, it has never been
implemented within the JHDL project. The target of our
project is to fully use the intrinsic parallelism of objects
to describe parallel hardware, which is mainly consisting
of parallel running, dynamically instantiable Hardware Ob-
jects.

2. HARDWARE OBJECTS

Our basic concept is to find and to use similarities between
the objects in OOP and the programmable hardware. For in-
stance, using Java we would not translate the Java code into
Java bytecode and then translate the bytecode into VHDL,
but we would rather translate the Java objects directly to
Hardware Objects represented in VHDL. The main target
of this concept is to use the potential parallelism of OOP.
This section demonstrates the correlation between hard-
ware and Java objects. We decided to use Java and VHDL,



since Java is object-oriented and supports the parallelism
concept and VHDL is very easy to read and to understand.
Nevertheless it is not mandatory to use Java and VHDL
— other languages like C++ and Verilog also provide the
needed functionality. We do not want to focus on the lan-
guages but on the principle behind them.

ol
L]
.,
x|

Y —»

2

Fig. 1. A simple dataflow

2.1. A simple dataflow in Java

Figure 1 shows a simple dataflow consisting of two adders
and one multiplier. It is clear that these hardware compo-
nents are running all the time and in parallel. To be able to
describe the same behavior in Java, we build a class named
HardwareThread that inherits from the Thread-class. All
the Java objects, representing a hardware component, inherit
from the HardwareThread-class. Thus they are really run-
ning in parallel. The class HardwareThread contains one
method running all the time: calc(). This method is empty
and can be overwritten by a subclass with a method contain-
ing the functionality of the object. It represents the contin-
uous characteristic of the hardware. The DECLARATION-
part of Figure 2 shows the Java description of the adders and
the multiplier.

It is visible, that the inputs and outputs of the functional
units in figure 1 are represented by get and set methods as
usual in OOP. This emphasizes the similarity between hard-
ware components and objects. Both have well defined input
and output ports. In VHDL they are represented by in and
out signals of the component, in Java they are represented
by set and get methods. The functionality is encapsulated.
In VHDL it is part of the body of the component. In Java
we implemented it in the method calc(). Using threads both
are running all the time and parallel to other objects or com-
ponents. To get the functionality represented in figure 1 the
Java objects have to be combined with each other. This is
done in the INTERCONNECT -part of figure 2. The object
named simpleJava instantiates the two adders and the multi-
plier. This is done in the INSTANTIATION -part of figure 2.

2.2. Signal Integrity

There is no mechanism in figure 2 that ensures that the adders
have calculated the new value (based on the inputs X1, X2,
Y1 and Y?2) before the multiplier uses their output. The

//DECLARATION :

class Adder extends HardwareThread {
private int a, b, s;
public void set_a(int a) { this.a
public void set-b(int b) { this.b
public int get_s() { return this.s;
protected void calc() { s = a + b; }

a; }
b; }
}

class Multiplier extends HardwareThread {
private int a, b, p;
public void set_a(int a) { this.a
public void set-b(int b) { this.b
public int get_p() { return this.p;
protected void calc() { p = a * b; }

a; }
b; }
}

public class simpleJava {
public static void main (String[] args) {
//INSTANTIATION :
Adder Al = new Adder();
Adder A2 = new Adder();
Multiplier M = new Multiplier ();

//INTERCONNECT :
Al.set-a(Xl);
Al.set_b(Yl);
A2.set_a(X2);
A2.set_b(Y2);

M. set_a(Al.get-s ());
M.set-b(A2.get-s ());
Pl = M. get_p ():

Fig. 2. Java description of the objects

same problems exists for the multiplier. To solve this prob-
lem we extended the class HardwareThread with methods
and signals that ensure the integrity and serializability of the
output signals. Using the encapsulation and inheritance of
Java objects, the developer does not have to handle these sig-
nals. Unfortunately, when the HardwareThread class was
extended in this way, the elegance of the descriptions shown
in figure 2 was destroyed. There was only one set and one
get method each using communication objects, and the in-
ter object communication became much more complex. For
instance synchronization keywords had to be implemented.
For software execution this just destroys the elegance. For
hardware execution it makes the hardware-to-software com-
pilation much more complex, since the compiler has to ana-
lyze the Java synchronization keywords and has to translate
them correctly to hardware synchronization methods (like
flip-flops and clock signals). Due to this we decided to in-
troduce a Java precompiler called POL (Parallel Object Lan-
guage). POL uses nearly the same syntax as Java, but start-
ing the POL precompiler for software execution results in a
Java program enriched with the synchronization signals and
methods.

2.3. The Reconfiguration Framework

Before we take a closer look on POL, we want to look at
the functionality of our Reconfiguration Framework, since
the way POL is specified is the result of the way the target



hardware is designed. To be able to translate Java objects
directly to hardware, it is mandatory to be able to instantiate
hardware components at runtime. Using normal synthesis
tools this is completely impossible, but Xilinx FPGAs like
the “’Virtex-4” are able to be reconfigured partially and dy-
namically. Furthermore these FPGAs provide an internal
configuration access port (ICAP) that makes it possible to
control the partial reconfiguration via the logic on the chip
itself. Based on these possibilities the basic idea is to parti-
tion the target FPGA into a static and some dynamic areas.
The dynamic areas are placeholders for the components that
have to be instantiated at runtime. The static part consists
of all components belonging to static objects and the Hard-
ware Scheduler, a program that controls the reconfiguration
process. It is the Hardware Scheduler that decides which
dynamic component is loaded at which time and to which
dynamic area. In a very simple case there are always enough
areas to instantiate the dynamic components. In a more com-
plex case there are more dynamic components than dynamic
areas and thus the Hardware Scheduler has to instantiate the
dynamic components alternately [6].

In many applications programmable hardware is used to
handle huge data streams. Examples are the data acquisition
in detector systems [7] and video streaming [8]. Thus the
dynamic hardware generated by a POL-to-hardware com-
piler has to be able to handle such huge data streams. This
negates the usage of a simple bus to let the Hardware Ob-
jects communicate with each other. Using a bus, the Hard-
ware Objects would be calculating in parallel but would have
to provide the results of their calculations sequentially. Re-
garding big data streams this would negate the whole par-
allelism. To avoid this kind of bottle neck, we developed a
communication matrix that provides a parallel inter object
communication. The communication matrix is part of the
static design and is connected to the dynamic parts via bus
macros [9]. It is also connected to the static Hardware Ob-
jects. The matrix contains a FIFO pool, consisting of one
FIFO per Hardware Object Class and two System FIFOs (in
and out). Furthermore the matrix contains a set of multi-
plexers, connecting the FIFOs with the related dynamic ar-
eas. Due to the FIFOs the communication is pipelined. This
allows a higher parallelism (even if the objects are loaded al-
ternately), but it also determines the way the tasks are com-
municating with each other. Setr operations put one entry
into a FIFO. Get operations take one entry out of a FIFO.
POL has to be designed in a way that complies with this
architecture.

3. POL

Figure 3 demonstrates the POL implementation of the sim-
ple dataflow. POL ensures the data integrity by itself, but
some design rules have to be considered. Every class that

shall be interpreted as Parallel Object has to inherit from
ParObj. The communication between the objects is real-
ized with signals and slots (inspired by Qt [10]). No public
attributes and no direct attribute access is allowed. For in-
ter object communication the gef() and emit() methods have
to be used. The method calc() is running permanently and
represents the continuous characteristic of hardware compo-
nents. It is the only method containing functionality.

import ”cosinus.vhd”;

class simplePOL extends ParObj {
Multiplier M; Adder Al; Adder A2; Cosinus C;

class Multiplier extends ParObj {
Slot a, b; Signal p;
public void calc(){p.emit(a.get()*b.get());}

}
class Adder extends ParObj {
Slot a, b; Signal s;
public void calc(){s.emit(a.get()+b.get());}

class Cosinus extends ParObj {
Slot a; Signal c; int result;
public void calc(){
component cosinus (in=>a.get(), out=>result);
c.emit(result);
}
}

simplePOL () {
M = new Multiplier ();
Al = new Adder(); A2 = new Adder();
M.p.connect(Out[0]);
Al.s.connect(M.a);
A2.s.connect(M.b);
In[0].connect(Al.a);
In[1].connect(Al.b);
In[2].connect(A2.a);
In[3].connect(A2.b);

}

public void calc () {

int s = In[4].get(0);

if (s ==1) {

C = new Cosinus ();
M.p.disconnect(Out[0]);
M.p.connect(C.a);
C.c.connect(Out[0]);

} else if (s == 2) {
M.p.disconnect(C.a);
C.c.disconnect(Out[0]);
M.p.connect(Out[0]);
C.finish ();

}

}
}

Fig. 3. Parallel Object Language

Due to the strict restrictions of POL it is possible to
translate the POL objects directly to parallel running hard-
ware components. Every POL slot is translated to an VHDL
input signal. Every POL signal becomes an VHDL output
signal and the functionality of the components is extracted
from the method calc(). The method connect tells the com-
munication matrix, which VHDL output signal is connected
to which VHDL input signal via the FIFOs. In contrast to
the solution in Figure 2 the objects are directly communicat-



ing to each other without the usage of an additional “com-
munication object”. This is mandatory to enable a multi
parallel inter object communication. The method emit puts
one entry into a FIFO, ger takes one entry out of the FIFO.
There are two versions of ger. Get() is blocking in case of an
empty FIFO. Get(default) is not blocking and returns default
in case of an empty FIFO.

In figure 3 the Parallel Objects A1, A2 and M are static
in the way that a POL-to-hardware compiler can analyze the
structure of the POL program and recognize that these Par-
allel Objects are only created in the constructor and not de-
stroyed at runtime. Hence, we added the class Cosinus to
demonstrate the dynamic instantiation of Parallel Objects in
POL. If the fifth system input slot contains a 1, an instance
of this class is instantiated at runtime. To describe the in-
stantiation of the Cosinus object in POL it is just necessary
to use the command new. The POL-to-hardware compiler
translates this new to an dynamic bus command. This bus
connects the hardware objects with the scheduler. It can be
used to create and to destroy object instances. M1 and the
system output are disconnected using the method discon-
nect. Afterwards the Input of C1 is connected to the output
of M1 and the output of C1 is connected to the system out-
put. Thus, the dataflow shown in figure 1 has been extended
by a cosinus calculation after the multiplication.

Of course POL objects can be more complex than a sim-
ple addition or multiplication. The code in figure 3 just de-
monstrates the functionality of POL. Possible real-world ap-
plications are filters (like for video streaming or data acqui-
sition) that have to be exchanged on demand. For this the
method calc() can contain many branches, loops and calcu-
lations. The POL-to-hardware compiler is able to translate
this Java code to VHDL. Furthermore, for better re-use of
existing code, it is possible to include VHDL components
into POL. This is done using the key word component. It
looks and works like the component key word in VHDL.
All VHDL components used in POL have to provide an
std_logic input called Strobe_In, an std_logic output called
Strobe_Out and a clock input called CLK. Strobe_In tells the
VHDL component to start its calculation. Strobe_Out is used
by the VHDL component to confirm its outputs.

In order to remove objects we introduced the method fin-
ish(). It is public and can be called by the object itself or by
an other object. It changes the behavior of the Parallel Ob-
ject so that it is not running any longer. Afterwards it is
removed from the scheduling list. If the fifth system input
slot in figure 3 contains a 2, the cosinus is removed from the
dataflow.

4. CONCLUSION

In this paper we presented POL as one possibility to do a
parallel object description. Our POL-to-hardware compiler

translates POL objects directly to Hardware Objects. The
slots and the signals become the inputs and the outputs and
the content of the method calc() determines the functional-
ity of the resulting Hardware Object. Since the target hard-
ware is partial and dynamically reconfigurable, the dynamic
instantiation of objects does not have to be avoided, but
can be directly implemented. This combination of object-
orientation and DPR solves two problems at once. First, the
dynamic character of OOP does not have to be removed, but
can be translated directly to the hardware. Therefore, the
generated Hardware Objects are very similar to their soft-
ware pendants. Hence, it is no longer necessary to translate
object-oriented programs to a sequential process description
(like Java bytecode) and then to reparallelize this sequential
description. Second, POL provides a very elegant way to
control dynamic hardware. Today it is still very complex to
use DPR, since the developer has to understand the recon-
figuration techniques in detail to be able to use DPR. Using
POL the complete DPR techniques (like the instantiation of
bus macros, the partitioning of the chip, the instantiation of
a scheduler, the instantiation of a communication matrix in-
cluding FIFOs) are encapsulated. The instantiation of a new
Hardware Object is done with a simple new. Due to these
new possibilities, which come with the combination of DPR
and OOP, we are convinced that it is time to reconsider the
use of OOP for hardware design.

5. REFERENCES

[1] D. Morris, D. Evansa, and P. Green, “Object oriented com-
puter system engineering,” Springer-Verlag, 1996.

[2] A. C. S. Becka and G. Gaydadjiev, “Transparent recon-
figurable acceleration for heterogeneous embedded applica-
tions,” in Proc. DATE, 2008, pp. 1208-1213.

[3] NVIDIA-Corporation, “Nvidia cuda computed device archi-
tecture programming guide version 1.1,” Nov. 2007.

[4] M. Edwards and P. Green, “An object oriented design method
for reconfigurable computing systems,” in Proc. DATE, 2000.

[5] B. Hutchings and M. Rytting, “A cad suite for high-
performance fpga design,” in Field-Programmable Custom
Computing Machines.

[6] N. Abel, “Schnelle dynamische partielle rekonfiguration
in hardware mit inter-task-kommunikation,” University of
Leipzig, June 2005.

[7] T. Altand V. Lindenstruth, “Fpga based pre-/coprocessors for
the alice hlt,” in Proc. DPG-Conference, Mar. 2005.

[8] C. Claus and J. Zeppenfeld, “Using partial-run-time recon-
figurable hardware to accelerate video processing in driver
assistance system,” in Proc. DATE, 2007.

[9] P. Lysaght and B. Blodget, “Enhanced architectures, design
methodologies and cad tools for dynamic reconfiguration of
xilinx fpgas,” in Proc. FPL, 2006, pp. 012-017.

[10] Trolltech, “Online
doc.trolltech.com, 2008.

reference documentation,”



