Terascale Statistics School 2008 29. Sep. - 2. Oct. 2008 DESY Hamburg

Practical work

paper exercises

Authors: O. Behnke (DESY), C. Kleinwort (DESY), S. Schmitt (DESY)

Contents

1 Confidence Levels for normal distribution 3
1.1 Measurement precision of thermometers 3
1.2 Search for free quarks 6
2 Fluctuation probability for Poisson distribution 7
2.1 Increased leukemia close to nuclear power plants 7
2.26 aus 49 Lottery (Streichaufgabe) 8
3 Limit determination for Poisson statistics 9
3.1 Particle production - basic limit determina- tion 9
3.2 Upper Limit for Signal + small background - frequentist approach 10
3.3 Upper Limit for signal + small background - Modified frequentist approach 11
3.4 Upper Limit for particle negative yield mea- surement with gaussian errors - frequentist and Bayesian solution 13
4 Signal discovery? 15
$4.1 \Omega_{c}$ peak at ARGUS 15
5 Combination and compatibility of two measure- ments 19
5.1 Direct CP violation ϵ^{\prime} 19
6 Streichaufgabe: Max. Likelihood analytically 23
6.1 Radioactive Decay 23

1 Confidence Levels for normal distribution
1.1 Measurement precision of thermometers

A company produces clinical thermometers.
a) From testing a sample of thermometers it is observed that the results from different thermometers spread approximately according to a normal distribution with a sigma of 0.1 degree celsius. Estimate how many of 10000 produced thermometers will show a temperature which is
I) more than 0.3 degree wrong? (Note: can be either too low or to high)
II) more than +0.3 degree wrong?
III) more than 0.4 degree wrong?
IV) more than +0.4 degree wrong?
b) If one demands instead that less than 5% of the thermometers should be wrong by more than 0.1 degree - then to which precision (sigma) the thermometers should be calibrated?

Hint: Use the Confidence level curves for a gaussian function

$$
C L(x)=\int_{x}^{\infty} d x^{\prime} \frac{1}{\sqrt{2 \pi}} e^{-x^{\prime 2} / 2}
$$

Gauss Function one side confidence level vs x

$$
C L(x)=2 \int_{x}^{\infty} d x^{\prime} \frac{1}{\sqrt{2 \pi}} e^{-x^{\prime 2} / 2}
$$

Gauss Function two side confidence level vs \mathbf{x}

1.2 Search for free quarks

An experiment was to look for quarks of charge $2 e / 3$, where e is the elementary charge. They should produce an ionisation of $4 / 9 I_{0}$, where I_{0} is the ionisation produced by a particle with the elementary charge. In an exposure of 10^{6} cosmic particles, one track was measured to have $0.44 I_{0}$.
\rightarrow Calculate the number of expected particles with true charge e, which would be measured with ionisation $I \leq 0.44 I_{0}$ due a fluctuation of the ionisation measurement for the following two cases:
a) The ionisation estimates of the detector distribute as a Gauss function with $\sigma=0.07 I_{0}$ for all tracks
b) 99% of tracks with $\sigma=0.07 I_{0}$, while the rest with $\sigma=0.14 I_{0}$.

What are (your) conclusions for the possible discovery of free quarks?

Hint: Use the Confidence level curves for a gaussian function

2 Fluctuation probability for Poisson distribution
2.1 Increased leukemia close to nuclear power plants

Researchers from Mainz (Maria Blettner et al) observed that in a 5 km surrounding of nuclear power plants 37 children contracted leukemia (in the years 1980 2003), while the statistical average in the population is 17 . \rightarrow Determine the probability for a statistical fluctuation from 17 to ≥ 37 :
a) Use the exact poisson probabilities as shown in the figure
b) Approximate the distribution by a gaussian with $\mu=$ 17 and $\sigma=\sqrt{17}$. Use the CL curves for the gaussian to determine the fluctuation probability.

Poisson distribution - Fluctuation probability

2.26 aus 49 Lottery (Streichaufgabe)

The frequency of drawing certain numbers in the german "6 aus 49 Lottery" (using 2088 draws from 19612000) is shown in the figure. The expectation value is 298. \rightarrow Check the probability (using gaussian approximation) for the observed largest upward and the largest downward fluctation to occur. Do you think everything is correct with this lottery?

Lottery 6 aus 49: Single Number frequency (Y:1961-2000)

Number	1	2	3	4	5	6	7	8	9	10
Freq	293	316	318	285	302	301	303	278	294	304
Number	11	12	13	14	15	16	17	18	19	20
Freq	298	279	252	271	300	301	311	298	295	289
Number	21	22	23	24	25	26	27	28	29	30
Freq	310	296	288	284	304	306	302	262	300	290
Number	31	32	33	34	35	36	37	38	39	40
Freq	305	361	320	266	311	304	300	338	300	311
Number	41	42	43	44	45	46	47	48	49	
Freq	308	308	293	288	280	298	285	307	331	

3 Limit determination for Poisson statistics
3.1 Particle production - basic limit determination

An experiment searches for the production of a new particle. After the final selection $N_{\text {obs }}=2$ candidate events are observed. \rightarrow Determine a 90% C.L. upper limit on the expectation value μ of the underlying poisson distribution.

Instructions: The 90\% upper limit value is given by the value μ for which the probability to observe $N_{\text {obs }}$ or less events $p\left(\mu, N_{\text {obs }}\right)=\Sigma_{i \leq N_{\text {obs }}} e^{-\mu} \frac{\mu^{i}}{i!}=10 \%$. For a selection of values μ these probabilities are shown in the figure below. From comparing the p values at $N_{\text {obs }}=2$ try to estimate the μ for which $p(\mu, 2)=0.1$.

Poisson distr. - Downward fluctuation probability

3.2 Upper Limit for Signal + small background - frequentist approach

Most general the data consist of signal and background such that $\mu=\mu_{s i g}+\mu_{b g r}$. Here $\mu_{s i g}$ and $\mu_{b g r}$ are the Poisson parameters for signal and background respectively. Determine 90% C.L. upper limits on $\mu_{\text {sig }}$ for the following cases with a given $N_{o b s}$ and known $\mu_{b g r}$:
a) $\mu_{b g r}=0, N_{o b s}=2$
b) $\mu_{b g r}=1, N_{o b s}=2$
c) $\mu_{b g r}=3, N_{o b s}=0$

Hint: Again the relevant formula to be used is

$$
p\left(\mu, N_{o b s}\right)=\Sigma_{i \leq N_{o b s}} e^{-\mu \frac{\mu^{i}}{i!}}=10 \% .
$$

to find a value for μ and then replacing $\mu=\mu_{s i g}+\mu_{b g r}$. Note: $p\left(\mu, N_{o b s}=0\right)=e^{-\mu}$.

3.3 Upper Limit for signal + small background - Modified frequentist approach

Determine (again) for the case $\mu_{b g r}=3, N_{o b s}=0$ a 90% upper limit using the modified frequentist approach: $C L_{s}=C L(S+B) / C L(B)=0.1$

Note: $C L(S+B)$ and $C L(B)$ are defined as

Hypothesis	CL
Background only	$C L(B)=p\left(\mu_{b g r}, N_{o b s}\right)$
$=\sum_{i \leq N_{o b s}} e^{-\mu_{b g r} \frac{\mu_{b g r}^{i}}{i!}}$	
Signal + Background	$C L(S+B)=p\left(\mu_{s i g}+\mu_{b g r}, N_{o b s}\right)$ $=\sum_{i \leq N_{o b s}} e^{-\left(\mu_{s i g}+\mu_{b g r}\right)} \frac{\left(\mu_{s i g}+\mu_{b g r}\right)^{i}}{i!}$

3.4 Upper Limit for particle negative yield measurement with gaussian errors - frequentist and Bayesian solution

An experiment "observes" after background subtraction a yield of $N=-2 \pm 1$ particles. \rightarrow Determine an 90% upper limit $\mu_{\text {lim }}$ for the expectation value of events using
a) Frequentist approach: taking the results at face value Instruction: determine the 90% upper limit as usually for a measurement with gaussian error, i.e. from

$$
C L=\int_{\mu_{\text {lim }}}^{\infty} d x^{\prime} \frac{1}{\sqrt{2 \pi}} e^{\frac{-\left(x^{\prime}+2\right)^{2}}{2}}=10 \%
$$

Hint: The solution for $\mu_{\text {lim }}$ can be simply read off from the $C L$ curves for a gaussian
b) Bayesian approach: the particle yields must be positive!
Instruction: The limit $\mu_{\text {lim }}$ can be determined from

$$
C L=\frac{\int_{l i m}^{\infty} d x^{\prime} \frac{1}{\sqrt{2 \pi}} e^{\frac{-\left(x^{\prime}+2\right)^{2}}{2}}}{\int_{0}^{\infty} d x^{\prime} \frac{1}{\sqrt{2 \pi}} e^{\frac{-\left(x^{\prime}+2\right)^{2}}{2}}}=10 \%
$$

Hint: Both integrals can be looked up from the $C L$ curves for a gaussian! For illustration see also the figures below

Figure 1: Gaussian with mean value -2 and width 1 ; the coloured areas show the integrals needed for the bayesian CL determination.

4 Signal discovery?

$4.1 \Omega_{c}$ peak at ARGUS

The ARGUS $e^{+} e^{-}$experiment reported 1992 the observation of the charmed and doubly strange baryon Ω_{c} through its decay channel $\Xi^{-} K^{-} \pi^{+} \pi^{+}$(published in PL B288 367). The obtained mass spectrum is shown in the figure.

ARGUS Ω_{C} signal peak

\rightarrow Try to make your own assessment of the signal and its significance:
a) Fluctuation probability: Under the assumption there is only background with constant density:

1. Estimate the average number of background events per mass bin (Note: the histogram contains 43 entries in 50 bins)
2. Define a $\pm 2 \sigma$ mass window around the peak (Note: the resolution σ is $\approx 12 \mathrm{MeV}$, the histogram bin width)
3. Count the total number of candidates $N_{\text {cand,sig }}$ in the $\pm 2 \sigma$ region
4. Estimate the number of expected background events $\mu_{b g r}$ in this region
5. Estimate the probability for the poisson distribution to fluctuate from $\mu_{b g r}$ to $N_{c a n d, s i g}$ or larger values (Probabilities for selected values μ are shown in the figure below)
b) Signal significance: Under signal + background hypothesis: Try to estimate the signal and its significance
6. Estimate the number of background events per bin from the average density of events in the regions outside the peak
\Rightarrow estimate from this density the number of expected background events $\mu_{b g r}$ in the $\pm 2 \sigma$ region around the peak
7. Obtain the number $N_{s i g}=N_{\text {cand,sig }}-\mu_{\text {bgr }}$, estimate an error $\sigma_{N_{s i g}}$ and determine the signal significance $N_{s i g} / \sigma_{N_{s i g}}$.

Poisson distribution - Fluctuation probability

5 Combination and compatibility of two measurements

5.1 Direct CP violation ϵ^{\prime}

The direct CP violation parameter $\operatorname{Re}\left(\frac{\epsilon^{\prime}}{\epsilon}\right)$ was measured by two different experiments to be (rounded numbers!)

$$
\begin{aligned}
\operatorname{Re}\left(\frac{\epsilon^{\prime}}{\epsilon}\right) & =(7 \pm 6) \times 10^{-4}(\mathrm{E} 731) \\
\operatorname{Re}\left(\frac{\epsilon^{\prime}}{\epsilon}\right) & =(23 \pm 6) \times 10^{-4}(\mathrm{NA} 31)
\end{aligned}
$$

a) Determine from the two single measurements a combined result and error.

Hint: Weighted average \hat{a} of two measurements a_{i} :
$\hat{a}=\frac{1}{g_{1}+g_{2}} \cdot\left(g_{1} a_{1}+g_{2} a_{2}\right)$ with $g_{i}=1 / \sigma_{i}^{2} ; \quad \sigma_{\hat{a}}=\left(g_{1}+g_{2}\right)^{-0.5}$
b) Determine and compare the significances (= value/error) for the observation of direct CP violation for the single measurements and the combined one. Is there enough evidence to claim that direct CP violation was observed?
c) Estimate the compatibility of the two measurements from

$$
\chi^{2}=\sum_{i=1,2} \frac{\left(a_{i}-\hat{a}\right)^{2}}{\sigma_{i}^{2}}
$$

Express the compatibility from the probability to observe such a χ^{2} or a larger one.
Hints: In the case of averaging two measurements the number of degrees of freedom for the χ^{2} is $n=1$. The requested probability can be looked up from the probability curves vs χ^{2} (for different n) in figure 2 .

Figure 2: Probabilities to observe a χ^{2} equal or larger than the given one for different degrees of freedom n (from the PDG).

6 Streichaufgabe: Max. Likelihood analytically

6.1 Radioactive Decay

The probability density for radioactive decay of a certain substance is given by

$$
p(t, \lambda)=\lambda e^{-\lambda t}
$$

λ can be determined from a set of observed decay times, using the maximum likelihood method: Determine an estimate for λ for the case of
a) one single decay at time t_{i} by calculating
$-\omega=\ln L=\ln p\left(\lambda, t_{i}\right)$
$-d \omega / d \lambda$

- find the solution for λ from $d \omega / d \lambda=0$
b) generalise to N decays. The Likelihoodfunction is now given by

$$
L=\Pi_{i=1}^{N} \lambda e^{-\lambda t_{i}}
$$

Determine for both cases a) and b) an estimate for the error of λ from

$$
\sigma_{\hat{\lambda}}=\left(-d^{2} \ln (L) / d \lambda^{2}\right)^{-1 / 2}
$$

(parabola approximation of $\ln L$ around the maximum)

Using instead χ^{2} formulation:

Figure 4 shows the $\chi^{2}=-2\left(\ln (L)-\ln \left(L_{\text {max }}\right)\right)$ function for different number of radioactive decays. (coincidentally with minimas exactly at $\lambda=1$). Determine graphically the \pm errors of the estimated λ from the values of λ for which $\chi^{2}=\chi_{\text {min }}^{2}+1$ using the exact χ^{2} curves and compare to using the parobala approximated curves.

Figure 3: Likelihood function for single radioactive decay at time $t=1$.

Figure 4: $\chi^{2}=-2\left(\ln (L)-\ln \left(L_{\max }\right)\right)$ function for different number of radioactive decays (coincidentally with minimas exactly at $\lambda=1$).

