Tutorial Statistics Limits Part 1

M. Herbst

influenced by many other unknowing contributors, mentioned where possible

<u>today</u>

Statistics/ Probability Frequentist/ Bayesian Probability Density Function Confidence Level/ p-Value Confidence Intervals Exercises

tomorrow

Hypothesis Testing Error Classification Size/ Power of Test Test Statistics/ Chisquare Dist. NP Lemma/ Wilks' theorem Likelihood Function *Systematics* **POI**, Nuissance Parameters Profile Likelihood Ratio

Coverage/ Flip-Flopping/ Asymptotic Limit/ Look-Elsewhere current ATLAS discussion: Power Constraint Limits

What is Statistics?

"The mathematics of the collection, organization, and interpretation of numerical data, ..."

www.thefreedictionary.com

first part inspired by Roger Wolf (CMS, Uni Hamburg)

What is Statistics?

"there are three kinds of lies: lies, damned lies and statistics" *Benjamin Disraeli*

"the only statistics you can trust are those you falsified yourself" *Winston Churchill*

Long History of Statistics

Oldest Census in Egypt/ China (2600 b.c.)

number of people, wealth, weapons suitability

Demographic Studies in Great Britain (19th century) mass collection of demographic characteristics

"Descriptive Statistics" you have to be good at counting

Long History of Statistics

Analytical Statistics (19th/20th century)

introduction of concepts of probability calculus

(random) test sample replaces mass collection subset allows drawing conclusions on full (data-)set

The Art of Estimating

JACOBI BERNOULLI, Profeil Bafil. & utriusque Societ. Reg. Scientiar. Gall. & Pruff. Sodal. MATHEMATICI CELEBERRIMI,

ARS CONJECTANDI,

OPUS POSTHUMUM.

Accelit

TRACTATUS DE SERIEBUS INFINITIS,

Et EPISTOLA Gallice scripta

DE LUDO PILÆ RETICULARIS.

Impenfis THURNISIORUM, Fratrum.

1713

Stochastic Theory

= ars conjectandi (Jacob Bernoulli)

Probability Calculus + Analytical Statistics

Example

A market research company makes a survey for a new product.

"Are you satisfied with the new product?"

Example

A clever survey sales-man moves the border a bit.

25% more satisfied customers in east and west!

In the "Real" World: The Gerrymander

http://de.wikipedia.org/wiki/Gerrymandering

named after a governor of massachusetts in the early 19th century "Elbridge Gerry"

still practice, not only in US

(Vienna, France, Great Britain, North Ireland, Belgium)

second part follows lectures by Kyle Cranmer (ATLAS, NYU)

<u>http://cdsweb.cern.ch/search?cc=Video+Lectures&ln=en&jrec=1&p=statistics</u>

Kolmogorov Axioms (1933):

For every event E of event space Ωa probability p(E) can be attributed.

- 1. Probabilites are non-negative: $p(E) \ge 0$
- 2. Probability for the "certain" event: $p(\Omega) = 1$
- 3. If events are disjunct, probability

for one OR the other is sum of probabilities. $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$

The Way Physicists see Probability

Frequentist vs. Bayesian

Likelihood Methods

Frequentist

probability defined as limit of long-term frequency

- *flip a coin 50-50*
 - roll a dice 1/6

- Monte Carlo methods

P(**Data | Theory**) conditional prob. data given theory

instructive example

$P(A|B) \neq P(B|A)$

P (pregnant | female) $\approx 3\%$ P (female | pregnant) >> 3%

Bayesian: Bayes' Theorem

$cond. prob. of A given B \quad prior Prob.$ $P(A|B) = \frac{P(B|A) P(A)}{P(B)}$ posterior/ conditional probability $of A given B \quad prior/marginal Prob.$ (normalization)

P(A) is unknown! Subjective priors! update your knowledge.

P(**Data | Theory**)

P (Theory | Data) using a prior!

Frequentist vs. Bayesian

Frequentist always restrict to statements:

P (Data | Theory)

deductive reasoning

Bayesian can address:

P (Theory | Data) \propto P (Data | Theory) P (Theory)

inductive reasoning

needs prior on theory (subjective/ empirical (objective) priors)

How Likelihood Methods fit in

Frequentist always restrict to statements:

P (Data | Theory)

deductive reasoning

Bayesian can address:

P(**Theory** | **Data**) \approx **P**(**Data** | **Theory**) **P**(**Theory**) *inductive reasoning*

needs prior on Theory (subjective/ empirical (objective) priors)

Likelihood Methods

e.g. MINUIT/ MINOS

approximately frequentist methods

enjoy nice properties of Bayesian without need of priors

A philosophical question!

Frequentist vs. Bayesian reason for many heavy "philosophical" discussions different, strong opinions exist under experts/ experiments

anonymous quotes:

"frequentist for discovery, bayesian for limits" "bayesians tend to be aggressive and optimistic" "frequentist statisticians are more cautious and defensive"

both are legitimate, scientific approaches!

language is important! frequentists determine confidence intervals! ⇔ *interval covers true value 68% (95%) of the time*

!bayesians infer credible intervals ⇔ posterior has prob. that true value inside (prior assumption)

A Bayesian is one who, vaguely expecting a horse, and catching a glimpse of a donkey, strongly believes he has seen a mule.

Probability Density Functions: Gaussian (Normal), Log-Normal, Poisson, Binomial, ...

Mean value :	\overline{x}	$= \frac{1}{N} \sum_{i=1}^{N} x_i$
Variance :	V(x)	$= \frac{1}{N} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \overline{x^2} - \bar{x}^2$
Standard deviation :	σ	$=\sqrt{V(x)} = \sqrt{\overline{x^2} - \overline{x}^2}$

Cumulative Density Functions: Confidence Level, p-value

Probability Density Functions (PDFs)

$$P(x \in [x, x + dx]) = f(x)dx$$

f(x) not a probability!

obey 2. axiom from Kolmogorov

The Gaussian PDF

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$$

Cumulative Density Functions

german: "Verteilungsfunktion"

The Gaussian CDF

The Poisson CDF

Example: Gaussian PDF + CDF

Confidence Level - one sided

$$CL(x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} \exp(-x^{\prime 2}/2) dx^{\prime}$$

x is sigma deviation CL(x) is p-value

5-sigma
$$\Leftrightarrow$$
 p = 2.9 · 10⁻⁷

(1 - p) is Confidence Level

thanks to

O. Behnke, C. Kleinwort, S. Schmitt (DESY), from Terascale Statistics School 2008 exercises

Confidence Level - two sided

thanks to

O. Behnke, C. Kleinwort, S. Schmitt (DESY), from Terascale Statistics School 2008 exercises

Confidence Interval Construction

"inverted" Hypothesis test (only short here, more tomorrow)

use PDFs for H_0 background-only H_1 signal+background

accept or reject H₀ with measurement n events!

 $P(n|H_0) = P(n|b)$ $P(n|H_1) = P(n|s+b)$

P(n|
$$\mu$$
) = P(n| μ s + b)
Likelihood function for μ
 $\mu=0:H_0$
 $\mu\neq 0:H_1$

Confidence Intervals - CL_{s+b}

determine s+b consistent with observation (frequentist) assume b is known! do toy monte carlo sufficiently often, intervall (0,s₉₅) covers obs. value (1 - p) = 95% of the time CL_{s+b} - confidence level for signal + background

s95 - 95% CL limit

8

Confidence Intervals - CLb

determine background fluctuation probability (frequentist) assume b-only is known! intervall (0,s₉₅) covers obs. background (1 - p) = 95% of the time CL_b - confidence level for background only

Discovery: test b-only (null: s=0 vs. alt: s>0)

Modified Frequentist Method - CLs

The CL_s procedure

In the usual formulation of CL_s , one tests both the $\mu = 0$ (*b*) and $\mu = 1$ (*s*+*b*) hypotheses with the same statistic $Q = -2\ln L_{s+b}/L_b$:

use ratio $CL_s = CL_{s+b} / CL_b$

> intervall (0,s₉₅) covers obs. value 95% of the time

"save" wrt background fluctutations

ATLAS Limits Workshop / PCL

CL_s vs. CL_{s+b} vs. PCL limits

PCL Power Constraint Limits

when background fluctuates down, CL_{s+b} gets negative

PCL more conservative wrt CLs

Further Reading

A Unified Approach to the Classical Statistical Analysis of Small Signals Gary J. Feldman, Robert D. Cousins <u>http://arxiv.org/abs/physics/9711021</u>

WIKIPEDIA ARTICLES (frequentist vs. bayesian) <u>http://en.wikipedia.org/wiki/Statistical_hypothesis_testing</u> <u>http://en.wikipedia.org/wiki/Bayesian_inference</u>

CDSWEB VIDEO LECTURES (G. COWAN, K. CRANMER, B. COUSINS, ...) <u>http://cdsweb.cern.ch/search?cc=Video+Lectures&ln=en&jrec=1&p=statistics</u>

ATLAS INFORMATION/ RECOMMENDATIONS

https://twiki.cern.ch/twiki/bin/view/AtlasProtected/ATLASStatisticsFAQ

Summary

Statistics/ Probability

Probability Distributions

p-Value / Confidence Level

Frequentist/ Bayesian Confidence Intervals Bayes' Law

 CL_s

"Bayesians address questions everyone is interested in, by using assumptions no-one believes"

"Frequentists use impeccable logic to deal with an issue of no interest to anyone."

Louis Lions

Terascale Statistics School 2008 29. Sep. - 2. Oct. 2008 DESY Hamburg

Practical work

paper exercises

Authors: O. Behnke (DESY), C. Kleinwort (DESY), S. Schmitt (DESY)

