Tutorial Statistics Limits Part I

M. Herbst

influenced by many other unknowing contributors, mentioned where possible

today

Statistics/ Probability
Frequentist/ Bayesian
Probability Density Function
Confidence Level/ p-Value
Confidence Intervals
Exercises

NP Lemma/ Wilks' theorem
Likelihood Function
Systematics
POI, Nuissance Parameters
Profile Likelihood Ratio

Coverage/ Flip-Flopping/ Asymptotic Limit/ Look-Elsewhere current ATLAS discussion: Power Constraint Limits

What is Statistics?

"The mathematics of the collection, organization, and interpretation of numerical data, ..."

What is Statistics?

"there are three kinds of lies: lies, damned lies and statistics" Benjamin Disraeli
"the only statistics you can trust are those you falsified yourself"

Winston Churchill

Long History of Statistics

Oldest Census in Egypt/ China (2600 b.c.)

number of people, wealth, weapons suitability

Demographic Studies in Great Britain (19th century) mass collection of demographic characteristics

"Descriptive Statistics"
you have to be good at counting

Long History of Statistics

Analytical Statistics (19 ${ }^{\text {th }} / \mathbf{2 0}^{\text {th }}$ century) introduction of concepts of probability calculus

(random) test sample replaces mass collection subset allows drawing conclusions on full (data-)set

The Art of Estimating

JACOBI BERNOULLI,
Profefl. Bafil. \& utriufque Societ. Reg. Scientiar. Gall. \& Prufl. Sodal.
Mathematici Celeserkimi,
ARS CONJECTANDI,
opus posthumum
Acula
TRACTATUS
DE SERIEBUS INFINITIS,
EtEpisrola Gallicè feripta
DE LUDO PILE
RETICULARIS.

BASILE E,
Impenfis THURNISIORUM, Fratrum.
cl) loce xill.

Stochastic Theory
 = ars conjectandi
 (Jacob Bernoulli)

Probability Calculus
 $+$

Analytical Statistics

Example

A market research company makes a survey for a new product.
"Are you satisfied with the new product?"

75\%

west

0\%

east

Example

A clever survey sales-man moves the border a bit.
75\%

100\%

"east"
25\%
$\mathbf{2 5 \%}$ more satisfied customers in east and west!

In the "Real" World: The Gerrymander

http://de.wikipedia.org/wiki/Gerrymandering

named after a governor of massachusetts in the early $19^{\text {th }}$ century "Elbridge Gerry"

still practice, not only in US

(Vienna, France, Great Britain, North Ireland, Belgium)
$\Theta \bigcirc \bigcirc$ "Statistical Techniques for Particle Physics" (3/4)

second part follows lectures by Kyle Cranmer (ATLAS, NYU) http://cdsweb.cern.ch/search? cc=Video+Lectures\&ln=en\&jrec=1\&p=statistics

What does Probability mean?

Kolmogorov Axioms (1933):

For every event E of event space Ωa probability $p(E)$ can be attributed.

1. Probabilites are non-negative: $p(E) \geq 0$
2. Probability for the "certain" event: $p(\Omega)=1$
3. If events are disjunct, probability
for one $O R$ the other is sum of probabilities.
$P(A \cup B)=P(A)+P(B)$ if $A \cap B=\varnothing$

The Way Physicists see Probability

Frequentist vs. Bayesian

Likelihood Methods

Frequentist

probability defined as

 limit of long-term frequency

 limit of long-term frequency}

\author{

- flip a coin 50-50
 - roll a dice 1/6
 - Monte Carlo methods
}

P(Data I Theory)
conditional prob. data given theory

P(Theory Data)
instructive example
$P(A \mid B) \neq P(B \mid A)$
$P($ pregnant I female $) \approx \mathbf{3 \%}$
$P($ female I pregnant $) \gg \mathbf{3 \%}$

Bayesian: Bayes' Theorem

$P(A \mid$

cond.prob. of A given B prior Prob.

prior/ marginal Prob. (normalization)
$\mathrm{P}(\mathrm{A})$ is unknown! Subjective priors! update your knowledge.

P(Data I Theory)

P(Theory I Data)
using a prior!

Frequentist vs. Bayesian

Frequentist always restrict to statements:

P (Data I Theory)
deductive reasoning

Bayesian can address:

\mathbf{P} (Theory I Data) $\propto \mathbf{P}$ (Data I Theory) P(Theory)
inductive reasoning
needs prior on theory (subjectivel empirical (objective) priors)

How Likelihood Methods fit in

Frequentist always restrict to statements:

P (Data I Theory)
deductive reasoning
Bayesian can address:
\mathbf{P} (Theory I Data) $\propto \mathbf{P}$ (Data I Theory) P(Theory)
inductive reasoning
needs prior on Theory (subjectivel empirical (objective) priors)
Likelihood Methods e.g. MINUIT/ MINOS
approximately frequentist methods
enjoy nice properties of Bayesian without need of priors

A philosophical question!

Frequentist vs. Bayesian reason for many heavy "philosophical" discussions different, strong opinions exist under experts/ experiments anonymous quotes:
"frequentist for discovery, bayesian for limits" "bayesians tend to be aggressive and optimistic" "frequentist statisticians are more cautious and defensive"
both are legitimate, scientific approaches!
language is important!
frequentists determine confidence intervals!
\Leftrightarrow interval covers true value 68% (95\%) of the time
bayesians infer credible intervals!
\Leftrightarrow posterior has prob. that true value inside (prior assumption)

Jokes

A Bayesian is one who, vaguely expecting a horse, and catching a glimpse of a donkey, strongly believes he has seen a mule.

Some Basic Ingredients

Probability Density Functions:
Gaussian (Normal), Log-Normal, Poisson, Binomial, ...

Cumulative Density Functions:
Confidence Level, p-value

Probability Density Functions (PDFs)

$$
P(x \in[x, x+d x])=f(x) d x
$$

$$
f(\mathbf{x}) \text { not a probability! }
$$

obey 2. axiom from Kolmogorov

The Gaussian PDF

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)
$$

The Poisson PDF

Cumulative Density Functions

german: "Verteilungsfunktion"

$$
F(x)=\int^{x} f(t) d t
$$

for the continous case

The Gaussian CDF

The Poisson CDF

Example: Gaussian PDF + CDF

Confidence Level - one sided

$C L(x)=\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-x^{\prime 2} / 2\right) d x^{\prime}$ x is sigma deviation
$\mathrm{CL}(\mathrm{x})$ is p -value 5 -sigma $\Leftrightarrow \mathrm{p}=2.9 \cdot 10^{-7}$
$(1-\mathrm{p})$ is Confidence Level

Gauss Function one side confidence level vs \mathbf{x}

thanks to
O. Behnke, C. Kleinwort, S. Schmitt (DESY), from Terascale Statistics School 2008 exercises

Confidence Level - two sided

$$
C L(x)=\int_{-\infty}^{-x} \frac{1}{\sqrt{2 \pi}} \exp \left(-x^{\prime 2} / 2\right) d x^{\prime}+\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-x^{\prime 2} / 2\right) d x^{\prime} \quad \text { Gauss Function two side confidence level vs } \mathbf{x}
$$

p -value is $2 \cdot \mathrm{p}$ (one sided)

thanks to
O. Behnke, C. Kleinwort, S. Schmitt (DESY), from Terascale Statistics School 2008 exercises

Confidence Interval Construction

"inverted" Hypothesis test (only short here, more tomorrow)
$\begin{array}{ll}\mathrm{H}_{0} & \text { background-only } \\ \mathrm{H}_{1} & \text { signal+background }\end{array}$
accept or reject H_{0} with measurement n events!
$\mathrm{P}\left(\mathrm{n} \mid \mathrm{H}_{0}\right)=\mathrm{P}(\mathrm{n} \mid \mathrm{b}) \quad \mathrm{P}\left(\mathrm{n} \mid \mathrm{H}_{1}\right)=\mathrm{P}(\mathrm{n} \mid \mathrm{s}+\mathrm{b})$

$$
\mathrm{P}(\mathrm{n} \mid \mu)=\mathrm{P}(\mathrm{n} \mid \mu \mathrm{s}+\mathrm{b})
$$

Parameter of Interest μ
Likelihood function for μ $\mu=0: H_{0}$
$\mu \neq 0: H_{l}$

Confidence Intervals - CL L_{s+b}

determine $\mathrm{s}+\mathrm{b}$ consistent with observation (frequentist) assume b is known! do toy monte carlo sufficiently often, intervall $\left(0, \mathrm{~s}_{9}\right)$ covers obs. value $(1-\mathrm{p})=95 \%$ of the time $\mathrm{CL}_{\mathrm{s}+\mathrm{b}}$ - confidence level for signal + background

S95-95\% CL limit

<-more discrepant - N events

Confidence Intervals - CLb

determine background fluctuation probability (frequentist) assume b-only is known!
intervall $\left(0, \mathrm{~s}_{95}\right)$ covers obs. background $(1-\mathrm{p})=95 \%$ of the time CL_{b} - confidence level for background only
Discovery: test b-only (null: s=0 vs. alt: s>0)

- note, one-sided alternative. larger N is "more discrepant"

Modified Frequentist Method - CLs $_{\text {s }}$

The CL_{s} procedure

In the usual formulation of CL_{s}, one tests both the $\mu=0(b)$ and $\mu=1(s+b)$ hypotheses with the same statistic $Q=-2 \ln L_{s+b} / L_{b}$:
use ratio

$\mathrm{CL}_{\mathrm{s}}=\mathrm{CL}_{\mathrm{s}+\mathrm{b}} / \mathrm{CL}_{\mathrm{b}}$ intervall ($0, \mathrm{~s}_{95}$) covers obs. value 95% of the time
"save" wrt background fluctutations

$C L_{s}$ vs. C_{s+b} vs. $P C L$ limits

PCL Power Constraint Limits
when background fluctuates down, $\mathrm{CL}_{\text {s+b }}$ gets negative
PCL more conservative wrt CLs

from Ellam Gross Statistics
Workshop ATLAS
14.April2011

Further Reading

A Unified Approach to the Classical Statistical Analysis of Small Signals Gary J. Feldman, Robert D. Cousins http://arxiv.org/abs/physics/9711021

WIKIPEDIA ARTICLES (frequentist vs. bayesian) http://en.wikipedia.org/wiki/Statistical hypothesis testing http://en.wikipedia.org/wiki/Bayesian inference CDSWEB VIDEO LECTURES (G. COWAN, K. CRANMER, B. COUSINS, ...) http://cdsweb.cern.ch/search? cc=Video+Lectures\& $\ln =$ en \&jrec $=1 \& p=$ statistics

ATLAS INFORMATION/ RECOMMENDATIONS
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/ATLASStatisticsFAQ

Summary

Statistics/ Probability
Probability Distributions
p-Value / Confidence Level
Frequentist/ Bayesian
Confidence Intervals Bayes'Law

$C L_{s}$

"Bayesians address questions everyone is interested in, by using assumptions no-one believes"
"Frequentists use impeccable logic to deal with an issue of no interest to anyone."

Louis Lions

Terascale Statistics School 2008 29. Sep. - 2. Oct. 2008 DESY Hamburg

 Practical work

 Practical work}

paper exercises

Authors: O. Behnke (DESY), C. Kleinwort (DESY), S. Schmitt (DESY)

CATS: ALL YOUR BASE ARE BELDNG TD US.

Vladimir Vapnik

